Abstract and Applied Analysis

Homomorphisms and Derivations in C * -Algebras

Choonkil Park and Abbas Najati

Full-text: Open access

Abstract

Using the Hyers-Ulam-Rassias stability method of functional equations, we investigate homomorphisms in C * -algebras, Lie C * -algebras, and J C * -algebras, and derivations on C * -algebras, Lie C * -algebras, and J C * -algebras associated with the following Apollonius-type additive functional equation f ( z x ) + f ( z y ) + ( 1 / 2 ) f ( x + y ) = 2 f ( z ( x + y ) / 4 ) .

Article information

Source
Abstr. Appl. Anal., Volume 2007 (2007), Article ID 80630, 12 pages.

Dates
First available in Project Euclid: 5 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1183666872

Digital Object Identifier
doi:10.1155/2007/80630

Mathematical Reviews number (MathSciNet)
MR2302193

Zentralblatt MATH identifier
1157.39017

Citation

Park, Choonkil; Najati, Abbas. Homomorphisms and Derivations in $C^*$ -Algebras. Abstr. Appl. Anal. 2007 (2007), Article ID 80630, 12 pages. doi:10.1155/2007/80630. https://projecteuclid.org/euclid.aaa/1183666872


Export citation

References

  • S. M. Ulam, A Collection of Mathematical Problems, Interscience Tracts in Pure and Applied Mathematics, no. 8, Interscience Publishers, New York, NY, USA, 1960.
  • D. H. Hyers, ``On the stability of the linear functional equation,'' Proceedings of the National Academy of Sciences of the United States of America, vol. 27, no. 4, pp. 222--224, 1941.
  • T. Aoki, ``On the stability of the linear transformation in Banach spaces,'' Journal of the Mathematical Society of Japan, vol. 2, pp. 64--66, 1950.
  • Th. M. Rassias, ``On the stability of the linear mapping in Banach spaces,'' Proceedings of the American Mathematical Society, vol. 72, no. 2, pp. 297--300, 1978.
  • J. M. Rassias, ``Solution of a problem of Ulam,'' Journal of Approximation Theory, vol. 57, no. 3, pp. 268--273, 1989.
  • Th. M. Rassias, ``Problem 16; 2, Report of the 27th International Symposium on Functional Equations,'' Aequationes Mathematicae, vol. 39, no. 2-3, pp. 292--293, 309, 1990.
  • Z. Gajda, ``On stability of additive mappings,'' International Journal of Mathematics & Mathematical Sciences, vol. 14, no. 3, pp. 431--434, 1991.
  • Th. M. Rassias and P. Šemrl, ``On the behavior of mappings which do not satisfy Hyers---Ulam stability,'' Proceedings of the American Mathematical Society, vol. 114, no. 4, pp. 989--993, 1992.
  • P. Găvruta, ``A generalization of the Hyers---Ulam---Rassias stability of approximately additive mappings,'' Journal of Mathematical Analysis and Applications, vol. 184, no. 3, pp. 431--436, 1994.
  • S.-M. Jung, ``On the Hyers---Ulam---Rassias stability of approximately additive mappings,'' Journal of Mathematical Analysis and Applications, vol. 204, no. 1, pp. 221--226, 1996.
  • P. Găvruta, ``An answer to a question of John M. Rassias concerning the stability of Cauchy equation,'' in Advances in Equations and Inequalities, Hadronic Math. Ser., pp. 67--71, Hadronic Press, Palm Harbor, Fla, USA, 1999.
  • M. A. Sibaha, B. Bouikhalene, and E. Elqorachi, ``Ulam---Găvruta---Rassias stability for a linear functional equation,'' International Journal of Applied Mathematics & Statistics, vol. 7, pp. 157--168, 2007, Euler's Tri-centennial Birthday Anniversary Issue in FIDA.
  • K. Ravi and M. Arunkumar, ``On the Ulam---Găvruta---Rassias stability of the orthogonally Euler---Lagrange type functional equation,'' International Journal of Applied Mathematics & Statistics, vol. 7, pp. 143--156, 2007, Euler's Tri-centennial Birthday Anniversary Issue in FIDA.
  • čommentComment on ref. [21?]: Please update the information of this reference, if possible. C. Park, ``Hyers---Ulam---Rassias stability of homomorphisms in quasi-Banach algebras,'' 2007, to appear in Bulletin des Sciences Mathématiques.
  • J. M. Rassias, ``On the stability of the Euler---Lagrange functional equation,'' Chinese Journal of Mathematics, vol. 20, no. 2, pp. 185--190, 1992.
  • J. M. Rassias, ``On the stability of the non-linear Euler---Lagrange functional equation in real normed linear spaces,'' Journal of Mathematical and Physical Sciences, vol. 28, no. 5, pp. 231--235, 1994.
  • J. M. Rassias, ``On the stability of the general Euler---Lagrange functional equation,'' Demonstratio Mathematica, vol. 29, no. 4, pp. 755--766, 1996.
  • J. M. Rassias, ``Solution of the Ulam stability problem for Euler---Lagrange quadratic mappings,'' Journal of Mathematical Analysis and Applications, vol. 220, no. 2, pp. 613--639, 1998.
  • J. M. Rassias, ``On the stability of the multi-dimensional Euler---Lagrange functional equation,'' The Journal of the Indian Mathematical Society, vol. 66, no. 1--4, pp. 1--9, 1999.
  • J. M. Rassias, ``Asymptotic behavior of mixed type functional equations,'' The Australian Journal of Mathematical Analysis and Applications, vol. 1, no. 1, pp. 21 pages, 2004, article no. 10.
  • K.-W. Jun and H.-M. Kim, ``Ulam stability problem for Euler---Lagrange---Rassias quadratic mappings,'' International Journal of Applied Mathematics & Statistics, vol. 7, pp. 82--95, 2007, Euler's Tri-centennial Birthday Anniversary Issue in FIDA.
  • C. Park, ``Stability of an Euler---Lagrange---Rassias type additive mapping,'' International Journal of Applied Mathematics & Statistics, vol. 7, pp. 101--111, 2007, Euler's Tri-centennial Birthday Anniversary Issue in FIDA.
  • M. J. Rassias and J. M. Rassias, ``On the Ulam stability for Euler---Lagrange type quadratic functional equations,'' The Australian Journal of Mathematical Analysis and Applications, vol. 2, no. 1, pp. 10 pages, 2005, article no. 11.
  • C. Park, ``Lie $^*-$homomorphisms between Lie $C^*$-algebras and Lie $^*-$derivations on Lie $C^*$-algebras,'' Journal of Mathematical Analysis and Applications, vol. 293, no. 2, pp. 419--434, 2004.
  • C. Park, ``Homomorphisms between Lie $JC^*$-algebras and Cauchy-Rassias stability of Lie $JC^*$-algebra derivations,'' Journal of Lie Theory, vol. 15, no. 2, pp. 393--414, 2005.
  • C. Park, ``Homomorphisms between Poisson $JC^*$-algebras,'' Bulletin of the Brazilian Mathematical Society, vol. 36, no. 1, pp. 79--97, 2005.
  • C. Park, Y. Cho, and M. Han, ``Stability of functional inequalities associated with Jordan-von Neumann type additive functional equations,'' Journal of Inequalities and Applications, vol. 2007, Article ID 41820, 13 pages, 2007.
  • C. Park and J. Cui, ``Generalized stability of $C^*$-ternary quadratic mappings,'' Abstract and Applied Analysis, vol. 2007, Article ID 23282, 6 pages, 2007.
  • C. Park, J. C. Hou, and S. Q. Oh, ``Homomorphisms between $JC^*$-algebras and Lie $C^*$-algebras,'' Acta Mathematica Sinica, vol. 21, no. 6, pp. 1391--1398, 2005.
  • J. M. Rassias, ``On approximation of approximately linear mappings by linear mappings,'' Journal of Functional Analysis, vol. 46, no. 1, pp. 126--130, 1982.
  • J. M. Rassias, ``On approximation of approximately linear mappings by linear mappings,'' Bulletin des Sciences Mathématiques, vol. 108, no. 4, pp. 445--446, 1984.
  • J. M. Rassias, ``Solution of a stability problem of Ulam,'' Discussiones Mathematicae, vol. 12, pp. 95--103, 1992.
  • J. M. Rassias, ``Complete solution of the multi-dimensional problem of Ulam,'' Discussiones Mathematicae, vol. 14, pp. 101--107, 1994.
  • J. M. Rassias, ``Alternative contraction principle and Ulam stability problem,'' Mathematical Sciences Research Journal, vol. 9, no. 7, pp. 190--199, 2005.
  • J. M. Rassias, ``Solution of the Hyers---Ulam stability problem for quadratic type functional equations in several variables,'' The Australian Journal of Mathematical Analysis and Applications, vol. 2, no. 2, pp. 9 pages, 2005, article no. 11.
  • J. M. Rassias, ``On the general quadratic functional equation,'' Boletín de la Sociedad Matemática Mexicana, vol. 11, no. 2, pp. 259--268, 2005.
  • J. M. Rassias, ``On the Ulam problem for Euler quadratic mappings,'' Novi Sad Journal of Mathematics, vol. 35, no. 2, pp. 57--66, 2005.
  • J. M. Rassias, ``On the Cauchy---Ulam stability of the Jensen equation in $C^*$-algebras,'' International Journal of Pure Applied Mathematics & Statistics, vol. 2, pp. 92--101, 2005.
  • J. M. Rassias, ``Alternative contraction principle and alternative Jensen and Jensen type mappings,'' International Journal of Applied Mathematics & Statistics, vol. 4, no. 5, pp. 1--10, 2006.
  • J. M. Rassias, ``Refined Hyers---Ulam approximation of approximately Jensen type mappings,'' Bulletin des Sciences Mathématiques, vol. 131, no. 1, pp. 89--98, 2007.
  • J. M. Rassias and M. J. Rassias, ``On some approximately quadratic mappings being exactly quadratic,'' The Journal of the Indian Mathematical Society, vol. 69, no. 1--4, pp. 155--160, 2002.
  • J. M. Rassias and M. J. Rassias, ``Asymptotic behavior of Jensen and Jensen type functional equations,'' PanAmerican Mathematical Journal, vol. 15, no. 4, pp. 21--35, 2005.
  • J. M. Rassias and M. J. Rassias, ``Asymptotic behavior of alternative Jensen and Jensen type functional equations,'' Bulletin des Sciences Mathématiques, vol. 129, no. 7, pp. 545--558, 2005.
  • Th. M. Rassias, ``The problem of S. M. Ulam for approximately multiplicative mappings,'' Journal of Mathematical Analysis and Applications, vol. 246, no. 2, pp. 352--378, 2000.
  • Th. M. Rassias, ``On the stability of functional equations in Banach spaces,'' Journal of Mathematical Analysis and Applications, vol. 251, no. 1, pp. 264--284, 2000.
  • Th. M. Rassias, ``On the stability of functional equations and a problem of Ulam,'' Acta Applicandae Mathematicae, vol. 62, no. 1, pp. 23--130, 2000.
  • Th. M. Rassias, Ed., Functional Equations, Inequalities and Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2003.
  • F. Skof, ``Proprietà locali e approssimazione di operatori,'' Rendiconti del Seminario Matemàtico e Fisico di Milano, vol. 53, pp. 113--129, 1983.
  • K.-W. Jun and H.-M. Kim, ``On the stability of Appolonius' equation,'' Bulletin of the Belgian Mathematical Society. Simon Stevin, vol. 11, no. 4, pp. 615--624, 2004.
  • A. Gilányi, ``Eine zur Parallelogrammgleichung äquivalente Ungleichung,'' Aequationes Mathematicae, vol. 62, no. 3, pp. 303--309, 2001.
  • J. Rätz, ``On inequalities associated with the Jordan-von Neumann functional equation,'' Aequationes Mathematicae, vol. 66, no. 1-2, pp. 191--200, 2003.
  • W. Fechner, ``Stability of a functional inequality associated with the Jordan-von Neumann functional equation,'' Aequationes Mathematicae, vol. 71, no. 1-2, pp. 149--161, 2006.
  • A. Gilányi, ``On a problem by K. Nikodem,'' Mathematical Inequalities & Applications, vol. 5, no. 4, pp. 707--710, 2002.