Abstract and Applied Analysis

On a local degree for a class of multi-valued vector fields in infinite dimensional Banach spaces

N. M. Benkafadar and B. D. Gel’man

Full-text: Open access

Abstract

This paper is devoted to the development of a local degree for multi-valued vector fields of the form fF. Here, f is a single-valued, proper, nonlinear, Fredholm, C1-mapping of index zero and F is a multi-valued upper semicontinuous, admissible, compact mapping with compact images. The mappings f and F are acting from a subset of a Banach space E into another Banach space E1. This local degree is used to investigate the existence of solutions of a certain class of operator inclusions.

Article information

Source
Abstr. Appl. Anal., Volume 1, Number 4 (1996), 381-396.

Dates
First available in Project Euclid: 7 April 2003

Permanent link to this document
https://projecteuclid.org/euclid.aaa/1049726081

Digital Object Identifier
doi:10.1155/S1085337596000206

Mathematical Reviews number (MathSciNet)
MR1481549

Zentralblatt MATH identifier
0942.47050

Subjects
Primary: 47H04: Set-valued operators [See also 28B20, 54C60, 58C06] 47H11
Secondary: 47H15

Keywords
Local degree nonlinear Fredholm mapping multi-valued mapping operator inclusion homology group

Citation

Benkafadar, N. M.; Gel’man, B. D. On a local degree for a class of multi-valued vector fields in infinite dimensional Banach spaces. Abstr. Appl. Anal. 1 (1996), no. 4, 381--396. doi:10.1155/S1085337596000206. https://projecteuclid.org/euclid.aaa/1049726081


Export citation