Abstract and Applied Analysis

A Banach Algebraic Approach to the Borsuk-Ulam Theorem

Ali Taghavi

Full-text: Open access

Abstract

Using methods from the theory of commutative graded Banach algebras, we obtain a generalization of the two-dimensional Borsuk-Ulam theorem as follows. Let ϕ : S 2 S 2 be a homeomorphism of order n , and let λ 1 be an n th root of the unity, then, for every complex valued continuous function f on S 2 , the function i = 0 n 1 λ i f ( ϕ i ( x ) ) must vanish at some point of S 2 . We also discuss some noncommutative versions of the Borsuk-Ulam theorem.

Article information

Source
Abstr. Appl. Anal., Volume 2012 (2012), Article ID 729745, 11 pages.

Dates
First available in Project Euclid: 14 December 2012

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1355495655

Digital Object Identifier
doi:10.1155/2012/729745

Mathematical Reviews number (MathSciNet)
MR2898039

Zentralblatt MATH identifier
1247.46039

Citation

Taghavi, Ali. A Banach Algebraic Approach to the Borsuk-Ulam Theorem. Abstr. Appl. Anal. 2012 (2012), Article ID 729745, 11 pages. doi:10.1155/2012/729745. https://projecteuclid.org/euclid.aaa/1355495655


Export citation

References

  • I. N. Herstein, Topics in Algebra, Wiley, 1975.
  • A. Connes, “Noncommutative differential geometry,” Institut des Hautes Études Scientifiques, no. 62, pp. 257–360, 1985.
  • J. M. Gracia-Bondía, J. C. Várilly, and H. Figueroa, Elements of Non-Commutative Geometry, Birkhäuser, Boston, Mass, USA, 2001.
  • W. Rudin, Functional Analysis, McGraw-Hill, New York, NY, USA, 2nd edition, 1991.
  • A. Hatcher, Algebraic Topology, Cambridge University Press, 2002.
  • M. A. Rieffel, “Dimension and stable rank in the \emphK-theory of ${C}^{\ast\,\!}$-algebras,” Proceedings of the London Mathematical Society, vol. 46, no. 2, pp. 301–333, 1983.
  • H. Bass, “\emphK-theory and stable algebra,” Institut des Hautes Études Scientifiques, no. 22, pp. 5–60, 1964.
  • K. Dykema, U. Haagerup, and M. Rørdam, “The stable rank of some free product ${C}^{\ast\,\!}$-algebras,” Duke Mathematical Journal, vol. 90, no. 1, pp. 95–121, 1997.
  • O. Bratteli, G. A. Elliott, D. E. Evans, and A. Kishimoto, “Noncommutative spheres,” International Journal of Mathematics, vol. 2, no. 2, pp. 139–166, 1991.
  • T. Natsume, “Some non-commutative spheres,” in Quantum Field Theory and Noncommutative Geo-metry, vol. 662 of Lecture Notes in Physics, pp. 57–66, Springer, Berlin, Germany, 2005.
  • A. Valette, Introduction to the Baum-Connes Conjecture, Birkhäuser, Basel, Switzerland, 2002.