Abstract and Applied Analysis

Continuous-Time Multiobjective Optimization Problems via Invexity

Valeriano A. De Oliveira and Marko A. Rojas-Medar

Full-text: Open access

Abstract

We introduce some concepts of generalized invexity for the continuous-time multiobjective programming problems, namely, the concepts of Karush-Kuhn-Tucker invexity and Karush-Kuhn-Tucker pseudoinvexity. Using the concept of Karush-Kuhn-Tucker invexity, we study the relationship of the multiobjective problems with some related scalar problems. Further, we show that Karush-Kuhn-Tucker pseudoinvexity is a necessary and suffcient condition for a vector Karush-Kuhn-Tucker solution to be a weakly efficient solution.

Article information

Source
Abstr. Appl. Anal., Volume 2007 (2007), Article ID 61296, 11 pages.

Dates
First available in Project Euclid: 27 February 2008

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1204126584

Digital Object Identifier
doi:10.1155/2007/61296

Mathematical Reviews number (MathSciNet)
MR2283963

Zentralblatt MATH identifier
1180.90286

Citation

De Oliveira, Valeriano A.; Rojas-Medar, Marko A. Continuous-Time Multiobjective Optimization Problems via Invexity. Abstr. Appl. Anal. 2007 (2007), Article ID 61296, 11 pages. doi:10.1155/2007/61296. https://projecteuclid.org/euclid.aaa/1204126584


Export citation

References

  • R. Bellman, ``Bottleneck problems and dynamic programming,'' Proceedings of the National Academy of Sciences of the United States of America, vol. 39, pp. 947--951, 1953.
  • E. J. Anderson and A. B. Philpott, ``On the solutions of a class of continuous linear programs,'' SIAM Journal on Control and Optimization, vol. 32, no. 5, pp. 1289--1296, 1994.
  • A. J. V. Brandão, M. A. Rojas-Medar, and G. N. Silva, ``Nonsmooth continuous-time optimization problems: necessary conditions,'' Computers & Mathematics with Applications, vol. 41, no. 12, pp. 1477--1486, 2001.
  • R. C. Grinold, ``Continuous programming part one: linear objectives,'' Journal of Mathematical Analysis and Applications, vol. 28, pp. 32--51, 1969.
  • N. Levinson, ``A class of continuous linear programming problems,'' Journal of Mathematical Analysis and Applications, vol. 16, no. 1, pp. 73--83, 1966.
  • M. C. Pullan, ``An algorithm for a class of continuous linear programs,'' SIAM Journal on Control and Optimization, vol. 31, no. 6, pp. 1558--1577, 1993.
  • T. W. Reiland and M. A. Hanson, ``Generalized Kuhn-Tucker conditions and duality for continuous nonlinear programming problems,'' Journal of Mathematical Analysis and Applications, vol. 74, no. 2, pp. 578--598, 1980.
  • M. A. Rojas-Medar, A. J. V. Brandão, and G. N. Silva, ``Nonsmooth continuous-time optimization problems: sufficient conditions,'' Journal of Mathematical Analysis and Applications, vol. 227, no. 2, pp. 305--318, 1998.
  • G. J. Zalmai, ``Optimality conditions and Lagrangian duality in continuous-time nonlinear programming,'' Journal of Mathematical Analysis and Applications, vol. 109, no. 2, pp. 426--452, 1985.
  • G. J. Zalmai, ``A continuous-time generalization of Gordan's transposition theorem,'' Journal of Mathematical Analysis and Applications, vol. 110, no. 1, pp. 130--140, 1985.
  • G. J. Zalmai, ``The Fritz John and Kuhn-Tucker optimality conditions in continuous-time nonlinear programming,'' Journal of Mathematical Analysis and Applications, vol. 110, no. 2, pp. 503--518, 1985.
  • G. J. Zalmai, ``Sufficient optimality conditions in continuous-time nonlinear programming,'' Journal of Mathematical Analysis and Applications, vol. 111, no. 1, pp. 130--147, 1985.
  • L. B. dos Santos, A. J. V. Brandão, R. Osuna-Gómez, and M. A. Rojas-Medar, ``Nonsmooth continuous-time multiobjective optimization problems,'' Tech. Rep., State University of Campinas, São Paulo, Brazil, 2005. http://www.ime.unicamp.br/rel_pesq/2005/rp35-05.html.
  • R. Osuna-Gómez, A. Rufián-Lizana, and P. Ruíz-Canales, ``Invex functions and generalized convexity in multiobjective programming,'' Journal of Optimization Theory and Applications, vol. 98, no. 3, pp. 651--661, 1998.
  • R. Osuna-Gómez, A. Beato-Moreno, and A. Rufián-Lizana, ``Generalized convexity in multiobjective programming,'' Journal of Mathematical Analysis and Applications, vol. 233, no. 1, pp. 205--220, 1999.
  • V. A. de Oliveira and M. A. Rojas-Medar, ``Continuous-time optimization problems involving invex functions,'' Journal of Mathematical Analysis and Applications, vol. 327, no. 2, pp. 1320--1334, 2007.
  • O. L. Mangasarian, Nonlinear Programming, vol. 10 of Classics in Applied Mathematics, SIAM, Philadelphia, Pa, USA, 1994.