Abstract and Applied Analysis

Stability and Superstability of Ring Homomorphisms on Non-Archimedean Banach Algebras

M. Eshaghi Gordji and Z. Alizadeh

Full-text: Open access

Abstract

Using fixed point methods, we prove the superstability and generalized Hyers-Ulam stability of ring homomorphisms on non-Archimedean Banach algebras. Moreover, we investigate the superstability of ring homomorphisms in non-Archimedean Banach algebras associated with the Jensen functional equation.

Article information

Source
Abstr. Appl. Anal., Volume 2011 (2011), Article ID 123656, 10 pages.

Dates
First available in Project Euclid: 12 August 2011

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1313171124

Digital Object Identifier
doi:10.1155/2011/123656

Mathematical Reviews number (MathSciNet)
MR2776747

Zentralblatt MATH identifier
1216.39035

Citation

Eshaghi Gordji, M.; Alizadeh, Z. Stability and Superstability of Ring Homomorphisms on Non-Archimedean Banach Algebras. Abstr. Appl. Anal. 2011 (2011), Article ID 123656, 10 pages. doi:10.1155/2011/123656. https://projecteuclid.org/euclid.aaa/1313171124


Export citation

References

  • K. Hensel, “Über eine neue begründung der theorie der algebraischen zahlen,” in Jahresbericht der Deutschen Mathematiker-Vereinigung, vol. 6, pp. 83–88, 1897.
  • A. Khrennikov, Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models, vol. 427 of Mathematics and Its Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1997.
  • L. M. Arriola and W. A. Beyer, “Stability of the Cauchy functional equation over p-adic fields,” Real Analysis Exchange, vol. 31, no. 1, pp. 125–132, 2006.
  • M. Eshaghi Gordji, “Nearly ring homomorphisms and nearly ring derivations on non-Archimedean banach algebras,” Abstract and Applied Analysis, vol. 2010, Article ID 393247, 12 pages, 2010.
  • M. Eshaghi Gordji and M. B. Savadkouhi, “Stability of cubic and quartic functional equations in non-Archimedean spaces,” Acta Applicandae Mathematicae, vol. 110, no. 3, pp. 1321–1329, 2010.
  • M. Eshaghi Gordji and M. B. Savadkouhi, “Stability of a mixed type cubic-quartic functional equation in non-Archimedean spaces,” Applied Mathematics Letters, vol. 23, no. 10, pp. 1198–1202, 2010.
  • M. Eshaghi Gordji, H. Khodaei, and R. Khodabakhsh, “General quartic-cubic-quadratic functional equation in non-Archimedean normed spaces,” “Politehnica” University of Bucharest. Scientific Bulletin. Series A, vol. 72, no. 3, pp. 69–84, 2010.
  • L. Narici and E. Beckenstein, “Strange terrain–-non-Archimedean spaces,” The American Mathematical Monthly, vol. 88, no. 9, pp. 667–676, 1981.
  • C. Park, D. H. Boo, and T. M. Rassias, “Approximately addtive mappings over p-adic fields,” Journal of Chungcheong Mathematical Society, vol. 21, pp. 1–14, 2008.
  • V. S. Vladimirov, I. V. Volovich, and E. I. Zelenov, p-adic Analysis and Mathematical Physics, World Scientific, Singapore, 1994.
  • N. Shilkret, Non-Archimedian Banach algebras, Ph.D. thesis, Polytechnic University, 1968, ProQuest LLC.
  • S. M. Ulam, A Collection of the Mathematical Problems, Interscience Publishers, New York, 1940.
  • D. H. Hyers, “On the stability of the linear functional equation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 27, pp. 222–224, 1941.
  • T. Aoki, “On the stability of the linear transformation in Banach spaces,” Journal of the Mathematical Society of Japan, vol. 2, pp. 64–66, 1950.
  • T. M. Rassias, “On the stability of the linear mapping in Banach spaces,” Proceedings of the American Mathematical Society, vol. 72, no. 2, pp. 297–300, 1978.
  • D. G. Bourgin, “Classes of transformations and bordering transformations,” Bulletin of the American Mathematical Society, vol. 57, pp. 223–237, 1951.
  • P. Găvruţa, “A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings,” Journal of Mathematical Analysis and Applications, vol. 184, no. 3, pp. 431–436, 1994.
  • R. Badora, “On approximate derivations,” Mathematical Inequalities & Applications, vol. 9, no. 1, pp. 167–173, 2006.
  • R. Farokhzad and S. A. R. Hosseinioun, “Perturbations of Jordan higher derivations in Banach ternary algebras: an alternative fixed point approach,” International Journal of Nonlinear Analysis and Applications, vol. 1, no. 1, pp. 42–53, 2010.
  • M. Eshaghi Gordji, M. B. Savadkouhi, and M. Bidkham, “Stability of a mixed type additive and quadratic functional equation in non-Archimedean spaces,” Journal of Computational Analysis and Applications, vol. 12, no. 2, pp. 454–462, 2010.
  • S.-M. Jung, “On the Hyers-Ulam-Rassias stability of approximately additive mappings,” Journal of Mathematical Analysis and Applications, vol. 204, no. 1, pp. 221–226, 1996.
  • C. Park and M. E. Gordji, “Comment on approximate ternary Jordan derivations on Banach ternary algebras,” Journal of Mathematical Physics, vol. 51, 7 pages, 2010, B. Savadkouhi, Journal of Mathematical Physics, vol. 50, article 042303, 2010.
  • C. Park and A. Najati, “Generalized additive functional inequalities in Banach algebras,” International Journal of Nonlinear Analysis and Applications, vol. 1, no. 2, pp. 54–62, 2010.
  • J. M. Rassias, “On approximation of approximately linear mappings by linear mappings,” Journal of Functional Analysis, vol. 46, no. 1, pp. 126–130, 1982.
  • J. M. Rassias, “On approximation of approximately linear mappings by linear mappings,” Bulletin des Sciences Mathématiques, vol. 108, no. 4, pp. 445–446, 1984.
  • J. M. Rassias, “Solution of a problem of Ulam,” Journal of Approximation Theory, vol. 57, no. 3, pp. 268–273, 1989.
  • J. M. Rassias, “On the stability of the Euler-Lagrange functional equation,” Chinese Journal of Mathematics, vol. 20, no. 2, pp. 185–190, 1992.
  • J. M. Rassias, “Solution of a stability problem of Ulam,” Discussiones Mathematicae, vol. 12, pp. 95–103, 1992.
  • J. M. Rassias, “Complete solution of the multi-dimensional problem of Ulam,” Discussiones Mathematicae, vol. 14, pp. 101–107, 1994.
  • P. Găvruta, “An answer to a question of John. M. Rassias concerning the stability of Cauchy equation,” in Advances in Equations and Inequalities, Hardronic MaT. Series, pp. 67–71, 1999.
  • D. G. Bourgin, “Approximately isometric and multiplicative transformations on continuous function rings,” Duke Mathematical Journal, vol. 16, pp. 385–397, 1949.
  • R. Badora, “On approximate ring homomorphisms,” Journal of Mathematical Analysis and Applications, vol. 276, no. 2, pp. 589–597, 2002.
  • J. Baker, J. Lawrence, and F. Zorzitto, “The stability of the equation $f(x+y)=f(x)f(y)$,” Proceedings of the American Mathematical Society, vol. 74, no. 2, pp. 242–246, 1979.
  • M. Eshaghi Gordji, T. Karimi, and S. Kaboli Gharetapeh, “Approximately $n$-Jordan homomorphisms on Banach algebras,” Journal of Inequalities and Applications, vol. 2009, Article ID 870843, 8 pages,2009.
  • M. Eshaghi Gordji and A. Najati, “Approximately ${\text{J}}^{\ast\,\!}$-homomorphisms: a fixed point approach,” Journal of Geometry and Physics, vol. 60, no. 5, pp. 809–814, 2010.
  • C.-G. Park, “Homomorphisms between Lie $J{C}^{\ast\,\!}$-algebras and Cauchy-Rassias stability of Lie $J{C}^{\ast\,\!}$-algebra derivations,” Journal of Lie Theory, vol. 15, no. 2, pp. 393–414, 2005.
  • C.-G. Park, “Lie $\ast\,\!$-homomorphisms between Lie ${C}^{\ast\,\!}$-algebras and Lie $\ast\,\!$-derivations on Lie ${C}^{\ast\,\!}$-algebras,” Journal of Mathematical Analysis and Applications, vol. 293, no. 2, pp. 419–434, 2004.
  • J. B. Diaz and B. Margolis, “A fixed point theorem of the alternative, for contractions on a generalized complete metric space,” Bulletin of the American Mathematical Society, vol. 74, pp. 305–309, 1968.
  • I. A. Rus, Principles and Applications of Fixed Point Theory, Dacia, Cluj-Napoca, Romania, 1979.
  • D. H. Hyers, G. Isac, and T. M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser Boston, Boston, Mass, USA, 1998.
  • E. Zeidler, Nonlinear Functional Analysis and Its Applications. I, Springer, New York, NY, USA, 1986.
  • V. Radu, “The fixed point alternative and the stability of functional equations,” Fixed Point Theory, vol. 4, no. 1, pp. 91–96, 2003.
  • L. Cădariu and V. Radu, “Fixed points and the stability of Jensen's functional equation,” Journal of Inequalities in Pure and Applied Mathematics, vol. 4, no. 1, article 4, p. 7, 2003.
  • L. Cădariu and V. Radu, “On the stability of the Cauchy functional equation: a fixed point approach,” in Iteration Theory, vol. 346, pp. 43–52, Karl-Franzens-Universitaet Graz, 2004.
  • L. Cădariu and V. Radu, “Fixed point methods for the generalized stability of functional equations in a single variable,” Fixed Point Theory and Applications, vol. 2008, Article ID 749392, 15 pages, 2008.