Abstract and Applied Analysis

Multipliers in Holomorphic Mean Lipschitz Spaces on the Unit Ball

Hong Rae Cho

Full-text: Open access

Abstract

For 1 p and s > 0, let Λ s p be holomorphic mean Lipschitz spaces on the unit ball in n . It is shown that, if s > n / p, the space Λ s p is a multiplicative algebra. If s > n / p , then the space Λ s p is not a multiplicative algebra. We give some sufficient conditions for a holomorphic function to be a pointwise multiplier of Λ n / p p .

Article information

Source
Abstr. Appl. Anal., Volume 2012 (2012), Article ID 869256, 15 pages.

Dates
First available in Project Euclid: 14 December 2012

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1355495751

Digital Object Identifier
doi:10.1155/2012/869256

Mathematical Reviews number (MathSciNet)
MR2947658

Zentralblatt MATH identifier
1248.32004

Citation

Cho, Hong Rae. Multipliers in Holomorphic Mean Lipschitz Spaces on the Unit Ball. Abstr. Appl. Anal. 2012 (2012), Article ID 869256, 15 pages. doi:10.1155/2012/869256. https://projecteuclid.org/euclid.aaa/1355495751


Export citation

References

  • R. S. Strichartz, “Multipliers on fractional Sobolev spaces,” Journal of Mathematics and Mechanics, vol. 16, pp. 1031–1060, 1967.
  • R. A. Adams and J. J. F. Fournier, Sobolev Spaces, Academic Press, Amsterdam, The Netherlands, 2nd edition, 2003.
  • V. G. Maz'ja and T. O. Shaposhnikova, Theory of Multipliers in Spaces of Differentiable Functions, vol. 23 of Monographs and Studies in Mathematics, Pitman, 1985.
  • B. R. Choe, H. Koo, and W. Smith, “Composition operators on small spaces,” Integral Equations and Operator Theory, vol. 56, no. 3, pp. 357–380, 2006.
  • U. Klein, “Hardy-Räume höherer Ordnung unter spezieller Berücksichtigung von ${H}_{1}^{1}$,” in Travaux mathématiques, Fascicule VI, pp. 1–110, Centre Universitaire du Luxembourg, 1994.
  • P. Ryan and M. Stoll, “Hardy-Sobolev spaces and algebras of holomorphic functions on the unit ball in ${\mathbb{C}}^{n}$,” Complex Variables and Elliptic Equations, vol. 53, no. 6, pp. 565–584, 2008.
  • F. Beatrous and J. Burbea, “On multipliers for Hardy-Sobolev spaces,” Proceedings of the American Mathematical Society, vol. 136, no. 6, pp. 2125–2133, 2008.
  • J. Ortega and J. Fàbrega, “Multipliers in Hardy-Sobolev spaces,” Integral Equations and Operator Theory, vol. 55, no. 4, pp. 535–560, 2006.
  • R. Aulaskari, P. Lappan, J. Xiao, and R. Zhao, “On $\alpha $-Bloch spaces and multipliers of Dirichlet spaces,” Journal of Mathematical Analysis and Applications, vol. 209, no. 1, pp. 103–121, 1997.
  • R. Kerman and E. Sawyer, “Carleson measures and multipliers of Dirichlet-type spaces,” Transactions of the American Mathematical Society, vol. 309, no. 1, pp. 87–98, 1988.
  • R. Peng and C. Ouyang, “Pointwise multipliers from Dirichlet type spaces ${D}_{\tau }$ to \emphQ$_{p}$ spaces in the unit ball of ${\mathbb{C}}^{n}$,” Journal of Mathematical Analysis and Applications, vol. 338, no. 2, pp. 1448–1457, 2008.
  • D. A. Stegenga, “Multipliers of the Dirichlet space,” Illinois Journal of Mathematics, vol. 24, no. 1, pp. 113–139, 1980.
  • X. Zhang, “The pointwise multipliers of Bloch type space ${\beta }^{p}$ and Dirichlet type space \emphD$_{q}$ on the unit ball of ${\mathbb{C}}^{n}$,” Journal of Mathematical Analysis and Applications, vol. 285, no. 2, pp. 376–386, 2003.
  • K. Zhu, “Multipliers of BMO in the Bergman metric with applications to Toeplitz operators,” Journal of Functional Analysis, vol. 87, no. 1, pp. 31–50, 1989.
  • X. Zhang, J. Xiao, and Z. Hu, “The multipliers between the mixed norm spaces in ${\mathbb{C}}^{n}$,” Journal of Mathematical Analysis and Applications, vol. 311, no. 2, pp. 664–674, 2005.
  • J. Pau and J. Peláez, “Multipliers of Möbius invariant \emphQ$_{s}$ spaces,” Mathematische Zeitschrift, vol. 261, no. 3, pp. 545–555, 2009.
  • J. M. Ortega and J. Fàbrega, “Pointwise multipliers and decomposition theorems in ${F}_{s}^{\infty ,q}$,” Mathematische Annalen, vol. 329, no. 2, pp. 247–277, 2004.
  • J. L. Wang and Z. Wu, “Multipliers between BMO spaces on open unit ball,” Integral Equations and Operator Theory, vol. 45, no. 2, pp. 231–249, 2003.
  • K. Zhu, Spaces of Holomorphic Functions in the Unit Ball, vol. 226 of Graduate Texts in Mathematics, Springer, New York, NY, USA, 2005.
  • H. R. Cho, H. W. Koo, and E. G. Kwon, “Holomorphic mean Lipschitz functions on the unit ball of ${\mathbb{C}}^{n}$,” Journal of the Korean Mathematical Society. In press.
  • H. R. Cho and K. Zhu, “Holomorphic mean Lipschitz spaces and Hardy Sobolev spaces on the unit ball,” Complex Variables and Elliptic Equations. In press.
  • J. Ryll and P. Wojtaszczyk, “On homogeneous polynomials on a complex ball,” Transactions of the American Mathematical Society, vol. 276, no. 1, pp. 107–116, 1983.
  • P. S. Bourdon, J. H. Shapiro, and W. T. Sledd, “Fourier series, mean Lipschitz spaces, and bounded mean oscillation,” in Analysis at Urbana, E. R. Berkson, N. T. Perk, and J. Uhl, Eds., vol. 137 of London Mathematical Society Lecture note series, pp. 81–110, Cambridge University Press, Cambridge, UK, 1989, Proceedings of the Special Year in Modern Analysis at the University of Illinois, 1986-87.
  • V. G. Maz'ja, Sobolev Spaces, Springer Series in Soviet Mathematics, Springer, Berlin, Germany, 1985.