Abstract and Applied Analysis

Existence and Stability Estimate for the Solution of the Ageing Hereditary Linear Viscoelasticity Problem

Julia Orlik

Full-text: Open access

Abstract

The paper is concerned with the existence and stability of weak (variational) solutions for the problem of the quasistatic evolution of a viscoelastic material under mixed inhomogenous Dirichlet-Neumann boundary conditions. The main novelty of the paper relies in dealing with continuous-in-time weak solutions and allowing nonconvolution and weak-singular Volterra's relaxation kernels.

Article information

Source
Abstr. Appl. Anal., Volume 2009 (2009), Article ID 828315, 19 pages.

Dates
First available in Project Euclid: 16 March 2010

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1268745578

Digital Object Identifier
doi:10.1155/2009/828315

Mathematical Reviews number (MathSciNet)
MR2521127

Zentralblatt MATH identifier
05627613

Citation

Orlik, Julia. Existence and Stability Estimate for the Solution of the Ageing Hereditary Linear Viscoelasticity Problem. Abstr. Appl. Anal. 2009 (2009), Article ID 828315, 19 pages. doi:10.1155/2009/828315. https://projecteuclid.org/euclid.aaa/1268745578


Export citation

References

  • S. E. Mikhailov, ``On some weighted Hardy type classes of one-parametric holomorphic functions---II: partial volterra operators in parameter,'' Journal of Mathematical Analysis and Applications, vol. 222, no. 2, pp. 374--396, 1998.
  • N. Kh. Arutyunyan and B. A. Shoĭkhet, ``Asymptotic behavior of the solution of the boundary value problem of the theory of creep of inhomogeneous aging bodies with unilateral constraints,'' Mechanics of Solids, vol. 16, no. 3, pp. 31--48, 1981.
  • P. Acquistapace, ``Existence and maximal time regularity for linear parabolic integro-differential equations,'' Journal of Integral Equations, vol. 10, no. 1--3, pp. 5--43, 1985.
  • A. Friedman and M. Shinbrot, ``Volterra integral equations in Banach space,'' Transactions of the American Mathematical Society, vol. 126, pp. 131--179, 1967.
  • A. Lunardi, ``Regular solutions for time dependent abstract integro-differential equations with singular kernel,'' Journal of Mathematical Analysis and Applications, vol. 130, no. 1, pp. 1--21, 1988.
  • J. Prüss, ``On resolvent operators for linear integro-differential equations of Volterra type,'' Journal of Integral Equations, vol. 5, no. 3, pp. 211--236, 1983.
  • G. Di Blasio, ``Nonautonomous integro-differential equations in $L^p$ spaces,'' Journal of Integral Equations, vol. 10, no. 1--3, pp. 111--121, 1985.
  • R. C. Grimmer, ``Resolvent operators for integral equations in a Banach space,'' Transactions of the American Mathematical Society, vol. 273, no. 1, pp. 333--349, 1982.
  • H. Tanabe, ``Linear Volterra integral equations of parabolic type,'' Hokkaido Mathematical Journal, vol. 12, no. 3, part 1, pp. 265--275, 1983.
  • H. Tanabe, ``Remarks on linear Volterra integral equations of parabolic type,'' Osaka Journal of Mathematics, vol. 22, no. 3, pp. 519--531, 1985.
  • R. A. Adams, Sobolev Spaces, Academic Press, Boston, Mass, USA, 1990.
  • K. Yosida, Functional Analysis, vol. 123 of Grundlehren der Mathematischen Wissenschaften, Springer, Berlin, Germany, 6th edition, 1980.
  • E. Zeidler, Nonlinear Functional Analysis and Its Applications. II/B, Springer, New York, NY, USA, 1993.
  • A. N. Kolmogorov and S. V. Fomīn, Reelle Funktionen und Funktionalanalysis, VEB Deutscher Verlag der Wissenschaften, Berlin, Germany, 1975.
  • W. Rudin, Real and Complex Analysis, chapter 1, McGraw-Hill, New York, NY, USA, 3rd edition, 1987.
  • H. W. Alt, Lineare Funktionalanalysis, Springer, Berlin, Germany, 1992.
  • G. Gripenberg, S.-O. Londen, and O. Staffans, Volterra Integral and Functional Equations, vol. 34 of Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, UK, 1990.
  • I. M. Gel'fand, D. A. Raikow, and G. E. Schilow, Kommutative Normierte Algebren, VEB Deutscher Verlag der Wissenschaften, Berlin, Germany, 1964.
  • W. Rudin, Functional Analysis, McGraw-Hill Series in Higher Mathematics, McGraw-Hill, New York, NY, USA, 1973.
  • O. A. Oleĭnik, A. S. Shamaev, and G. A. Yosifian, Mathematical Problems in Easticity and Homogenization, vol. 26 of Studies in Mathematics and Its Applications, North-Holland, Amsterdam, The Netherlands, 1992.
  • W. Hackbusch, Theorie und Numerik elliptischer Differentialgleichungen, B. G. Teubner, Stuttgart, Germany, 1986.