Abstract and Applied Analysis

Invariant sets for nonlinear evolution equations, Cauchy problems and periodic problems

Norimichi Hirano and Naoki Shioji

Full-text: Open access

Abstract

In the case of KD(A)¯, we study Cauchy problems and periodic problems for nonlinear evolution equation u(t)K, u(t)+Au(t)f(t,u(t)), 0tT, where A is a maximal monotone operator on a Hilbert space H, K is a closed, convex subset of H, V is a subspace of H, and f:[0,T]×(KV)H is of Carathéodory type.

Article information

Source
Abstr. Appl. Anal., Volume 2004, Number 3 (2004), 183-203.

Dates
First available in Project Euclid: 4 May 2004

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1083679146

Digital Object Identifier
doi:10.1155/S1085337504311073

Mathematical Reviews number (MathSciNet)
MR2058501

Zentralblatt MATH identifier
1082.47045

Subjects
Primary: 47H06: Accretive operators, dissipative operators, etc. 47H20
Secondary: 35B10

Citation

Hirano, Norimichi; Shioji, Naoki. Invariant sets for nonlinear evolution equations, Cauchy problems and periodic problems. Abstr. Appl. Anal. 2004 (2004), no. 3, 183--203. doi:10.1155/S1085337504311073. https://projecteuclid.org/euclid.aaa/1083679146


Export citation