Abstract and Applied Analysis

Sandwich-Type Theorems for a Class of Multiplier Transformations Associated with the Noor Integral Operators

Nak Eun Cho and Khalida Inayat Noor

Full-text: Open access

Abstract

We obtain some subordination- and superordination-preserving properties for a class of multiplier transformations associated with Noor integral operators defined on the space of normalized analytic functions in the open unit disk. The sandwich-type theorems for these transformations are also considered.

Article information

Source
Abstr. Appl. Anal., Volume 2012, Special Issue (2012), Article ID 904272, 13 pages.

Dates
First available in Project Euclid: 15 February 2012

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1329337690

Digital Object Identifier
doi:10.1155/2012/904272

Mathematical Reviews number (MathSciNet)
MR2872299

Zentralblatt MATH identifier
1236.30025

Citation

Cho, Nak Eun; Noor, Khalida Inayat. Sandwich-Type Theorems for a Class of Multiplier Transformations Associated with the Noor Integral Operators. Abstr. Appl. Anal. 2012, Special Issue (2012), Article ID 904272, 13 pages. doi:10.1155/2012/904272. https://projecteuclid.org/euclid.aaa/1329337690


Export citation

References

  • S. S. Miller and P. T. Mocanu, Differential Subordinations, Theory and Application, vol. 225 of Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker Inc., New York, NY, USA, 2000.
  • S. S. Miller and P. T. Mocanu, “Subordinants of differential superordinations,” Complex Variables. Theory and Application, vol. 48, no. 10, pp. 815–826, 2003.
  • Y. Komatu, Distortion Theorems in Relation to Linear Integral Operators, vol. 385 of Mathematics and its Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996.
  • T. M. Flett, “The dual of an inequality of Hardy and Littlewood and some related inequalities,” Journal of Mathematical Analysis and Applications, vol. 38, pp. 746–765, 1972.
  • I. B. Jung, Y. C. Kim, and H. M. Srivastava, “The Hardy space of analytic functions associated with certain one-parameter families of integral operators,” Journal of Mathematical Analysis and Applications, vol. 176, no. 1, pp. 138–147, 1993.
  • J.-L. Liu, “A linear operator and strongly starlike functions,” Journal of the Mathematical Society of Japan, vol. 54, no. 4, pp. 975–981, 2002.
  • K. I. Noor, “On new classes of integral operators,” Journal of Natural Geometry, vol. 16, no. 1-2, pp. 71–80, 1999.
  • J. H. Choi, M. Saigo, and H. M. Srivastava, “Some inclusion properties of a certain family of integral operators,” Journal of Mathematical Analysis and Applications, vol. 276, no. 1, pp. 432–445, 2002.
  • J.-L. Liu, “The Noor integral and strongly starlike functions,” Journal of Mathematical Analysis and Applications, vol. 261, no. 2, pp. 441–447, 2001.
  • J.-L. Liu and K. I. Noor, “Some properties of Noor integral operator,” Journal of Natural Geometry, vol. 21, no. 1-2, pp. 81–90, 2002.
  • K. I. Noor and M. A. Noor, “On integral operators,” Journal of Mathematical Analysis and Applications, vol. 238, no. 2, pp. 341–352, 1999.
  • S. S. Miller, P. T. Mocanu, and M. O. Reade, “Subordination-preserving integral operators,” Trans-actions of the American Mathematical Society, vol. 283, no. 2, pp. 605–615, 1984.
  • T. Bulboacă, “Integral operators that preserve the subordination,” Bulletin of the Korean Mathematical Society, vol. 34, no. 4, pp. 627–636, 1997.
  • T. Bulboacă, “A class of superordination-preserving integral operators,” Indagationes Mathematicae. New Series, vol. 13, no. 3, pp. 301–311, 2002.
  • S. S. Miller and P. T. Mocanu, “Differential subordinations and univalent functions,” The Michigan Mathematical Journal, vol. 28, no. 2, pp. 157–172, 1981.
  • S. S. Miller and P. T. Mocanu, “Univalent solutions of Briot-Bouquet differential equations,” Journal of Differential Equations, vol. 56, no. 3, pp. 297–309, 1985.
  • C. Pommerenke, Univalent functions, Vandenhoeck & Ruprecht, Göttingen, Germany, 1975.
  • W. Kaplan, “Close-to-convex schlicht functions,” The Michigan Mathematical Journal, vol. 1, pp. 169–185, 1952.