Abstract and Applied Analysis

Common Fixed Point Theorems for Commutating Mappings in Fuzzy Metric Spaces

Famei Zheng and Xiuguo Lian

Full-text: Open access

Abstract

We generalize Jungck's theorem in Jungck (1976) to fuzzy metric spaces and prove common fixed point theorems for commutative mappings in fuzzy metric spaces.

Article information

Source
Abstr. Appl. Anal., Volume 2012 (2012), Article ID 729758, 5 pages.

Dates
First available in Project Euclid: 14 December 2012

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1355495705

Digital Object Identifier
doi:10.1155/2012/729758

Mathematical Reviews number (MathSciNet)
MR2922925

Zentralblatt MATH identifier
1242.54032

Citation

Zheng, Famei; Lian, Xiuguo. Common Fixed Point Theorems for Commutating Mappings in Fuzzy Metric Spaces. Abstr. Appl. Anal. 2012 (2012), Article ID 729758, 5 pages. doi:10.1155/2012/729758. https://projecteuclid.org/euclid.aaa/1355495705


Export citation

References

  • L. A. Zadeh, “Fuzzy sets,” Information and Computation, vol. 8, pp. 338–353, 1965.
  • Z. K. Deng, “Fuzzy Pesudo-metric space,” Journal of Mathematical Analysis and Applications, vol. 86, pp. 74–95, 1982.
  • M. A. Erceg, “Metric spaces in fuzzy set theory,” Journal of Mathematical Analysis and Applications, vol. 69, no. 1, pp. 205–230, 1979.
  • O. Kaleva and S. Seikkala, “On fuzzy metric spaces,” Fuzzy Sets and Systems, vol. 12, no. 3, pp. 215–229, 1984.
  • I. Kramosil and J. Michálek, “Fuzzy metrics and statistical metric spaces,” Kybernetika, vol. 11, no. 5, pp. 336–344, 1975.
  • M. Grabiec, “Fixed points in fuzzy metric spaces,” Fuzzy Sets and Systems, vol. 27, no. 3, pp. 385–389, 1988.
  • J. X. Fang, “On fixed point theorems in fuzzy metric spaces,” Fuzzy Sets and Systems, vol. 46, no. 1, pp. 107–113, 1992.
  • S. Banach, Theorie les operations Lineaires, Manograie Mathematyezne, Warsaw, Poland, 1932.
  • M. Edelstein, “On fixed and periodic points under contractive mappings,” Journal of the London Mathematical Society. Second Series, vol. 37, pp. 74–79, 1962.
  • I. Istrăţescu, “A fixed point theorem for mappings with a probabilistic contractive iterate,” Revue Roumaine de Mathématiques Pures et Appliquées, vol. 26, no. 3, pp. 431–435, 1981.
  • V. M. Sehgal and A. T. Bharucha-Reid, “Fixed points of contraction mappings on probabilistic metric spaces,” Mathematical Systems Theory, vol. 6, pp. 97–102, 1972.
  • R. Badard, “Fixed point theorems for fuzzy numbers,” Fuzzy Sets and Systems, vol. 13, no. 3, pp. 291–302, 1984.
  • O. Hadžić, “Fixed point theorems for multivalued mappings in some classes of fuzzy metric spaces,” Fuzzy Sets and Systems, vol. 29, no. 1, pp. 115–125, 1989.
  • R. K. Bose and D. Sahani, “Fuzzy mappings and fixed point theorems,” Fuzzy Sets and Systems, vol. 21, no. 1, pp. 53–58, 1987.
  • D. Butnarin, “Fixed point for fuzzy mappings,” Fuzzy Sets and Systems, vol. 7, pp. 191–207, 1982.
  • S. S. Chang, “Fixed point theorems for fuzzy mappings,” Fuzzy Sets and Systems, vol. 17, no. 2, pp. 181–187, 1985.
  • B. S. Lee, Y. J. Cho, and J. S. Jung, “Fixed point theorems for fuzzy mappings and applications,” Korean Mathematical Society. Communications, vol. 11, no. 1, pp. 89–108, 1996.
  • G. Jungck, “Commuting mappings and fixed points,” The American Mathematical Monthly, vol. 83, no. 4, pp. 261–263, 1976.
  • B. Schweizer and A. Sklar, “Statistical metric spaces,” Pacific Journal of Mathematics, vol. 10, pp. 313–334, 1960.
  • G. Jungck, “Compatible mappings and common fixed points,” International Journal of Mathematics and Mathematical Sciences, vol. 9, no. 4, pp. 771–779, 1986.