IX. Souslin Hypothesis
Does Not Imply
“Every Aronszajn Tree Is Special”

§0. Introduction

We prove that the Souslin Hypothesis does not imply “every Aronszajn tree
is special”; solving an old problem of Baumgartner, Malitz and Reinhardt.
For this end we introduce variants of the notion “special Aronszajn tree” and
discuss them (this is §3, see references there). We also introduce a limit of
forcings bigger than the inverse limit, and prove it preserves properness and
related notions not less than inverse limit, and the proof is easier in some
respects, and was done already in 78; see §1, §2. We can get away without
using it for the present theorems, but we want to represent it somewhere. The
Aronszajn trees are addressed in §4; we choose a costationary S C w; and make
all N;-trees S-st-special, while on “w; \ S the tree remains Souslin”. If S = 0
this means that every X;-tree is special when restricted to some unbounded set

of levels, in fact while there is no antichains whose set of levels is stationary.

See more in 4.9.

§1. Free Limits

1.1 Discussion and Definitions. For A a set of propositional variables, A
a regular cardinal, let: Ly(A) be the set of propositional sentences generated

from A, by negation and conjunction and disjunctions on sets of power < .
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Let L,,(A) = U<, Lr(A) for p a limit cardinal (> Ro) or co. Let ¢, 1), 6 denote
sentences; @, ¥ set of sentences.

We define (in Lo (A)) F 9, or ® + ¢ as usual (the rules of the finite
case, and ® - A ®, and from ® + ¢; for i € I deduce ® - A;c; p;,) and let
Vigi =~ \; ~ei

Always F means in Ly, (A) even if we deal with Ly(A).

The following is well known.

1.2 Theorem. The following are equivalent for @, ¢:
(1) @Fo;
(2) there is no model of ® |J{—¢} with truth values in a complete Boolean

algebra;

(3) if A is such that |®|, and the power of any set on which we make conjunction
inside some sentence 6 € ®|J{y} are < A and P = Levy(Ro, ) ie. the

collapsing of A to w by finite functions, then

IFp “ there is no model of @ U{—«p}”.

1.2A Remark. This can be proven by a small fragment of ZF'C, admissibility
axioms, at least when we prove only (1) < (3). Hence (by proving not (1)

implies not (3)):

1.3 Conclusion. If A is a transitive admissible set, ®,¢p € A then “® I ¢”

has the same truth value in V' and in A.

1.4 Definition. For given A and 0 € Ly (A), let FF)\(6) be {¢ : ¥ € Ly(4),
0 ¥ =)} partially ordered by ¢ < 9 if 0 Ao b ;. (FF denotes free-forcing;
we can identify ¢, 9 if ¢ <9 < p.)

Reversing the definition of < and adding a minimal element, we get a
Boolean algebra in which every set of < A elements has a least upper bound

provided that we identify 1;, %2 when 6 & 91 = 5.
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1.5 Definition. For any forcing notion P let §[P] be the following sentence:
A(c = —d)A(b— a) :a,b € P,a <b,c,d € P,c,dincompatible} A A{V cza:

Z C P a maximal set of pairwise incompatible elements}.

1.6 Definition. Let P;(i < §) be <¢-increasing, § an ordinal (A an infinite reg-
ular cardinal). Then their A-free limit (Flim_;P;) is FF\(\,.50[P;]) (where

the set of propositional variables is | J, 5 P;). If we omit A\ we mean A = R;.

1.7 Claim. P < Q implies §[Q] - 8[P], and P < FF(6[P]).

Proof. The first statement is trivial, for the second see the proof of Claim 1.8.

Oz

1.7A Remark. Our notation may be confusing, as for conditions p,q € P,pAq
is “p and ¢”, i.e., both are in the generic set so in our order p A gq is above p

and above q as it give more information.

1.8 Claim. If as in Definition 1.6, Ps is the A-free limit of P;(i < §) then
P, < P; for i < 4.

Proof. Let us check the conditions.

proof of clause (b) Let T C P, be a maximal set of pairwise incompatible
elements of P;. Suppose ¢ € Flim}_;P; is incompatible with each a € Z. As
¢ € Flim §\<5P,-, by definition A,;_s0[P;] ¥ —p. So by 1.2, after some forcing
there is a model of ¢, A;_;0[P;]. But V,cza is a conjunct of the second
sentence, so in the model some ¢ € 7 is true. So after some forcing, there
is a model of ¢ A q, /\j<59[Pj], so by 1.2, /\j<6 O[P;] ¥ ~(pAq),s0 pAg €
FFy\(\;<50[P;]); so ¢, q are compatible in FF)\(A;;0[P;]) = Flim }_;P;.
proof of clause (a) Let a,b € P, if they are compatible in P;, for some ¢ € P,
a < ¢,b < ¢, and this clearly holds in Pj by its definition.

If they are incompatible in P, then a — —b appears as a conjunct in §[P;] and

we can finish. Similarly for a,b € P;,a < b in P; implies a < b in P;. Oy s
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1.9 Remark. We can change the definition of FF)(6) (hence of Flim) by
changing I-. The natural way is to let K be a class of complete Boolean algebras,
and ® Fg ¢ iff any Boolean valued model of ® is a Boolean valued model of
¢ provided that the complete Boolean algebra is from K. So FF¥(6) = {¢ €
Ly : Fg—p}.

The most interesting K'’s seems

K, = {B : forcing with B\ {0} satisfies X'}

where X = does not add reals, does not collapse N1, does not collapse stationary

subsets of X1, the UPp(S) condition (MinS > Ry, = 0,2, see XV §3).

§2. Preservation by Free Limit

2.1 Theorem. If each P; is a forcing notion; and P; (i < §) is <¢-increasing,
each P; is proper as well. as P;/P;(i < j < §) and for a < §,cf(a) = Rg =
P, = Flim ?éaP,- then their Ri-free limit P = Flim :‘<‘ s is proper. Also P/P;

is proper for any ¢ < 4.

2.1A Remark. Similarly for y-proper by [Sh:100] terminology if we take p*-

free limit. We can restrict ourselves to non-limit i, j.

Proof. Let N < (H(x), €) be countable such that (P;:i < d) € N,pe PN N
and x big enough (see III). Let {Z, : n < w} be a list of all pre-dense
subsets of P which belong to N. Let d(*) = sup[d N N|, and let Ps = P,
so NNP = NNP; C NN Py, and if 6(x) < 6 then NN Psy = U;c5) NN P
As necessarily cf(0(x)) = No clearly Ps,) = Flim :‘é s(x)Fi- So it is enough to
prove p A A\, (Vaennz, @) € Ps(x) (in Boolean algebras terms: is not zero), for
p being any member of PN N.

Now assume w.l.o.g. that everything is in some countable transitive model
M (e.g. work in V' = VEew(®o:k) 'y strong limit such that (P; : i < 8) € H(u),
p < x, let M = H(u)V and remember 1.3). We can find oy, < appy,0n €
N N4, sup[d(x) N N| =, an.
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Let (9, : n < w) be a list of all countable (in M) subsets of P, which
belongs to N.

We now define by induction on n, in V, Gy, p, such that:
(1) Gn C Pay, Gn C Gy,
(2) Gy, is Py,-generic for M and G, N N is (Py, N N)-generic for N,
(3) Pn < Pn+1, P=Po, Pn € NN P,
(4) pn is compatible (in P) with every member of G,
(5) pon+1 is > gn for some ¢, € Z, N N,

)

(6) either po, 1o F A®, Or ponya b -1y, for some r, € ,,.

The proof is trivial (provided you know about the composition of forcings and
completeness theorem for the propositional calculus L, ).

In the end G = {J,, G gives us a model of A;_;, 0[P;] (by: members of
G are true, members of (J;_; P \ G are false). This holds by clause (2).

For r € PN N,r is true in the model iff p, > r for some n (this is proved
by induction on the complexity of r, (see conditions (4) and (6)). In the model
Pn is true (for each n < w), hence \/ .7 y @ is true (for each n < w) hence
PAN.(Vaez,nn @) is true there (p true as po = p).

So in V there is a model of A;_5.)0[F;l, p A Apy(Vaez,An @) s0
PAN(Vaez,nn @) € Ps(») as required. 021

2.1B Remark. Part of the proof is essentially a repetition of the completeness
theorem for L, ., (propositional calculus). But note that in this proof there
was no need (as in the ones for inverse limit) to use names. Also, almost all

previous theorems on preservation hold for free iterations.

2.2 Definition. Let Q = (P;, Qi1 < i0) be an w;-free iteration if :

(a) P is <c-increasing,

(b) Pp1 = Pix Qi = {(p,q) : p € B,lFp, “qg € Q;”}, with the order
(p,a) < (Ph,q") & p < Pt A DT IFp ¢ < ¢f]; and we identify p € P
with (p, (),

(c) for limit 4, P is the Ri-free limit of (P; : ¢ < 4).
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2.3 Definition. For an Nj-free iteration Q = (Pi,;Q,- 11 < ip) let Flim NlQ
be Py * Qq if 10 = a+ 1 and Flim M P if ig is a limit ordinal, and we let

1<ig
P,, = Flim™ Q.

2.4 Definition. We say that N;-free iteration preserves a property if whenever

each Q; (in V) has it, then so does P;.

2.5 Theorem. Properness is preserved by Rj-free iteration.
Proof. See 2.1; and prove by induction on # that for a < g,

(x) If (P : i < i4,) € N < (H(A\),€),||N|| =Ro,a < B<ip,a € N,BEN,p€
PgN N,q € Pg, and for every pre-dense Z C Py, [Z € N,= ZN N is pre-dense
above ¢,] and every qt,q < ¢' € P, is compatible with p then for some 7 € Pg,
for every pre-dense Z C Pg we have [Z € N = I N N pre-dense above 7], p <r
and for every ¢f : ¢ < qt € P = q' compatible with 7. Os5

The following Definition and Theorem are not really necessary for the rest of

the chapter, but will help in understanding §4.

2.6 Definition.

1) P is strongly proper when: if X is large enough (i.e. A > (2IPH)+), Pe N <
(H(X),€), |IN|| = Ro,p € PN N and Z, C N pre-dense in N N P (but
we do not ask 7, € N), then for some q,p < q € P, each Z,, is pre-dense
above gq.

2) P is strongly a-proper if for large enough A, P € N; < (H()), €), ||N;|| =
Ro, (N;j : j <14) € Nij41 for i < @, N; increasing continuous, p € P N Ny,
P,i € N;, I} C PN N; is a pre-dense subset of PN N; (for n < w) and
(I3 : j < i,n < w) € Nyy1 (for i < c) then thereis a ¢ € P,p < q, I7
pre-dense above ¢ (in P, for each n < w,i < a). Note that we can replace

(H(X), €) by (H(X), €, <3)-

2.7 Theorem. Strong properness is preserved by N;-free iteration.
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2.7A Remark. A similar theorem holds for strong a-properness and for CS

iteration.

Proof. Let (P;,Q; : i < ip,]j < ip) be an X;-free iteration. We prove by induction
on o < ig that for any § < a:

(¥)p,a Let (P;,Qj 1 <10,j <io) € N < (H(X),€) (where A > (2P, |IN|| =
Ro, C a countable family of Ry pre-dense subsets of P,NN, closed under the
operations listed below. Suppose § < a,p € P,NAN,a € N, € N,q € Pg,
no qf,q < q' € Pg is incompatible with p, and [Z C Ps&Z € C = T
pre-dense above q]. Then there is ga,p < go € Pa, ¢ < o, n0 ¢ < q' € P

is incompatible with ¢, and [Z € C = T pre-dense above gq].

The family of operations under which C is closed is (for p € NN P,y €
N nNigand Z € N a pre-dense subset of P;,):

(Op 1) Opi(Z,7,p) = {r : r € PyN N and either for some r* € P,; and
rir€Z wehaver; <r*and p<r*butnorf,r<rte P, N N is incompatible
with r* or r is incompatible with p} for y € N, Z € C, p € P,. (Note that for

p = 0 the last phrase is vacuous.)

For a = 0. Totally trivial. For a = v+ 1. So § < 7, also as a € N clearly
7 € N and by the induction hypothesis for v, (*)g holds, so w.lo.g. 8 = .
So we want to use the hypothesis Py = P, xQ., Q is strongly proper; then we
use (q,r), r € Q, a name of an appropriate element of Q~. We have to prove
that the appropriate subsets of N[Gp ] N Q~ (Gp,| are pre-dense subsets. But
as C is closed under (Op 1) this is easy.

For a limit. Let an, € N, .., an is & or at least [|J, an,0) "N = 0
(note [af, @) is interval of ordinals).

We work as in 2.1 using the induction hypothesis. Oa.n

2.8 Claim. 1) If we iterate w-proper, “w-bounding forcings it does not matter
whether we use R;-free iteration or countable support one (in the latter we get

a dense subset of the first).
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2) We can replace “w-proper” by proper.

Proof. Left to the reader. Oz.8

2.8A Remark. For the proof, see V §3 (and for (2) see XVIII §2). The parallel
of 2.7 for countable support was noted by Harrington and the author.

By the way we note that unlike R;-c.c. forcing:

2.9 Example. There are proper forcing P, Q such that P < @ but Q/P is not

proper.

Proof. We let Py = adding a subset 7 of w; with a condition being a countable
characteristic function.

Let Qo € V™, Qo = {f : Dom(f) = a < wi, Rang(f) = {0,1}, ({0} is
a closed set of ordinals (not just closed subset of a!) included in 7}. (r denotes
the generic subset of w; which Py produces.)

Now Py, Py * Qo are proper but in V, Qo = Py * Qo/P, is not proper as

it destroys the stationarity of w; \ ro.

8§3. Aronszajn Trees: Various Ways
to Specialize

We introduce new variants of the notion “special Aronszajn tree”, define some
old ones (special, r-special) and prove some known theorems and some easy
ones. See Kurepa [Ku35], Baumgartner, Malitz and Rienhard [BMR], Baum-
gartner [B] and also Devlin and Shelah [DvSh:65]. Recall

3.1 Definition.
(1) An w;-tree T = (|T|,<r) is a partially ordered set, such that (when no

confusion arises, we write < instead of <7 and T instead of |T|):
(a) for every z € T,{y € T : y < z} is well-ordered, and its order type
which is denoted by rk(z) = rkp(z), is countable,
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(b) T, = {z € T : tk(z) = a} is countable, # 0,
(c) if rk(z) = rk(y) is a limit ordinal thenz =y & {z: 2 <z} ={2:2<
yh
(d) if x € Ty,a < B, then for some y € Tg,xz < y, in fact there are at
least two distinct such y’s.
If we wave (c) and (d) we call it an almost w;-tree; similarly for the other
definitions.
(2) A set B C T is a branch if it is totally (i.e. linearly) ordered (hence well
ordered) and maximal; it is an a-branch if it has order type a.
(3) An Aronszajn tree is an wj-tree with no wj-branch.
(4) An w;-tree is Souslin or w;-Souslin tree if there is no uncountable antichain

(= set of pairwise incomparable elements).

3.1A Remark. Condition (1)(d) is not essential, except to make every Souslin
tree an Aronszajn tree. So except this implication all the definitions and results

in this section hold for almost wi-trees.

3.2 Definition.

(1) For a set S C w; which is unbounded, we call an wq-tree S-special if there
is a monotonic increasing function f from (J,cg 7o to Q (the rationals),
ie,z<y= f(z) < f(y).

(2) A special w;-tree is an wq-special wi-tree (this is the classical notion).

(3) r-special, S — r-special are defined similarly when the function maps T
into R (the reals).

(4) We say f specializes (S-specialize, etc.) T. We can replace S by a function
h, Dom(h) = wi, Rang(h) = S, h increasing.

3.3 Definition. For a stationary S C w; we call an w;-tree S-st-special if there
is a function f, Dom(f) = Uses\ (o) Tas and « € To = f(z) € a X w (cartesian
product) such that z < y = f(z) # f(y) when defined. If S is a set of limit
ordinals we can assume z € T, = f(z) < a. So if S C w; is not stationary this

says nothing.
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3.4 Claim.

(1) If T is S-special or S — r-special (S C w; unbounded) or S-st-special
(S C w, stationary) wi-tree then T' is an Aronszajn tree but not Souslin.
Any w;-Souslin tree is an Aronszajn tree.

(2) The following implications among properties of w;-trees hold (where Sz C
S1 C wi, Sz unbounded in wy, S; = {a(i) : ¢ < w1}, ¢; increasing with 1)
(a) Si-special = Sp-special,

S1-special = S1 — r-special,
S1 — r-special = S, — r-special,
S1 — r-special = S1 N {a(i + 1) : i < w; }-special,
(b) for S; stationary: Si-special = S; — st-special,
(c) Si — st-special = Sy — st-special, (if S1,5; are stationary subsets of
wi).
(d) for C C w; closed unbounded: S; N C — st-special < S; — st-special,
(e) if (Vi)hi () < ha(3) and T is hi-special then T is ha-special.

Proof. Trivial:
(1) for S-special, and S —r-special — well known, for S — st-special by the Fodor

lemma.

(2) Trivial — check. E.g. the last phrase in (a), if f is S; — r-specialize T', define
f*: UKW1 To@iv1) — Q by: if £ € Ty (i41) then f*(z) is a rational < f*(z) but
> f(y) where y € T,,(5),y < . Osz.4

Remark. By 3.4(2)(d) dealing with S — st-special we can assume all members

of S are limit, and so Rang(f) C w; in the Definition.

3.5 Claim.

(1) T is S-special iff S C w; is unbounded and there is f : U,egTa — w,
[z < y&rk(z) € S&rk(y) € S = f(z) # f(y)].

(2) T is wy — st-special iff T is special.

Remark. See Claim 3.11.
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Proof. (1) Well known ( the “only if” part is trivial; for the “if” part, with
given f : J,cg Ta — w we define f, : {z:z € U,c5 Ta and f(z) <n} — Q by
induction on n such that f, C fn41, fr satisfies the requirement (see Definition
3.2) and Rang(fn) is finite. Now J, ., fr is as required).

(2) The “if” part is trivial.

So suppose f w; — st-specialize T. For every z € T, let K, = {t €
(rk(z) +1) x w: for no y < z is f(y) = t}. We now define by induction on
a<wi,go and Az, (fort € K,z € Uﬁ<a Tgs) such that:

(a) gq is a function from T, def Uﬁ<a Tp to w,

(b) T <y, % € T<ar¥ € T<a = ga(T) # 9a(v),

(¢) B<a=gpC ga,

(d) Azi(fort € K,z € T<,) is an infinite subset of w,

(e) forevery x € Teq,t #s€ Ky = Apt N Az s =0,

(f) te Kpyx €Teo = Azt N{ga(y) 1y <z} =10,

(g) fr<y&reTca&y€Tca,t € K;NKythen Az = Ay ;.

For a = 0,1, a limit — no problem.

For o +1>1-1let x € Ty C T¢(a41), and s = f(z), so by K’s definition
for some y = y; < z, s € K. We choose ga41(x) € Ay,s (= A5 for every z
satisfying y < z < z) and let go411T<a = Ya-

For t € K, \ U,., K. (there are Ry such t’s) we choose A;; C Ay, \
{9ga+1(z)} infinite pairwise disjoint. If t € K, \ {f(2') : 2/ <z} for some z < z
welet Az = A, 4.

Now by 3.5(1) clearly g = Ua<w1 Jo shows T is special. Oss

3.6 Claim. Let S C w; be unbounded.
(1) If every Aronszajn tree is S-special then every Aronszajn tree is special.

(2) If every Aronszajn tree is S —r-special then every Aronszajn tree is special.

Proof. (1) Let T be an Aronszajn tree, S = {a(i) : i < w1}, a(i) increasing.
Define T* (a partial order): The set of elements is {(z,7) : z € T,y < a(rkr(z))
and y < = = a(rkr(y)) < v}; the order in T* is: (z,7) <r- (z',4!) if z < 2T
orz =zt,y <4t
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Now T* is almost an Aronszajn tree; the only missing part is in Definition
3.1, part (d) (“in fact there are at least two distinct such y’s”) the problem
is e.g. when i is a limit ordinal, (i) > U;, a(j), in level U, a(j). We can

add more elements and find an Aronszajn tree, T7** such that 7% C T™**, and

if g** S-specializes the tree T**, we let g : T — Q be defined by g(z) %'
9**((z, a(rkr(z)))), it specializes T
(2) By 3.6(1) and 3.4(2) (a), last clause. Os6

3.7 Lemma.

(1) (Qu,) There is an r-special Aronszajn tree which is not special.

(2) Moreover (in (1)) there is no antichain Z such that rk(Z) = {rk(z) : z € T}
contains a closed unbounded subset of w;.

(3) (0,) There is an r-special Aronszajn tree, such that for no antichain

Z C T is rtk(Z) = {rk(z) : = € T} stationary.

Remark. Part (1) was proved by Baumgartner [B1].

Proof. We define by induction on o < wj the tree (T<qy, <t [T<q) and f :
T<o — R satisfying ¢ < y = f(z) < f(y) such that if 3 <y <,z € Tp, ¢
a real positive number (> 0), then for some y,z < y € T, f(y) < f(z) +¢;
and £ € Tp41 < f(z) € Q and if § < w; is a limit ordinal, z € Tj then
f(z) =sup{f(y) :y <z} €R.

For a = 0, a-successor of successor or « limit, no problem.

For a + 1, o limit, we are given antichains Z$ C T, for (n < w) (by Oy,
or Oy,) and we can define T,y (and hence f[Tcq41) such that

(x)ifzeTy,n <wand {y € Teq:y <z} NI =0 then for some y < ,
and € > 0, f(y) < f(z) < f(y) +¢, and thereisno z, z € %,y < z € T<, and
fly) < f(z) < fly) +e

Now T =

antichain Now C = {a < w; : a limit, and if z € T<4,e > 0, and there is

T« and f are defined in the end. Suppose Z C T is an

a<wi

ye Iz <y, f(r) < fly) < f(x) + € then there is such y € T«qo} is closed
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unbounded (note that it suffices to consider ¢ € {1/n : n positive natural
number }).

Now if a € C,INTca = I € {I7 : n <w}, a € tk(Z) then by (x) we
get INTo =0 (if y € T,y € Ta, by (*) we know {z:z <y} NI, # 0; let 2
be in it, then z < y both in Z, but Z is an antichain).

Now by defining Z¢ using ., or O, we get (1), (2) and (3). Os.7

3.8 Claim. (0%,) Let h be a function from w; to wy. There is a tree 7' which
is hy-special iff {3 : h(7) < h1(i)} contains a closed unbounded subset of w; (see
Definition 3.2(4)).

Proof. Similar to the proof of 3.7. Os.s

3.9 Lemma. Let S C w; be stationary, and assume 0:1\ g hold. There is an
S — st-special tree which is Sy — st-special iff Sy \ S is not stationary; moreover
there is no antichain Z, such that rk(Z) \ S is stationary. (If S = w; we do not
need any hypothesis, ¢y is meaningless anyhow and this is the classical theorem
on the existence of special Aronszajn trees of Aronszajn himself.) Also we can

make the tree such that it is not h-special for any h.

Proof. We define by induction on a < wy, (T<a, <t [T<a), and (f[T<q) :
Tcq — @ X wi; such that z € Tey \ To&tk(z) € S = f(x) € rk(z) X w;
z€Ty= f(z) € {0} xw=1xw;tk(z) <wi \S = f(z) € (tk(z) + 1) x w
and z < y = f(z) # f(y), such that

(a) Be S,z eTg=|Bxw\{f(y):y <z} =Ny, (if B is a non-limit ordinal
this holds trivially.)

(b)ifz e Tpg,B < v < a, {(n}UAC (B+1) xw\{f(z) : 2 < z}),
(§,n) ¢ A and A is finite, then there is y € T, such that £ < y and
{f(z2): z<y}nA=0but {{,n) € {f(2): 2 <y}

We can demand

(c) if a is limit, « ¢ S and = € T, then f(z) ¢ a x w

and note that we have

(d) if o is limit, @ € S and z € T, then f(z) € (a x w\ {f(2) : z < z}).
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We let T, = [ow, (@ + 1)w) (so T has infinitely many minimal elements; we
can add a root). Let P, C P(a) for a < w; \ S be countable such that

(Po s @ <wi )\ S) a witness for Q7 | 5 Let us carry the definition.
Case I: a =1

<7l T« is the equality.

Let f | Tp be any function from Tp to 1 X w.
Case 2: a limit: trivial.
Case & o= [+ 2.

Let (A, : = € Tg) be a partition of Tpy1 = [(B + 1)w, (B + 2)w) to (pairwise

disjoint) infinite sets. Define the order on T« by:

forz,y € T<y ix <py iff

T <T gy ¥ OF (2 €Tp)(T <1 _fy,,, 2 & Yy EAy).

Case 4: . =0+1,0 € S (4 limit).

As in the construction of special Aronszajn trees using (b) (and taking care of

it).

Case 5: =0 +1,0 ¢ S (4 limit).

Let {BJ : n < w} be a list of maximal antichains of T including all maximal

antichains which belongs to Ps. Let {(7n, kn) : n < w} enumerate § x w.

Choose (Bn : n < w) such that fo = B,8n < fnt1 <0 and |, ., Brn = 4.
For each 8 < 6,z € Tp and finite A C ((B+1) xw \ {f(2) : z < z}), we choose
by induction on n,y, = y3[A,z], and &, = e,[A, z] such that:

(1) Yo=2, Yn € Tens¥n <75 Yn+1,0 > €n > fn

(if) A is disjoint to {f(2) : z < yn}
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(iii) let £(n) < w be minimal such that:

(Yenys keny) € {f(2) : 2 <yn}UA,

then (Ye(nys keny) € {f(2) 1 2 < Yn41}-
(iv) either {z : z < yny1} N BS # 0, or there is no y € T4 satisfying
Un <y, {f(z):2<y}nNA=0, {2:z2<y}nB#0.

The induction step is by part (b) of the induction hypothesis.
Let ((22,87,42) : i < w) list all triplets (z,3,A) as above (ie. z €
Tﬂf,,ﬁf < 6, A? finite C ((82 +1) x w\ {f(2) : z < z¢}).

Now we define

Y1 <T., Y2

iffforsome B < 6, y1 <7, Y2, or for some i < wwehavey; = d+14,V, ., v1 <
y3[A%,x8]. Let f(8 +14) = (6,0). It is easy to see that we finish this case, too.

So we have carried the inductive construction.

Now let us see that T = T, = |, <w; T<a is as required (clearly

f:T — w1 X w). Being S-st special is by the requirements

tk(z) € S = f(z) € rk(z) X w
T <y=f(z)# f(y).

Now suppose Z C T is an antichain, Sy o rk(Z) \ S stationary.
For each a € S1, let z4 € Z, 1k(z4) = a. Note: f(zq) = (e,0). Now, by the

definition of ():l\ g for some club C' of w;:
deCﬂSli{ma:a<505’1}e’P5.
Choose §(x) € C N Sy such that Ms(,) < M, where for § < w; we define

M; = (T<s, <tes f1T<s, (2o s @ € SN 5}).
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So {zq : & < §(x)NS1} € Ps(x) hence for some n we have {z, : @ < §(x)NS1} =
Bz(*) and for some ¢ < w we have 5., = d(*) + 1. Now T5(x) (which is well
defined as §(x) € S1) is in T5(4) and Yo (A 22 < T5()-

As a € S; = f(za) = {(a,0), by the choice of yi(ﬁ[Af(*),zf(*)] (clause

(iv)) and by the choice of C
{z:2 <y AL 2 {2a s a < 6(x)} £0
contradicting {z, : @ € S1} being an antichain. Os.9

3.10 Lemma. (Q,,) There is a special Aronszajn tree T, such that for no
antichain Z C T is rk(Z) closed unbounded. (For stationary: there is necessarily:

this is mentioned in Devlin and Shelah [DvSh:65] p. 25).

Remark. E.g., MA + 2% > R; implies that this fails.

Proof. We define by induction on o, (T<qe,<r [T<o) and f : Tcq — Q
monotonic, so that 8 < v < a, € T, € > 0 implies that for some y € T,
we have z < y& f(z) < f(y) < f(z) + . For limit § < w; we are given an
antichain 7% C T, (by Or,) and demand that for z € T,, either

(FyeI®)y<z

or (Jy < z) [there isno 2z, y < z € I%, f(z) < f(z) € Q).

[How? For each y € T.s and rational ¢ > 0, choose if possible, z = 2,
such that y <r_, z € Zs, f(2) < f(y) +¢, if not let z,. = y. Let g, =
f(zye) + (f(y) + € — f(2y,e))/2- So we can demand that for every z € Ty for
some y € T and rational € > 0 we have zyc <r_,,, = and f(z) = qyc.]

The checking is easy. See the last two paragraphs of the proof of 3.7. 0310
3.11 Lemma. T is {a + 1 : @ < w; }-special iff T is r-special.

Remark. Proved by Baumgartner [B1].
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Proof. The direction < already appears.

For = let f {a +1: a < w;}-specialize T.

Let g : Q > Qand € : Q — {1/n : n > 0 natural} be such that the
intervals [g(q) —(q), 9(q) +£(q)] are pairwise disjoint and g is order preserving
(possible: let Q = {g, : n < w} and define f(g,), £(¢n) by induction on n).

Now define f* as follows: € To41 = f*(z) = g(f(x))

T € Ty, a limit = f*(x) = Sup{g(f(v)) 'y < z,y € Tp11,6 < a} .
Now f* r-specializes T'; the only point to check is:

z € Ty, o limit = g(f(x)) > Sup{g(f(y)) 1y <z,y € Tg11,8+1 <}
which follows by g¢’s definition (the sup is < g(f(z)) — e(f(z)) as for every
y <z, g(f(z)) is smaller than it). Osz.11
84. Independence Results

It is well known that

4.1 Claim. If T is an R;-Souslin tree, A > Ry, N < (H(A),€), [|N]| = No
T € Nyx € T5, § = wy NN then Br(z) = {y € T<p : y < z} is generic for
(T, N), i.e., for every T € N,Z C T which is pre-dense in T', we have:

INBr(z) =ZNNnNBrp(z)#0.

4.2 Definition. 1) For an Aronszajn tree T,

Q(T) = {(h, f) : h is a partial function from w; to wy;
a< B &{a,B} €Dom(h) = 0<a<hla) < <h(B);

f is a finite function,
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Dom(f) - UaEDom(h) Th(a) )
T € Tha) = f(z) € @ X W;

z <y&|z,y € Dom(f)] = f(z) # f(y)}
The order on Q(T) is defined by (h, f) < (hf, fT) if h C AT, f C fT;
We let (h, f)UhT, 1) & (RURY, FUSY, (b HUR = (RUR, ),
(h, AUFTE (h, FU .
2) We say that T is (S, h)-st-specialized by f if: S is a stationary subset of wy,
and h is a function from S to w; satisfying (Va € S)(a < h(a)) and h is a

function with domain |J Tj () satisfying
a€sS
aceS&zeTy= f(z) eaxw and

a<ﬁ&z€Th(a)&yeTh(g)&z<Ty:>F(x)7éf(y).

So T is (S, h)-st-special if some f (S, h)-st-specialized it.

(Easily implies T" is not Souslin.)

4.3 Definition. For an Aronszajn tree T and stationary set S, Q(T,S) =
{(h,f): (h,f) € Q(T), and a € (Dom(h)) N (S \ {0}) implies h(a) = a}, order

— as before.

FEzplanation. Our aim is to get a universe in which SH (Souslin Hypothesis)
holds (i.e., there is no Souslin tree) but not every Aronszajn tree is special. The
question was raised by Baumgartner Malitz and Reinhardt [BMR], and later
independently by U. Abraham, and is natural as, until now, the consistency
of SH was proved by making every Aronszajn tree special; see the proof of
Solovay and Tennenbaum [ST], Martin and Solovay [MS], Baumgartner, Malitz
and Reinhard [BMR] without CH, and Jensen proof in Devlin and Johnsbraten
[DeJo] with CH (and Laver and Shelah [LvSh:104] for R»-Souslin tree). For this
aim we have introduced in §3 various notions of specializations (each implying
the tree is not Souslin). So the program is to make every tree special in some
weaker than the usual sense. The notion r-special which had been introduced

by Kurepa [Ku35] is not suitable, as if every Aronszajn tree is r-special then
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every Aronszajn tree is special (see 3.6(2)). Similarly “h-special” for any fixed
increasing h : w; — w is not suitable by 3.6(1) (see Definition 3.2(4)).

So a natural candidate is “h-special for some h” (i.e., for every tree there
is an h for which it is h-special). Forcing with Q(T') does the job for T -
we take generic h and f. (It would be more natural to let f go to Q and be
monotonically increasing, but by 3.5(2) the forcing Q(T') makes T h-special
for some h, and this way we have more uniformity with Definition 4.3.) So we
should iterate such forcings, but retain some T' as not special.

A second way is to make each T' S — st-special for some fixed stationary
S; for this Q(T, S) is tailored. (Note that the f we get from a generic subset of
Q(T, S) has domain |, ¢, To where S\ S; non-stationary.) For S = §) we get
the previous case, so we shall ignore Q(T).

This leads to a secondary problem: Can every Aronszajn tree be S; — st-
special, but some Aronszajn trees are not S, — st-special (S \ S; stationary,

of course)? We answer positively.

4.4 Claim. 1) For T an Aronszajn tree, S C wy, Q(T,S) is proper.

2) For T an Aronszajn Rj-tree, and S C w; we have:

IFq(r,sy “T is not Souslin tree, in fact for some

function h is (w1, h)-st-special”.

3) In part (2), if S is stationary then I-q(r sy “T is S-st-special”.

Proof. We can assume w.lo.g. [Ty| = No. Let A > (2%1), N < (H()), €) be
countable, T, S € N, pg = (h, f) € Q(T,S)N N, and let § = N Nw;.

Then p; = (hU{(4,0)}, f) € Q(T, S) exemplifies what is required.

For checking, we really repeat the proof of Baumgartner Malitz and Rein-
hardt [BMR] that the standard forcing (now) for specializing an Aronszajn tree
satisfies the Nj-c.c. (or read the proof of demand (iii) in the proof of 4.6 - it is
just harder).

2) Let b = U{h : (h, f) € Gor,s)}, and € = Dom(h) and § = U{f : (b, f) €
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Gor,s)}- We know (see III) that it is forced that C is a club of wy, so T
becomes (C, h)-st-special.

3) Should be clear. Ug.4

4.5 Definition. We call a forcing notion P, (T*, S)-preserving (do you have
a better name?), where T* is an Aronszajn tree, S C wy, if: for every A >
2P+ (P, T*,S) € N < (H()),€), N countable, § & Nnw; ¢ S and
p € NN P, there is p; which is preserving for (p, N, P,T*,S); i.e.,
(i) p<p1€P,
(ii) p; is (N, P)-generic,
(iii) for every x € Ty, if

(x) € A— (Jy < z)(y € A) holds for every ACT*, A€ N,

then
() for every P-name A, A € N such that IFp “4 CT™”
the following holds:

mEced- Fy<z)ye A.

4.6 Lemma. If T*,T are Aronszajn trees, S C wy, then Q(T,S) is (T*, S)-

preserving.

Remark. If T* is Souslin tree then (x) from Definition 4.5 is satisfied by every
countable N < (H()), €) and z € Ty when N Nw; = § (this follows by 4.1).

Proof. Let P ' Q(T,S). Let N < (H(A),€), § & Nnw; ¢ S, [|N|| = Ro,

(T*,T,S) € N hence P € N, p = (ho, fo) € PN N (as in Definition 4.5.), and
(remembering § = N Nwy) let §* = sup{f(6) +1: f € N, f(é) is an ordinal
< w1}

Define p; = (hoU{(4,6*)}, fo), demands (i) of Definition 4.5 is trivial,
and demand (ii): its proof is easier than that of demand (iii), so let us check
condition (iii). So suppose z € T and

(x)if ACT*,Ae N,z € Athen (3y)(y <r- z&y € A).
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Let A be a Q(T, S)-name of a subset of T, and A € N. We shall prove
that for every ps,p1 < p2 € Q(T,S), for some p3,ps < p3 € Q(T,S), and
p3 - “z ¢ A” or ps Ik “y € A for some y <p- z”.

Let pa = (ho, f2), if p2 IFp “z ¢ A”, then we can choose p3 = po. Otherwise
there is pg € P, such that

p2 <phand p}lkp “z € A,
Let p} = (h}, f1), ph = p§Uph, where p§ = (h$, f§), p} = (hS, f3) where
e — hi1s, b = h31[8,w:) (closed open interval) and

f3 = f31Tcs, 3= FNT\ T<s)-
Note that by the definition of Q(T, S):

4.6 A Fact.
(1) p§ € PN N,
(2) z € Dom(f%) = rkr(z) > 6*.

Now let ap = SupRang(hg) (which is < §) and we define a function F as

follows:

Dom(F) = {y € T* : tk(y) >+ ao},

F(y) = Sup{a* < w; : there is (*h},* %) (in Q(T, S)) such that:
(a) Min(Dom(*h3)) = rkr- (y),
(b) *h5(rkr-(y)) = o,
(c) (R U*R3, fsU*f3) kqer,s) “y € A7}

(so we demand also that (hg |J*hS, f¢ U* f2) is in Q(T, S)).

Now clearly F' € N (as it is defined by a (first-order) formula in (H()), €)
whose parameters are in N). Clearly F(y) < wy (for y € 7"\ T2, ). Let
A* ={y € T* : tkr-(y) > ao, F(y) = wi}. (Note that A* C T™* is a set, not a
P-name of a set.).

Let F* be a function from w; to w; defined by:
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F*(a) = Sup{F(y) + 1:y € TZ,,tkr+(y) > a0,y ¢ A%, ie., F(y) <wi}.

As |TZ,| < Ro, we have F* : wi — wy, and clearly F* € N (same reason).

By the definition of §*, F*(§) < 6*. But (A}, f) exemplify F(z) > 6*, so
necessarily F(z) = wy. So by the definition of A* above z € A*. Hence by the
hypothesis (*) there is y <7+ x such that y € A*. So (in H()), hence in N) we
can define a sequence p = ((hg’i, 3*") : ¢ < wq) such that:

(a)’ Min(Dom(hy")) = rkr-(y) > ao,
(b)" h3*(xk(y)) > a0 +1,
(©) (hgUhs", fsUS") Faer,s) “v € 47,

For i < & let p§ = (h§ UhSUhs", f$ U F5U £2°). If p € Q(T, S) then by
clause (c)’ and as y <r z, this condition is as required.

Why can p4 be not in Q(T,S)? The first coordinate (hgJhsJh%?) is
OXK., as ha Chy* e N.

What about the second? Note that f@|Jf2, f¢fo* are O.K. as ps €
Q(T, S) and by (c)’ above correspondingly. Hence the only danger is that there
are z; € Dom(f2), z; € Dom( g’i), 2o <1 21 (as ,j,’*" € N, rk(z1) > h§(8) = 6*
this is the only bad possibility).

But remember that in H()) we have z € Dom( é”i) = rk(z) > 14,50 by a
lemma on Aronszajn trees due to Baumgartner, Malitz and Reinhart (in their

proof of M A “every Aronszajn tree is special” ) which appears in the proof

of III 5.4, there is a sequence (i, : ¢ < w)(i, < wj) such that

21 {T 2:2) )

m#n & z1 € Dom(fo)"*™ & z € Dom(f;™) = (Zz £T 21

So again there is such a sequence in N, and all but at most [Dom(f3)| are O.K.,

ie., pi € Q(T,S). So we finish. U4

4.7 Theorem. Let T* be a Souslin tree. Suppose Py(a < ap), Qa(a < )

form an R;-free iteration (i.e., Poy1 = Py * Qa, Ps = Flim 2‘<QOP&) and for

every a at least one of the following holds:
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(@) Qq is (in VFa) (T*, S)-preserving,

(B) there is a P,-name I, of an antichain of 7* (in V=), S, et rk(Zo) Cwi\S

where tk(Zo) = {rk(z) : € Zo}, and in VFa:

Qa = Qeub(w1 \ Sa) = {g : for some i < w;,Dom(g) = i +1,Rang(g) = {0,1},
{j <i:9(i) =1} is closed and is C w; \ S},
Then Py, is (T™*, S)-preserving.

4.7A Remark. 1)We can amalgamate conditions (a) and (8) but it has no

use.

2) See on such theorems in XVIII§3.

3) Note that the forcing notion Q(T,S) (T is an Aronszajn tree, S C w; co-
stationary) adds an antichain Z of T such that rk(Z) \ S is stationary. This is
because by the proof of 4.4 IFg(7,5) “{6 < wy : for some (h, f) € Gg(r,s), We
have § € Dom(h), h(d) = 6 € S} is stationary” (together with Fodor’s lemma).

Proof. We prove by induction on a < g the following:

®q Suppose 8 < a < a9, N < (H()),€), 8 € Nyae N, (P;:i < a) €N,
d=NnNuwi ¢S,pe P,NN, q1 € P, and
(i) (a) pIB < q1 (natural meaning: no ¢', g1 < ¢' € Py is incompatible with
p; if we deal with complete BA, p[@ is the projection).
(b) Moreover, if p[3 < p! € PgN N, then g, p! are compatible;

(ii) ¢1 is (N, Pg)-generic,

(ili) if x € Ty and (VA C T*)(A € N&z € A — (Jy < 7)y € A) then for very
Pg-name A€ N, we have 1 IFp, “c€ A — (Jy <r- z)y € A”.
Then there is p; € P, such that

(1) (a) p11B = q1, p < p1 (natural meaning).
(b) if pfa < pt € P, N N then p;,p! are compatible,
moreover (this implies (a)+(b)): if pla < p' € P,NN, q1 < ¢' € P3,p' 1B <
q' then pt,p;,q! are compatible (= have an upper bound),
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(i)’ p1 is (N, P,)-generic,
(iii)" the parallel of (iii) with 8 — a,q; = p1.

Case 1. a = 0. Trivial.

Case 2. a + 1. By the similarity between the assumptions on ¢; and the
conclusion on p;, we can assume w.l.o.g. § = a. Let G C P, be generic over
V, q1 € G. Then N[G] < (H()), €) (see III 2.11).

Now in V[G] (hence in H(A)[G]) we can find in Qq[Gp,] a condition
pl > p(a), which is (N[G], Q4[G])-generic, as in Definition 4.5. Why?

Note that we can ignore (i)’(b), as we can take a disjunction over countably
many possibilities one for each r € N[G|, Pyt+1/G, r > p. More accurately,
maybe in Q,, it does not exist, but we can make a trivial change in @, to ensure
it, without affecting the iteration (in fact, the forcing notion we actually use
has such a condition anyway).

Now our proof splits according to which of the conditions () or (5) from

the theorem, Q.[G] satisfies.

(a) Straightforward, by Definition 4.5.

(8) By the choice of T* (a Souslin tree), by Claim 4.1 we have: [z € A € N and
z € Ty = (Jy < z)y € A]. So by the assumption on ¢; for every A € V[G], A C
T*, A € N[G], of course there is a Py-name A € N, A[G] = A; now we know
qlFp, “z€ A— (3y<z)y € A", hencein V[G],z € ANT} = (3y < z)y € A.

In particular, we can take A = Z4[G] € N[G| (remember Z,[G] € VF=
and as (P; : i < o) € N hence wlo.g (I; : j < o and if Q; satisfies clause
(8), I; is as there, otherwise I; = 0)). So clearly if € T} N Z4|G] then
z € A implies Z,[G] is not an antichain, contradiction. So Ty NZ4[G] = 0, so
0 ¢ S4[G] = rk(Z4)[G], and then the desired conclusion is quite easy (remember
Qo’s definition).

So we have p; as required. Now p; is in V=, s0 in V we have a P,-name p1
for it, and let p; = (q1, p‘;) € Py * Qo which by the usual thing for composition

of forcing, is as required.
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Case 3. o limit.

Choose a;, for n < w such that 8 = a; < ...ap < apy; < ...;a, € N and
a(*) def sup(a N N) = Upcncw On-

We define by induction on n < w,n > 1, g, € P,,, qniilan = ¢n,
q1 is given and gp41 is obtained from g, by the induction hypothesis, with
D, qn, @n+1, Qn, Ont1 here standing for p, g1, p1, «, B there.

Let ((An,zn) : n < w) be alist of all pairs (4, z), where A is a P,-name of
a subset of T, x € Ty and A is in N; let (J, : n < w) be a list of all pre-dense
subsets of P, which belong to N. Let

Pt Z DAL I AV rezunn TIA Ancol VP € PaON i plkp, “y € Ay
for some y <1« zn} V V{gn A AresT 1 T C© N N Py, J is definable in
(N {y:y <z}) and gu A\, c 77 IFP, “zn & An”}].

There are two facts on p; we have to prove:

(A) p; € P, = Flim™

ica(n i i€ Nica(s) O1P] ¥ p1 (as clearly p; has the
right form), '
(B) (i), (ii)’, (iii)’ (of @4 above) hold.

For proving both facts we do the following. We assume everything is in
some countable transitive model M (or M = V|,V = V* in V* we have
|H(A\)Y| is countable which is easy by forcing).

Let pf, ¢! be as in (i)’ (the “moreover” version).

We let G,, C P,, = Pg be generic (i.e., M-generic) such that p'18,q" €
Gq,-

We shall find Gy sy C Pys) such that for each n the set Gy.) N Py, is

generic (for (M, P,,)), and the truth values it gives to all p € |J,,_, Pa,, make

n<w
p1 Ap' true (so we have, in V, a model exemplifying A 8[P;) ¥ =(p1 A p!)
(= fact (A)), and Gqo; C Gosy-

As for fact (B), clause (B) (ii)’ holds trivially by the definition of p; (i.e.,
An(V,ez, 7))- Similarly the last conjunct takes care of (B) (iii)".

The “moreover” phrase of (B) (i)’ holds by the free choice of p', ¢! (and

i< a(x)

the way Gq,,Gq(x) are chosen), hence p;[3 = q1; the other inequality follows
by p1’s definition. So it is enough to find G4 (x)-
We define by induction G, ,p, such that (as in the proof of 2.2):
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(1) Ga, C Pa,,Ga, € Gapyss

(2) G, is P, -generic over M,

(3) Pn < pn+1,00 =P',Pn € PaNN,

(4) pn is compatible (in P,) with every member of G4, ,qn € Ga,,,

(5) pan41 is > g} for some g}, € 7, NN,

(6) p3py2 b APy, or p3yio F -1y, for some 1, € ®,, where (&, :n <w) is a
list of all countable ® C P,,® € N,

(7) in M[G,,] for every A € N[G,,], A C T* we have [t € Ty &z € A —
(Jy < z)y € A] holds (g € Ga, do the job),

(8) p3an+s bp, “(y < zn)y € An” O D3ny3 A /\reJ’” kp, “z ¢ A", for
some 7, such that J C G, _,, and J is definable in (N,{y : y <r- zp})
(remember {(An,Zy) : n < w} list the pairs (4,z), A € N a Py-name of a
subset of T*, and z € Tj.)

As in the proof of 2.2, this suffices [for J as in (8), use the conjunct
corresponding to J U {psn+3} in p1]. The only nontrivial part in the definition
is taking care of (8). So let n = 3k + 2, p,,, G,,,, be defined, and we shall define
Pn+1, G We define:

Qn41°

A;’c = {y € T* : there is r € P,,r > pp, which is compatible with every
member of G, (= the name of the generic subset of P, ) such that
rlkp, “ye Ag”}.

Clearly A}; is a P,,-name (as we use G, in the definition but not G4, +1)

and if p,[a, <r € P,, then:
(%) r lbp,, “y¢ AL” implies r Apy Ibp,  “y & Ax”.

However the inverse implication does not follow. Now if we can choose pp11,
such that p, < pny1 € Po N N,ppy1 compatible with every member of G,
(equivalently of G,, N N) such that p,4+1 IFp, “y € Ax” for some y <r» g,

then we can proceed to define G, , with no problem.
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So we assume that there is no such p,+1 and let p,4+1 = p,. Let
J={-r:reP, NN,rlkp, “ye Al” for some y <p- zx}.

Clearly J is definable in (N, {y:y <r- zx}), J C Ps, "N, and J C G,,, (as
if (-r) € J, (-r) ¢ Ga, then r € G4, so we would not have arrive here), and
Pn < Pnt1 € Po NN and ppi1 € Py /Gy, so it is enough to prove

(%) P Agn A \pe s 7 P, “zk & Ak
Now A}; is a P,,-name of a subset of T* (and it belongs to N), so by the
choice of gy:

n Fp,, “zx € AL — (By <7~ zk)y € A]”.

However for each y <7+ xy,
Jy={r€P,, :rlp, “re AL” orrl-p, “y¢ A;‘C”}

is a dense subset of P,, which belongs to N hence [J, N N is pre-dense above
gn (in P,,) (as y € N). So g, forces that if y € AL(y <r- zi) then some
r € JyN N is in the generic subset of P, , and r IFp, “y € AL”. Hence
gn N pn € P, forces that: if z; € Ay, then necessarily x € A}; (see (%)) hence
some y <= T is in AL. Hence some r € J, N N for which rI-p,  “y € AL” is
in the generic set , and clearly —r € J. So clearly (as pn € J) gn APn AN,y T
forces that: z € Ay leads to a contradiction (as r and —r are incompatible)
so it forces x, ¢ Ay i.e. (¥x) holds as promised, so we have succeeded to define

P.+1 = Psp43 as required. There is no problem to define G , so we finish

Qnt1

proving (8) hence the theorem. Ug.7

4.8 Conclusion. Assume S C w; is co-stationary. For some forcing notion P,
not collapsing Ri, in VP we have: every Aronszajn tree is S — st-special, but
some Aronszajn tree T™ is not S* — st-special for any S* C w; \ S stationary,
moreover for every antichain Z of T*, rk(Z) \ S is not stationary. Also there is
no Souslin tree. Assuming 280 = 281, 281 = R, we have: P is proper Rs-c.c. of

cardinality Ns.
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Remark. S is co-stationary — otherwise it is not interesting, but there is no

other restriction e.g. S may be empty. See more 4.9(2).

Proof. Trivial by the previous Theorems 4.6, 4.7, but note that for ensuring in a
transparent way that T* remains an Aronszajn tree we would start the iterated
forcing by Q(T™*, S). As for the Np-chain condition, see VIII §2. Remember also
that our forcings are proper and proper forcings preserves stationarity of subset
of wy (see III). In more details, by some preliminary forcing without loss of
generality V |= “Oy, + 2™ = Ry” and let T* be a Souslin tree. We can define
an Nj-free iteration (P;, Q]- 11 < wg, j <wsy) as in 4.7, such that:

(a) Qo =Q(T",S)

(b) each @, satisfies one of the following:

(@) Qo is proper and (T*, S)-preserving of cardinality R;.

(B) for some P,-name of an antichain Z, of T*, tk(Z,) NS = @ and
Qo = Qcub(w1 \ tk(Za)) = {g : for some i < w; g is a function from
i+1to {0,1}, g~ ({1}) closed and included in w; \ rk(Zq4)}

(c) for every v < wp and P,-name Z of an antichain of T such that IFp,
“Tk(Zo) NS = 07, for some B < wq, Ig = Z (and v € (B,ws) and
Ik, “Qp = Qerub(w1 \ 1K(Z)”).

(d) for every v < wp and Py-name T of an wj-tree for some 8 < wy we have
IFp,, “Qps = Q(Tp,S), Tp is an Aronszajn tree, and if T is an Aronszajn
tree (in VF?) then T = T7.

Now:

(i) Pu (and P,/Ppg for § < a) is S-proper [Why? as in both cases in (b), Qq
is S-proper] -

(i) Py is (T, S)-preserving [Why? By 4.7].

(iii) P, does not collapse X; [Why? By (ii) as S C w; is co-stationary.]

(iv) in VP (if o > 0) T* is an Aronszajn tree [Why? Qo ensures it: if A* =
Ufh : BHIR, ) € Gqol}, f* = U{f : (3R)[(h, f) € Gq,l}, Dom(h*) =
{a(j) : j < w:} is increasing and continuous (by density) we have: f* is a

function with domain |J The (o)) a0d T € T}, (40y) = h(z) € a(i) X w,

i<wi
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[t € Dom(f*)&y € Dom(f*) &z <7+ y = f*(z) # f*(y)] andi € § =
a(i) =i on S. So by Fodor’s lemma, T* has no uncountable antichains).|

(v) We can define (Pi,@j : 1 < we,j < ws) to satisfy condition (a), (b),
(c), (d). [The least trivial point is to ensure an instance of condition (d),
given by the bookkeeping, which is fine as for Aronszajn tree T, Q(T, S)
is proper (by 4.4.) and (T™, S)-preserving by (4.6). We succeed in having
the bookkeeping as 2%t = R, .]

(vi) P, satisfies the No-c.c. [Why? As in III, using “(T*, S)-preservance” here
similarly to the way we use “S-properness” there. Remember we have
assume V (g, hence 2% = Ry ]

(vii) P,, collapses no cardinal and changes no cofinality.

(viii) in VP2, T* is S-st-special [Why? use Qo).

(ix) in VP2, for every antichain Z of T*, rk(Z)\ S is non-stationary (remember:
tk(Z) = {rk(z) : ¢ € T}) [Why? by condition (c)]).

(x) in VP2 every wi-Aronszajn is S-st-special [Why? By clause (d) and the
definition of Q(T, S)]

(xi) in VPe1 there is no wi-Souslin tree provided that [Why? By 3.4(1) and
clause (x) above when S is stationary or 4.4(2).]

(xii) P, preserve stationarity of subsets of w;, moreover is proper. [Why? It is
(w1\S)-proper by its being (T, S)-preserving clause (ii), and it is S-proper
by clause (i)]

Putting together (i)—(xii) we have clearly finished. Oas

4.9 Concluding Remarks.

(1) We can ask: can we do it with G.C.H. and can we get independence of other
variants of “every Aronszajn tree is non-Souslin, special, etc.” but we have not.
tried. For G.C.H. it is natural to use a variant of the forcing used in V §6 for

the consistency of G.C.H. + SH with ZFC.

(2) By the definition of the forcing Q(T', S); and by 3.5(2) (applied to an almost
subtree), in 4.8 we get that every Aronszajn tree is ST-special for some ST (the

range of the generic h). So for S empty, we get: every Aronszajn tree is ST-
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special for some ST (equivalently h-special for some A : w; — w1) but some tree

is not S* — st-special for any stationary S* C w;.

(3) Note that case (B) in 4.7, is needed for the part of conclusion of 4.8
saying: for no antichain Z C T™* is rk(Z) \ S stationary (we are adding a closed
unbounded subset of w; disjoint to any such rk(Z) \ S). Waving this we can
omit () in 4.7.

(4) Abraham noted that “T" is h-special for some h” is equivalent to “T is S —r-
special for some closed unbounded S C w;”. Note that we can define S — P-
special for every partial order P, and if a; € P(i < wj) implies (I < j < wy)
a; < a; then “T S — P-special” implies “T" is not Souslin”. Note also that
“S — r-special for some closed unbounded S” implies w; — R x Q-special [R-
reals, Q-rationals, the order-lexicographic]. So we have proved, e.g., “every

Aronszajn tree is w1 — R x Q special” does not imply “every Aronszajn tree is

special”.

(5) We can also try to get a model of ZFC where, e.g,
(A) (for some stationary co-stationary S C w;) every Aronszajn tree is
S — st-special, but some Aronszajn tree T* is not h-special for any h;
or
(B) there is no Souslin tree but some Aronszajn tree is not h-special for
any h.
For (A) it is natural to define Q'(T,S) = {(h,f) : (h,f) € Q(T,S),
Dom(f) € Up(a)=a Ta}- But T' is the union of R disjoint copies of T*, so
Q(T, S) cause “T™* is h-special for some h”.

(6) We can generalize Definition 4.5. Let M = (M, : @ < w;) be a sequence of
countable models, the universe of My, is 74, Ya(@ < wy) increasing continuous,
and let p(z,y, U) be a quantifier free formula, where z, y are individual variables
and U is a monadic predicate. We call a forcing notion (M, ¢)-preserving
if for A large enough and N a countable elementary submodel of (H()), €),
P e N,p€ N, there is ¢ > p which is (N, P)-generic and, letting § = N Nwy:
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if £ € Ms41 and (VA € N)(Jy € Ms)p(z,y, A)
then

qlFp “(VA € N[G])(3y € Ms)p(z,y, A).

(7) Note that if a(i) < w; is (strictly) increasing continuous in %, T is an wy-
tree, h is a function, Dom(h) = |, ., Ta(i+1), [T € Ta@+1) = h(z) < afi) x W]
and h(z) = h(y) = —~(z <T y), then there is h* : |, Ta(i+1) — Q such that
(*) z,y € Dom(h*)&z <1 y = h*(z) # h*(y) and even (¥)* z,y €
Dom(h*) &z <r y = h*(z) < h*(y).

The proof with () is similar to the proof of 3.5(2). So to derive ()" first prove
with (x) and then use 3.5(1).





