Abstract and Applied Analysis

On the Stochastic 3D Navier-Stokes- α Model of Fluids Turbulence

Gabriel Deugoue and Mamadou Sango

Full-text: Open access


We investigate the stochastic 3D Navier-Stokes- α model which arises in the modelling of turbulent flows of fluids. Our model contains nonlinear forcing terms which do not satisfy the Lipschitz conditions. The adequate notion of solutions is that of probabilistic weak solution. We establish the existence of a such of solution. We also discuss the uniqueness.

Article information

Abstr. Appl. Anal., Volume 2009 (2009), Article ID 723236, 27 pages.

First available in Project Euclid: 16 March 2010

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier


Deugoue, Gabriel; Sango, Mamadou. On the Stochastic 3D Navier-Stokes- $\alpha $ Model of Fluids Turbulence. Abstr. Appl. Anal. 2009 (2009), Article ID 723236, 27 pages. doi:10.1155/2009/723236. https://projecteuclid.org/euclid.aaa/1268745612

Export citation


  • S. Chen, C. Foias, D. D. Holm, E. Olson, E. S. Titi, and S. Wynne, ``A connection between the Camassa-Holm equations and turbulent flows in pipes and channels,'' Physics of Fluids, vol. 11, no. 8, pp. 2343--2353, 1999.
  • S. Chen, C. Foias, D. D. Holm, E. Olson, E. S. Titi, and S. Wynne, ``The Camassa-Holm equations and turbulence,'' Physica D, vol. 133, no. 1--4, pp. 49--65, 1999.
  • S. Chen, C. Foias, D. D. Holm, E. Olson, E. S. Titi, and S. Wynne, ``Camassa-Holm equations as a closure model for turbulent channel and pipe flow,'' Physical Review Letters, vol. 81, no. 24, pp. 5338--5341, 1989.
  • S. Chen, D. D. Holm, L. G. Margolin, and R. Zhang, ``Direct numerical simulations of the Navier-Stokes alpha model,'' Physica D, vol. 133, no. 1--4, pp. 66--83, 1999.
  • C. Foias, D. D. Holm, and E. S. Titi, ``The Navier-Stokes-alpha model of fluid turbulence,'' Physica D, vol. 152-153, pp. 505--519, 2001.
  • D. Coutand, J. Peirce, and S. Shkoller, ``Global well-posedness of weak solutions for the Lagrangian averaged Navier-Stokes equations on bounded domains,'' Communications on Pure and Applied Analysis, vol. 1, no. 1, pp. 35--50, 2002.
  • J. E. Marsden and S. Shkoller, ``Global well-posedness for the LANS---$\alpha $ equations on bounded domains,'' Philosophical Transactions of The Royal Society A, vol. 359, no. 1784, pp. 1449--1468, 2001.
  • C. Foias, D. D. Holm, and E. S. Titi, ``The three dimensional viscous Camassa-Holm equations, and their relation to the Navier-Stokes equations and turbulence theory,'' Journal of Dynamics and Differential Equations, vol. 14, no. 1, pp. 1--35, 2002.
  • T. Caraballo, J. Real, and T. Taniguchi, ``The existence and uniqueness of solutions to stochastic three-dimensional Lagrangian averaged Navier-Stokes equations,'' Proceedings of The Royal Society of London A, vol. 462, no. 2066, pp. 459--479, 2006.
  • T. Caraballo, A. M. Marquez-Duran, and J. Real, ``On the stochastic 3D-Lagrangian averaged Navier-Stokes $\alpha $-model with finite delay,'' Stochastics and Dynamics, vol. 5, no. 2, pp. 189--200, 2005.
  • N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusions Processes, North-Holland, Amsterdam, The Netherlands, 1981.
  • Y. V. Prohorov, ``Convergence of random processes and limit theorems in probability theory,'' Teorija Verojatnostii Primenenija, vol. 1, pp. 177--238, 1956 (Russian).
  • A. V. Skorohod, ``Limit theorems for stochastic processes,'' Teorija Verojatnosteii Primenenija, vol. 1, pp. 289--319, 1956.
  • R. Temam, Navier Stokes Equations, Theory and Numerical Analysis, vol. 2 of Studies in Mathematics and Its Applications, North-Holland, Amsterdam, The Netherlands, 3rd edition, 1997.
  • I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, vol. 113 of Graduate Texts in Mathematics, Springer, New York, NY, USA, 1987.
  • A. Bensoussan, ``Stochastic Navier-Stokes equations,'' Acta Applicandae Mathematicae, vol. 38, no. 3, pp. 267--304, 1995.
  • J. L. Lions, Quelques Méthodes de Resolution des Problèmes aux Limites Non Linéaires, Dunod, Gauthier-Villars, Paris, France, 1969.
  • N. V. Krylov and B. L. Rozovskii, ``Stochastic evolution equations,'' in Current Problems in Mathematics, Vol. 14 (Russian), pp. 71--147, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Informatsii, Moscow, Russia, 1979.
  • E. Pardoux, Equations aux dérivées partielles stochastiques non linéaires monotones, Ph.D. thesis, Université Paris 15, Paris, France, 1975.
  • J. A. Langa, J. Real, and J. Simon, ``Existence and regularity of the pressure for the stochastic Navier-Stokes equations,'' Applied Mathematics and Optimization, vol. 48, no. 3, pp. 195--210, 2003.