Abstract and Applied Analysis

Stabilization for a Periodic Predator-Prey System

Sebastian Aniţa and Carmen Oana Tarniceriu

Full-text: Open access


A reaction-diffusion system modelling a predator-prey system in a periodic environment is considered. We are concerned in stabilization to zero of one of the components of the solution, via an internal control acting on a small subdomain, and in the preservation of the nonnegativity of both components.

Article information

Abstr. Appl. Anal., Volume 2007 (2007), Article ID 86183, 17 pages.

First available in Project Euclid: 27 February 2008

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier


Aniţa, Sebastian; Tarniceriu, Carmen Oana. Stabilization for a Periodic Predator-Prey System. Abstr. Appl. Anal. 2007 (2007), Article ID 86183, 17 pages. doi:10.1155/2007/86183. https://projecteuclid.org/euclid.aaa/1204126607

Export citation


  • W. Chen and M. Wang, ``Qualitative analysis of predator-prey models with Beddington-De Angelis functional response and diffusion,'' Mathematical and Computer Modelling, vol. 42, no. 1-2, pp. 31--44, 2005.
  • J.-D. Murray, Mathematical Biology I: An Introduction, vol. 17 of Interdisciplinary Applied Mathematics, Springer, New York, NY, USA, 3rd edition, 2002.
  • H. R. Thieme, Mathematics in Population Biology, Princeton Series in Theoretical and Computational Biology, Princeton University Press, Princeton, NJ, USA, 2003.
  • J. M. Cushing, ``Periodic time-dependent predator-prey systems,'' SIAM Journal on Applied Mathematics, vol. 32, no. 1, pp. 82--95, 1977.
  • M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Prentice-Hall, Englewood Cliffs, NJ, USA, 1967.
  • B. Ainseba, F. Heiser, and M. Langlais, ``A mathematical analysis of a predator-prey system in a highly heterogeneous environment,'' Differential and Integral Equations, vol. 15, no. 4, pp. 385--404, 2002.
  • B. Ainseba and S. Aniţa, ``Internal stabilizability for a reaction-diffusion problem modeling a predator-prey system,'' Nonlinear Analysis: Theory, Methods & Applications, vol. 61, no. 4, pp. 491--501, 2005.
  • S. Aniţa and M. Langlais, ``Stabilization strategies for some reaction-diffusion systems,'' submitted to, Nonlinear Analysis: Real World Applications, doi:10.1016/j.nonrwa.2007.09.003.
  • F. Courchamp and G. Sugihara, ``Modelling the biological control of an alien predator to protect island species from extinction,'' Ecological Application, vol. 9, no. 1, pp. 112--123, 1999.
  • V. Barbu, Partial Differential Equations and Boundary Value Problems, vol. 441 of Mathematics and Its Applications, Kluwer, Dordrecht, The Netherlands, 1998.