Abstract and Applied Analysis

Asymptotic Properties of Third-Order Delay Trinomial Differential Equations

J. Džurina and R. Komariková

Full-text: Open access

Abstract

The aim of this paper is to study properties of the third-order delay trinomial differential equation ( ( 1 / r ( t ) ) y ( t ) ) + p ( t ) y ( t ) + q ( t ) y ( σ ( t ) ) = 0 , by transforming this equation onto the second-/third-order binomial differential equation. Using suitable comparison theorems, we establish new results on asymptotic behavior of solutions of the studied equations. Obtained criteria improve and generalize earlier ones.

Article information

Source
Abstr. Appl. Anal., Volume 2011, Number 1 (2011), Article ID 730128, 10 pages.

Dates
First available in Project Euclid: 12 August 2011

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1313171385

Digital Object Identifier
doi:10.1155/2011/730128

Mathematical Reviews number (MathSciNet)
MR2746014

Zentralblatt MATH identifier
1210.34107

Citation

Džurina, J.; Komariková, R. Asymptotic Properties of Third-Order Delay Trinomial Differential Equations. Abstr. Appl. Anal. 2011 (2011), no. 1, Article ID 730128, 10 pages. doi:10.1155/2011/730128. https://projecteuclid.org/euclid.aaa/1313171385


Export citation