Abstract and Applied Analysis

On Local α -Times Integrated C -Semigroups

Yuan-Chuan Li and Sen-Yen Shaw

Full-text: Open access

Abstract

This paper presents several characterizations of a local α -times integrated C -semigroup { T ( t ) ; 0 t < τ } by means of functional equation, subgenerator, and well-posedness of an associated abstract Cauchy problem. We also discuss properties concerning the nondegeneracy of T ( ) , the injectivity of C , the closability of subgenerators, the commutativity of T ( ) , and extension of solutions of the associated abstract Cauchy problem.

Article information

Source
Abstr. Appl. Anal., Volume 2007 (2007), Article ID 34890, 18 pages.

Dates
First available in Project Euclid: 27 February 2008

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1204126594

Digital Object Identifier
doi:10.1155/2007/34890

Mathematical Reviews number (MathSciNet)
MR2336261

Zentralblatt MATH identifier
1153.47035

Citation

Li, Yuan-Chuan; Shaw, Sen-Yen. On Local $\alpha$ -Times Integrated $C$ -Semigroups. Abstr. Appl. Anal. 2007 (2007), Article ID 34890, 18 pages. doi:10.1155/2007/34890. https://projecteuclid.org/euclid.aaa/1204126594


Export citation

References

  • C.-C. Kuo and S.-Y. Shaw, ``On $\alpha$-times integrated $C$-semigroups and the abstract Cauchy problem,'' Studia Mathematica, vol. 142, no. 3, pp. 201--217, 2000.
  • Y.-C. Li and S.-Y. Shaw, ``$N$-times integrated $C$-semigroups and the abstract Cauchy problem,'' Taiwanese Journal of Mathematics, vol. 1, no. 1, pp. 75--102, 1997.
  • W. Arendt, ``Vector-valued Laplace transforms and Cauchy problems,'' Israel Journal of Mathematics, vol. 59, no. 3, pp. 327--352, 1987.
  • M. Hieber, ``Laplace transforms and $\alpha$-times integrated semigroups,'' Forum Mathematicum, vol. 3, no. 6, pp. 595--612, 1991.
  • C.-C. Kuo and S.-Y. Shaw, ``Abstract Cauchy problems associated with local $C$-semigroups,'' in Semigroups of Operators: Theory and Applications. Proceedings of the 2nd International Conference (Rio de Janeiro, Brazil, 2001), C. Kubrusly, N. Levan, and M. da Silveira, Eds., pp. 158--168, Optimization Software, New York, NY, USA, 2002.
  • Y.-C. Li and S.-Y. Shaw, ``On characterization and perturbation of local $C$-semigroups,'' Proceedings of the American Mathematical Society, vol. 135, no. 4, pp. 1097--1106, 2007.
  • S.-Y. Shaw and C.-C. Kuo, ``Generation of local $C$-semigroups and solvability of the abstract Cauchy problems,'' Taiwanese Journal of Mathematics, vol. 9, no. 2, pp. 291--311, 2005.
  • S.-Y. Shaw, C.-C. Kuo, and Y.-C. Li, ``Perturbation of local $C$-semigroups,'' Nonlinear Analysis: Theory, Methods & Applications, vol. 63, no. 5--7, pp. e2569--e2574, 2005.
  • N. Tanaka and N. Okazawa, ``Local $C$-semigroups and local integrated semigroups,'' Proceedings of the London Mathematical Society, vol. 61, no. 1, pp. 63--90, 1990.
  • S. W. Wang and M. C. Gao, ``Automatic extensions of local regularized semigroups and local regularized cosine functions,'' Proceedings of the American Mathematical Society, vol. 127, no. 6, pp. 1651--1663, 1999.
  • T.-J. Xiao, J. Liang, and F. Li, ``A perturbation theorem of Miyadera type for local $C$-regularized semigroups,'' Taiwanese Journal of Mathematics, vol. 10, no. 1, pp. 153--162, 2006.
  • E. B. Davies and M. M. H. Pang, ``The Cauchy problem and a generalization of the Hille-Yosida theorem,'' Proceedings of the London Mathematical Society, vol. 55, no. 1, pp. 181--208, 1987.
  • R. deLaubenfels, ``$C$-semigroups and the Cauchy problem,'' Journal of Functional Analysis, vol. 111, no. 1, pp. 44--61, 1993.
  • N. Tanaka and I. Miyadera, ``Exponentially bounded $C$-semigroups and integrated semigroups,'' Tokyo Journal of Mathematics, vol. 12, no. 1, pp. 99--115, 1989.
  • N. Tanaka and I. Miyadera, ``$C$-semigroups and the abstract Cauchy problem,'' Journal of Mathematical Analysis and Applications, vol. 170, no. 1, pp. 196--206, 1992.
  • M. Li, F.-L. Huang, and Q. Zheng, ``Local integrated $C$-semigroups,'' Studia Mathematica, vol. 145, no. 3, pp. 265--280, 2001.
  • W. Arendt, O. El-Mennaoui, and V. Kéyantuo, ``Local integrated semigroups: evolution with jumps of regularity,'' Journal of Mathematical Analysis and Applications, vol. 186, no. 2, pp. 572--595, 1994.
  • S.-Y. Shaw and Y.-C. Li, ``Characterization and generation of local $C$-cosine and $C$-sine functions,'' International Journal of Evolution Equations, vol. 1, no. 4, pp. 373--401, 2005.
  • J. Diestel and J. J. Uhl Jr., Vector Measures, Mathematical Surveys, no. 15, American Mathematical Society, Providence, RI, USA, 1977.