
IX. Souslin Hypothesis
Does Not Imply
"Every Aronszajn Tree Is Special"

§0. Introduction

We prove that the Souslin Hypothesis does not imply "every Aronszajn tree

is special"; solving an old problem of Baumgartner, Malitz and Reinhardt.

For this end we introduce variants of the notion "special Aronszajn tree" and

discuss them (this is §3, see references there). We also introduce a limit of

forcings bigger than the inverse limit, and prove it preserves properness and

related notions not less than inverse limit, and the proof is easier in some

respects, and was done already in 78; see §1, §2. We can get away without

using it for the present theorems, but we want to represent it somewhere. The

Aronszajn trees are addressed in §4; we choose a costationary 5 C ω\ and make

all tti-trees S-st-special, while on "ω\ \ 5 the tree remains Souslin". If S = 0

this means that every Hi-tree is special when restricted to some unbounded set

of levels, in fact while there is no antichains whose set of levels is stationary.

See more in 4.9.

§1. Free Limits

1.1 Discussion and Definitions. For A a set of propositional variables, λ

a regular cardinal, let: L\(A) be the set of propositional sentences generated

from A, by negation and conjunction and disjunctions on sets of power < λ.



§1. Free Limits 437

Let Lμ(A) = Uλ<μ ^λ(^4) for μ a limit cardinal (> NO) or oo. Let φ, ψ, θ denote

sentences; Φ, Ψ set of sentences.

We define (in L00(A)) h ψ, or Φ h ψ as usual (the rules of the finite

case, and Φ h /\Φ, and from Φ h ψi for i G / deduce Φ h Λie/^) an<^ ̂

V<Vt = -'Λi-|V?i

Always h means in Z/oc(^4) even if we deal with L\(A).

The following is well known.

1.2 Theorem. The following are equivalent for Φ,φ:

(1) Φ h φ

(2) there is no model of Φ IJί"1^} with truth values in a complete Boolean

algebra;

(3) if λ is such that | Φ | , and the power of any set on which we make conjunction

inside some sentence θ e ΦtJί^} are ^ λ and P — Levy(N0>λ) i.e. the

collapsing of λ to ω by finite functions, then

\\~P " there is no model of Φ

1.2A Remark. This can be proven by a small fragment of ZFC, admissibility

axioms, at least when we prove only (1) <̂ > (3). Hence (by proving not (1)

implies not (3)):

1.3 Conclusion. If A is a transitive admissible set, Φ,</? G A then "Φ h φn

has the same truth value in V and in A.

1.4 Definition. For given A and θ G L^A), let FFχ(θ) be {φ : ψ G Lχ(A),

θ Y ->ψ} partially ordered by ψι < ψ<2 if θ Λ 1/̂ 2 t~ Ψi - (FF denotes free-forcing;

we can identify φ, ψ if φ < ψ < φ.)

Reversing the definition of < and adding a minimal element, we get a

Boolean algebra in which every set of < λ elements has a least upper bound

provided that we identify ^i, φ^ when θ h ψi = ψ>2
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1.5 Definition. For any forcing notion P let Θ[P] be the following sentence:

/\{(c — > -ιd)Λ(6 — > α) : α, b G P, α < 6, c, d G P, c, c? incompatible} Λ/\{V α e χα :

Z C P & maximal set of pairwise incompatible elements}.

1.6 Definition. Let Pi(i < δ) be <Φ-increasing, δ an ordinal (λ an infinite reg-

ular cardinal). Then their λ-free limit (Flim^<5P<) is FFχ(/\i<δθ[Pi\) (where

the set of prepositional variables is \Ji<δ Pi)- If we omit λ we mean λ = HI.

1.7 Claim. P <Φ Q implies Θ[Q] h 0[P], and P <o F F χ ( θ [ P ] ) .

Proof. The first statement is trivial, for the second see the proof of Claim 1.8.

Πl.7

1.7A Remark. Our notation may be confusing, as for conditions p, q G

is "p and <?", i.e., both are in the generic set so in our order p Λ q is above p

and above q as it give more information.

1.8 Claim. If as in Definition 1.6, Pδ is the λ-free limit of Pi(i < δ) then

Pi <£ Pδ for i < δ.

Proof. Let us check the conditions.

proof of clause (b) Let X C P^ be a maximal set of pairwise incompatible

elements of P$. Suppose φ G Flim^<sPi is incompatible with each a G T. As

φ G Flim^<<5Pi, by definition /\i<δθ[Pj] Y -><£>. So by 1.2, after some forcing

there is a model of φ, /\j<δθ[Pj} But Vαezα *s a conJunct of the second

sentence, so in the model some q G X is true. So after some forcing, there

is a model of φ Λ qr, Aj<(5 0[ίj ], so by 1.2, /^ θ^ ] F -π(y? Λ ςf), so φ Λ ςr G

]); so φ,q are compatible in

proof of clause (a) Let α, 6 G P$, if they are compatible in P^, for some c G PΪ,

α < c, 6 < c, and this clearly holds in P^ by its definition.

If they are incompatible in Pi then α — > -A appears as a conjunct in 0[P$] and

we can finish. Similarly for α, b G P*, α < 6 in P» implies α < 6 in Pg. Dι.8
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1.9 Remark. We can change the definition of FFχ(θ) (hence of Flim) by

changing K The natural way is to let K be a class of complete Boolean algebras,

and Φ \~κ ψ iff any Boolean valued model of Φ is a Boolean valued model of

φ provided that the complete Boolean algebra is from K. So F F χ ( θ ) = {φ G

Lχ : ΘPκ^φ}.

The most interesting K's seems

Kι = {B : forcing with B \ {0} satisfies X]

where X — does not add reals, does not collapse KI, does not collapse stationary

subsets of HI, the UPι(S) condition (MinS > N2,^ = 0,2, see XV §3).

§2. Preservation by Free Limit

2.1 Theorem. If each Pi is a forcing notion; and Pi (i < δ) is <Φ-increasing,

each Pi is proper as well as Pj/Pi(i < j < δ) and for a < ί, cf(α) = N0 =»

Pα = Flimf^Pi then their Ni-free limit P = Flim^F* is proper. Also P/P;

is proper for any i < δ.

2.1A Remark. Similarly for μ-proper by [Sh lOO] terminology if we take μ+-

free limit. We can restrict ourselves to non-limit i,j.

Proof. Let N -< (-ff(χ), G) be countable such that (Pi : i < δ) e N,p e P Γ\ N

and x big enough (see III). Let {Xn : n < ω} be a list of all pre-dense

subsets of P which belong to N. Let ί(*) = sup[J Π AT], and let P^ = P,

soNnP = NπPδ C NnPsw andif5(*) < δ then A^ΠPδ (^ = \Ji<δ(^ NnPi.

As necessarily cf(ί(*)) = ^o clearly Pδ^ — Flim^^x sP^. So it is enough to

prove p Λ AnίVαewnz^ α) ^ ^(*) (^n Boolean algebras terms: is not zero), for

p being any member of P Π TV.

Now assume w.l.o.g. that everything is in some countable transitive model

M (e.g. work in V f = V^vy(κ0,μ)^ χ strong limit such that (p. . ^ < j) G H(μ^

μ < x, let M = H(μ)v and remember 1.3). We can find αn < αn+ι,αn G

ΛΓΓU,
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Let (Φn : n < ω) be a list of all countable (in M) subsets of Pδ^ which

belongs to TV.

We now define by induction on n, in V, Gn,pn such that:

(1) G n CP α n ,G n CG n +ι,

(2) Gn is Pan-generic for M and Gn Π N is (Pttn Π 7V)-generic for AT,

(3) pn < Pn+l, P = Pθ,Pn£NΓ}P,

(4) pn is compatible (in P) with every member of Gn,

(5) P2n+ι is > qn for some qneInΓ\ N,

(6) either £>2n+2 t~ ΛΦn or j?2n+2 I—*rn f°r some rn G Φn.

The proof is trivial (provided you know about the composition of forcings and

completeness theorem for the propositional calculus Lωι>ω).

In the end G = (Jn Gn gives us a model of Λj<5(*) θ[Pj] (by: members of

G are true, members of (Jj<<5 -Pj \ ̂  are false). This holds by clause (2).

For r G P Π TV, r is true in the model iff pn > r for some n (this is proved

by induction on the complexity of r, (see conditions (4) and (6)). In the model

pn is true (for each n < ω), hence VaexnnA^ a ^s true (f°r eacn n < ^) hence

P Λ ΛnΐVαeZnΠJV α) is true there (P true as PO = P).

So in V there is a model of f \ j < δ ( * ) θ [ P j ] , p Λ Λn(V 'atinnNα) so

P Λ Λn(Vα€XnnN α) G PS(*) ^ ̂ quired. D2.ι

2.IB Remark. Part of the proof is essentially a repetition of the completeness

theorem for LωiίUJ (propositional calculus). But note that in this proof there

was no need (as in the ones for inverse limit) to use names. Also, almost all

previous theorems on preservation hold for free iterations.

2.2 Definition. Let Q = (Pi,Qi : i < IQ) be an ωi-free iteration if :

(a) Pi is <£-increasing,

(b) Pί+1 = Pi * Qi = {(p,q) : p € Pi,lhP. "ςr G Q^"}, with the order

(P,q) < (P^»^) O p < p^ /\[pϊ Ihp q < qϊ]; and we identify p 6 Pi

with (p, 0),

(c) for limit 5, P^ is the tti-free limit of (P^ : ί < δ).
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2.3 Definition. For an N^free iteration Q = (Pi,Qi : i < i0) let FlimNl<2

be Pa * Qa if IQ — a + 1 and Flim^^P^ if i0 is a limit ordinal, and we let

2.4 Definition. We say that Ni-free iteration preserves a property if whenever

each Qi (in VPί) has it, then so does Pi.

2.5 Theorem. Properness is preserved by Ni-free iteration.

Proof. See 2.1; and prove by induction on β that for α < /?,

(*) If (P. : i < z,0) G TV -< (#(λ), G), \\N\\ = K0,α < /? < i 0 ϊα G TV,/? G 7V,p G

PβΓ\N,q € Pβ, and for every pre-dense J C Pα, [J G TV, => Z" Π TV is pre-dense

above <?,] and every q^ , g < q^ G Pα is compatible with p then for some r G P/?,

for every pre-dense J C P^ we have [J G TV => Jn A^ pre-dense above r], p < r

and for every q^ : ς < q^ G P/j => q^ compatible with r. U2.5

The following Definition and Theorem are not really necessary for the rest of

the chapter, but will help in understanding §4.

2.6 Definition.

1) P is strongly proper when: if\ is large enough (i.e. λ > (2'p')~ l~), P G N -<

(#(λ), G), \\N\\ = No,p € P Π N and In C AT pre-dense in TV Π P (but

we do not ask Jn G TV), ί/ien for some </,p < <? G P, each Jn is pre-dense

above #.

2) P is strongly α-proper z/for large enough λ, P G Λ^ -< (-ff(λ), G), ||̂ || =

K0, (A^ : j < i) G 7Vi+ι for i < a, Ni increasing continuous, p G P Π TVo,

P, i G Nij 1^ C P Π Λfi is a pre-dense subset of P Π TV^ (for n < ω) and

(Z£ : j < ί,n < ω) e Ni+ι (for i < α) ί/ien there is a q G P,p < q, If

pre-dense above q (in P, for each n < ω, i < α). Note that we can replace

(H(\),€)by(H(\),e,<*χ).

2.7 Theorem. Strong properness is preserved by HI -free iteration.
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2.7 A Remark. A similar theorem holds for strong α-properness and for CS

iteration.

Proof. Let (Pf, Qj : i < ZQ, j < io) be an Ni-free iteration. We prove by induction

on α < IQ that for any β < α:

(*)βta Let (Pi,Qj : i < i0,j < ιQ) G N x (#(λ),G) (where λ > (2lpl)+), | |TV | | -

NO, C a countable family of N0 pre-dense subsets of PαΠTV, closed under the

operations listed below. Suppose β < α,p G Pa Π TV, α € TV, /? G TV, ς G P/?,

no <?t,<? < gΐ G P/3 is incompatible with p, and [I C P^&Z G C ^> 2"

pre-dense above ςr]. Γ/ien there is qa,p < qa G PQ,, q < qa, no q < q^ G Pβ

is incompatible with ς^α and [I € C => I pre-dense above qa].

The family of operations under which C is closed is (for p G N Π P^0,7 G

TV Π ΪQ and I e N a, pre-dense subset of Pίo):

(Op 1) Opι(T, 7,p) = {r : r G P7 Π AT and either for some r* G PΪO and

TI £ Z we have π < r* and p < r* but no r^, r < r^ G P7 Π TV is incompatible

with r* or r is incompatible with p} for 7 G AT, I G C, p G Pα. (Note that for

p = 0 the last phrase is vacuous.)

For α = 0. Totally trivial. For α = 7 4-1. So/3<7, also as α G N clearly

7 G TV and by the induction hypothesis for 7, (*)/3,7 holds, so w.l.o.g. β = 7.

So we want to use the hypothesis Pα = P7 * Q7, Q7 is strongly proper; then we

use (ςf,r), r G QΊ a name of an appropriate element of QΊ. We have to prove

that the appropriate subsets of N[GpΊ] Π QΊ[Qp^\ are pre-dense subsets. But

as C is closed under (Op 1) this is easy.

For α limit. Let αn G TV, Un<u;α™ ^s α or at ^east [Un

α^'α) Π TV = 0

(note [α^,α) is interval of ordinals).

We work as in 2.1 using the induction hypothesis. D2.r

2.8 Claim. 1) If we iterate ω-proper, ^u -bounding forcings it does not matter

whether we use HI-free iteration or countable support one (in the latter we get

a dense subset of the first).
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2) We can replace "ω-proper" by proper.

Proof. Left to the reader. D2.8

2.8A Remark. For the proof, see V §3 (and for (2) see XVIII §2). The parallel

of 2.7 for countable support was noted by Harrington and the author.

By the way we note that unlike NI-C.C. forcing:

2.9 Example. There are proper forcing P, Q such that P <Φ Q but Q/P is not

proper.

Proof. We let PQ = adding a subset r of ω\ with a condition being a countable

characteristic function.

Let Qo e Vp«, Q0 = { f : Dom(/) = a < ω^ Rang(/) = {0,1}J~ 1 ({0}) is

a closed set of ordinals (not just closed subset of α!) included in r}. (r denotes

the generic subset of ω\ which P0 produces.)

Now PQ, PQ * Qo are proper but in Vp°, QQ = PQ * QQ/PQ is not proper as

it destroys the stationarity of U I \ Γ Q .

§3. Aronszajn Trees: Various Ways
to Specialize

We introduce new variants of the notion "special Aronszajn tree", define some

old ones (special, r-special) and prove some known theorems and some easy

ones. See Kurepa [Ku35], Baumgartner, Malitz and Rienhard [BMR], Baum-

gartner [B] and also Devlin and Shelah [DvSh:65]. Recall

3.1 Definition.

(1) An u;ι-tree T — (|Γ|, <τ) is a partially ordered set, such that (when no

confusion arises, we write < instead of <τ and T instead of |T|):

(a) for every x G T, {y G T : y < x] is well-ordered, and its order type

which is denoted by rk(x) = rk^(x), is countable,



444 IX. Souslin Hypothesis Does Not Imply "Every Aronszajn Tree Is Special"

(b) Γα = {x £ T : rk(x) = a] is countable, / 0,

(c) if rk(x) = rk(y) is a limit ordinal then x = y O {z : z < x} = {z : z <

y},
(d) if x G Ta,a < /?, then for some y G Tβ,x < y, in fact there are at

least two distinct such y's.

If we wave (c) and (d) we call it an almost α i-tree; similarly for the other

definitions.

(2) A set B C T is a branch if it is totally (i.e. linearly) ordered (hence well

ordered) and maximal; it is an α-branch if it has order type a.

(3) An Aronszajn tree is an u i-tree with no α;χ-branch.

(4) An ωi-tree is Souslin or ωi-Souslin tree if there is no uncountable antichain

(= set of pairwise incomparable elements).

3.1A Remark. Condition (l)(d) is not essential, except to make every Souslin

tree an Aronszajn tree. So except this implication all the definitions and results

in this section hold for almost ω\-trees.

3.2 Definition.

(1) For a set 5 C ω\ which is unbounded, we call an ωi-tree 5-special if there

is a monotonic increasing function / from \Ja^sTa to Q (the rationale),

i.e., x < y => f ( x ) < f ( y ) .

(2) A special ωi-tree is an cji-special α i-tree (this is the classical notion).

(3) r-special, S — r-special are defined similarly when the function maps T

into R (the reals).

(4) We say / specializes (S-specialize, etc.) T. We can replace 5 by a function

/ι, Dom(/ι) = ωi, Rang(/ι) = 5, h increasing.

3.3 Definition. For a stationary S C ω\ we call an u i-tree 5-st-special if there

is a function /, Dom(/) = Uaesuo} ^»» an(^ % £ Ta => f ( x ) e α x ω (cartesian

product) such that x < y =$- f ( x ) =£ f(y) when defined. If S is a set of limit

ordinals we can assume x G Ta => f ( x ) < α. So if 5 C ω\ is not stationary this

says nothing.
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3.4 Claim.

(1) If T is S-special or S — r-special (5 C ω\ unbounded) or S-si-special

(5 C ω\ stationary) ωχ-tree then T is an Aronszajn tree but not Souslin.

Any u i-Souslin tree is an Aronszajn tree.

(2) The following implications among properties of ωi-trees hold (where 52 C

Si Qωi, S2 unbounded in ω\, S\ = {α(i) : i < ω\}, Oίi increasing with i)

(a) Si-special => 52-special,

Si -special =Φ Si — r-special,

Si — r-special => S2 — r-special,

Si — r-special =Φ Si Π {a(i 4- 1) : i < c^ij-special,

(b) for Si stationary: Si -special => Si — si-special,

(c) Si — si-special =>• S2 - si-special, (if Si, Si are stationary subsets of

ωi).

(d) for C C ω\ closed unbounded: Si Π C — si-special <=> Si — si-special,

(e) if (Vi)Λι(i) < hι(ϊ) and T is /ii-special then T is ^-special.

Proof. Trivial:

(1) for S-special, and S-r-special - well known, for S-si-special by the Fodor

lemma.

(2) Trivial - check. E.g. the last phrase in (a), if / is Si — r-specialize T, define

/* : U<ωι

 T"(*+i) -> Q by: if x G Γ«(i+i) then /*(χ) is a rational < /*(*) but

> f ( y ) where ?/ G Γα(i), y < x. D3<4

Remark. By 3.4(2)(d) dealing with S - si-special we can assume all members

of S are limit, and so Rang(/) C ωι in the Definition.

3.5 Claim.

(1) T is S-special iff S C ωι is unbounded and there is / : \Ja<ESTa —> ω,

(x < 2/&rk(x) G S&rk(y) G S => /(x) ^ /(y)].

(2) T is α i — si-special iffT is special.

Remark. See Claim 3.11.
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Proof. (1) Well known ( the "only if" part is trivial; for the "if" part, with

given / : \JaeS Ta -> ω we define fn : {x : x G \Ja£S Ta and f ( x ) < n] -> Q by

induction on n such that fn C /n+ι, /n satisfies the requirement (see Definition

3.2) and Rang(/n) is finite. Now \Jn<ω fn is as required).

(2) The "if" part is trivial.

So suppose / ωι — si-specialize T. For every x G T, let Kx = {t G

(rk(x) -f 1) x <j: for no y < x is /(?/) = t}. We now define by induction on

® <ωι,ga and A^ (for t e Kx,x e \Jβ<aTβ) such that:

(a) ga is a function from T<a = \Jβ<aTβ to ω,

(b) x < ?/, x G T<α, ?/ G T<a => 0α(z) ̂  0α(y),

(c) β <a^gβC 0α,

(d) Ac?ί (for t e Kx,x € T<a) is an infinite subset of ω,

(e) for every x G T<α, t ^ s e Kx => AXtt Π A X j S = 0,

(f) ί G Kx,x e T<α =» Ax,t Π {^α(y) : y < x} = 0,

(g) if x < y & z e T < α & ; 2 / £T<a,t G KxΠKy then A^ = A^t.

For α = 0,1, α limit - no problem.

For a + 1 > 1 - let x G Ta C Γ<(α+1), and s = /(x), so by K's definition

for some y = yx < x, 5 G Ky. We choose ga+ι(x) G Ay>s (= Az,s for every z

satisfying y < z < x) and let 0α+ι fT<α = ga.

For t G Kx \ U2<χ ̂  (there are K0 such ί's) we choose Axj C A^^ \

{ga+ι(x)} infinite pairwise disjoint. If t G Kz \ {/(a;7) : z' < x} for some z < x

we let AXtt — Az,t.

Now by 3.5(1) clearly g = Uα<u;ι 9<* shows T is special. DS.S

3.6 Claim. Let 5 C ω\ be unbounded.

(1) If every Aronszajn tree is 5-special then every Aronszajn tree is special.

(2) If every Aronszajn tree is 5 —r-special then every Aronszajn tree is special.

Proof. (1) Let Γ be an Aronszajn tree, 5 = {OL(I) : i < ω\], a(ί) increasing.

Define T* (a partial order): The set of elements is {(x, 7) : x G T, 7 < α(rkr(x))

and y < x => α(rkτO/)) < 7}; the order in Γ* is: (x,7) <τ* (^j7^) if a: < x^

or x = x ΐ , 7 < 7^.
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Now T* is almost an Aronszajn tree; the only missing part is in Definition

3.1, part (d) ("in fact there are at least two distinct such y's") the problem

is e.g. when i is a limit ordinal, a(ϊ) > Uj<iαO')» m ^eve^ \Jj<ia(J) We can

add more elements and find an Aronszajn tree, Γ** such that T* C T**, and

if #** ^-specializes the tree Γ**, we let g : T -> Q be defined by g(x) ά=

#**({x, α(rkτ(x)))), it specializes T.

(2) By 3.6(1) and 3.4(2) (a), last clause. D3.6

3.7 Lemma.

(1) (Oωi) There is an r-special Aronszajn tree which is not special.

(2) Moreover (in (1)) there is no antichain I such that rk(I) = (rk(x) : x G 1}

contains a closed unbounded subset of ω\ .

(3) (O^i ) There is an r-special Aronszajn tree, such that for no antichain

I C Γ is rk(I) = {rk(x) : x G 1} stationary.

Remark. Part (1) was proved by Baumgartner [Bl].

Proof. We define by induction on a < ω\ the tree (T<cn<τ \T<a) and / :

T<0ί — > R satisfying x < y => /(x) < f(y) such that if β < 7 < α, x G T]g, ε

a real positive number (> 0), then for some y,x < ?/ G T7, /(y) < /(x) 4- ε;

and x G Tα+ι 4=> /(x) G Q and if δ < ω\ is a limit ordinal, x G T^ then

/(x) = sup{/(y) : y < x} G M.

For α = 0, α-successor of successor or a limit, no problem.

For α -f 1, α limit, we are given antichains J£ C T<a for (n < ω) (by O^i

or 0^) and we can define Γ<α+ι (and hence /|T<cH_ι) such that

(*) if x G Tα, n < ω and {y G T<Q: : y < x} Π J^ = 0 then for some ?/ < x,

and ε > 0, /(y) < /(x) < /(T/) 4- ε, and there is no z, z G 1̂ , y < z G T<α and

Now T = Uα<ωι ^<Q: and / are defined in the end. Suppose J C Γ is an

antichain Now C = {a < ω\ : α limit, and if x G T<α,ε > 0, and there is

y G J, x < 2/,/(x) < /(y) < /(x) 4- ε then there is such y G T<a} is closed
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unbounded (note that it suffices to consider ε G {1/n : n positive natural

number }).

Now if a G C,IΠ T<a = 2£(0) G {J£ : n< ω}, α G rk(J) then by (*) we

get JΠ Tα - 0 (if y G I,y G Tα, by (*) we know {z : z < y} ΠZ£(0) 7^ 0; let 2

be in it, then z < y both in J, but J is an antichain).

Now by defining J£ using Oωι or <>*, we get (1), (2) and (3). D3.7

3.8 Claim. (0^) Let h be a function from ω\ to ωi. There is a tree Γ which

is /ii-special iff {i : h(ί) < hι(i)} contains a closed unbounded subset of ω\ (see

Definition 3.2(4)).

Proof. Similar to the proof of 3.7. Ds.8

3.9 Lemma. Let 5 C ω\ be stationary, and assume 0^ \$ hold. There is an

5 — si-special tree which is Si — st-special iff S\ \ 5 is not stationary; moreover

there is no antichain J, such that rk(I) \ 5 is stationary. (If S = ω\ we do not

need any hypothesis, 00 is meaningless anyhow and this is the classical theorem

on the existence of special Aronszajn trees of Aronszajn himself.) Also we can

make the tree such that it is not /ι-special for any h.

Proof. We define by induction on α < ωi, (T<Q,<T fT<α), and (/fT<α) :

Γ<α -> α x ωι\ such that x G T<a \ T0&rk(x) G S =» f ( x ) G rk(x) x α;;

x G TO => /(x) G {0} x ω = 1 x ω; rk(x) < α i \ S ^> f ( x ) G (rk(x) + 1) x ω

and x < y => f ( x ) ^ /(y), such that

(a) β G 5, x G Tβ => |/3 x ω \ {/(y) : T/ < x}| = K0, (if β is a non-limit ordinal

this holds trivially.)

(b) if x e Γ0./3 < 7 < α, {(ξ,n)}LU C ((/? + 1) x ω \ {/(z) : z < x}),

(£,n) ^ A and ^4 is finite, then there is y G T7 such that x < y and

{/(z) :z < y} Π A - 0 but {£, n) G {/(z) : z < y}.

We can demand

(c) if α is limit, α φ S and x G Ta then f ( x ) £ a x ω

and note that we have

(d) if α is limit, α G 5 and x G Γα tfien /(x) G (α x ω \ {f(z) : z < x}).
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We let Ta — [aω, (a -f l)ω) (so T has infinitely many minimal elements; we

can add a root). Let Pa C P(a) for α < ω\ \ S be countable such that

(Pa ' Oί < ω\ \ S) a witness for O^v^ Let us carry the definition.

Case 1: a — 1

<τf T<\ is the equality.

Let / f TO be any function from Γ0 to 1 x .ω.

Case 2: a limit: trivial.

Case 3: a = β + 2.

Let (Ax : x G Tβ) be a partition of T^+i = [(/? + l)α;, (β + 2)ω) to (pairwise

disjoint) infinite sets. Define the order on T<a by:

for x, y <E Γ<α :x <τ 2/ iff

y or (3z

: α = ί + 1, ί e 5 (5 limit).

As in the construction of special Aronszajn trees using (b) (and taking care of

it).

Case 5: a = δ + 1, δ <£ S (δ limit).

Let {Bn : n < ω} be a list of maximal antichains of T<£ including all maximal

antichains which belongs to P$. Let {(τn, kn) : n < ω} enumerate δ x ω.

Choose (βn:n< ω) such that /?0 = β,βn< βn+ι < δ and \Jn<ω βn = δ.

For each β <δ,x £Tβ and finite A C ((/? + 1) x ω \ {/(z) : z < x}), we choose

by induction on n,yn = yδ

n[A,x\, and εn = εn[A,x] such that:

(i) yQ = x, yn G Ten, τ/n <τ<ό 2/n+ι^ * > ^n > βn

(ii) >1 is disjoint to {f(z) : z < yn}
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(iii) let l(n) < ω be minimal such that:

(7*(n), **(n)> i {f(z) : z < yn} U A,

then (7*(n),**(n)) € (f(z) : z < yn+ι}.

(iv) either {z : z < yn+ι} Π B^ ^ 0, or there is no y € T<£ satisfying

2/n < J/, {/(*) : z < J/} Π A = 0, {z : z < y} Π Bδ

n ^ 0.

The induction step is by part (b) of the induction hypothesis.

Let ((x^β^Al) : i < ω) list all triplets (x,/3,A) as above (i.e. xf G

Tβ* , # < 5, A* finite C ((/3f + 1) x α; \ {f(z) : z < xf }).

Now we define

2/1 <τ<a 2/2

zjff for some /3 < 5, 2/1 <τ<β y2,
 or for some i < ω we have y2 = <W, Vn<α; 2/ι ^

y*[Af,xf] . Let f ( δ + i) = (5,0). It is easy to see that we finish this case, too.

So we have carried the inductive construction.

Now let us see that Γ = T<ωι = \Ja<ω T<a is as required (clearly

/ : Γ — > ω\ x ω). Being 5-st special is by the requirements

rk(x) G 5 => /(x) G rk(x) x α;

Now suppose Z C T is an antichain, 5ι = rk(Z) \ 5 stationary.

For each α G Si, let xa G 2", rk(xα) — α. Note: /(xα) = (o;, 0). Now, by the

definition of 0^\ 5, for some club C of ωi:

5 G C Π Si => {xα : α < 5 Π 5ι} G Pδ.

Choose <5(*) G C Π 5ι such that M$^ -< Mωι where for δ < ω\ we define

Ms = (T<δ, <τ<δ , f \T<δ, {xa:a&S1Γ\ δ}) .
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So {xa : a < ί(*)π5ι} G PS(*) hence for some n we have {xa : a < 5(*)(Ί5ι} =

Bn and for some i < ω we have xδ^ = ί(*) -f i. Now xδ^ (which is well

defined as ί(*) G Si) is in TδM and ymW[A?(*\z?w] <τ z*W.

As α € Si => /(xα) - (α,0), by the choice of y^l[A^(*\x^] (clause

(iv)) and by the choice of C

{z:z< y*(

+WU4W]} n {xα : α < <5(*)} ^ 0

contradicting {xα : α G 5ι} being an antichain. D3.9

3.10 Lemma. (0Wl) There is a special Aronszajn tree T, such that for no

antichain I C Γ is rk(J) closed unbounded. (For stationary: there is necessarily:

this is mentioned in Devlin and Shelah [DvSh:65] p. 25).

Remark. E.g., MA + 2*° > NI implies that this fails.

Proof. We define by induction on α, (Γ<α,<Γ |T<α) and / : T<a -> Q

monotonic, so that / 3 < 7 < α , x G T ^ , ε > 0 implies that for some y G TΊ

we have x < y & z f ( x ) < f ( y ) < f ( x ) + ε. For limit δ < ω\ we are given an

antichain Jα C T<α (by OπJ and demand that for x G Γα, either

or (Ξy < x) [there is no z, y < z G Ia, f ( z ) < f ( x ) G Q].

[How? For each y G T<δ and rational ε > 0, choose if possible, z = 2^

such that y <τ<δ z G Iδ, f ( z ) < f ( y ) + ε, if not let zyί£ = y. Let qyi£ =

f(zy,ε) 4- (/(y) H- ε - f ( z y t £ ) ) / 2 . So we can demand that for every x G Γ^ for

some y G Γ<5 and rational ε > 0 we have zy>e <τ<(6+1) ^ and /(x) = qy,ε }

The checking is easy. See the last two paragraphs of the proof of 3.7. ΠS.IQ

3.11 Lemma. T is {α + 1 : a < ωι}-special iff T is r-special.

Remark. Proved by Baumgartner [Bl].
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Proof. The direction <= already appears.

For => let / {a + I : α < ωι}-specialize T.

Let g : Q — » Q and ε : Q — > {1/n : n > 0 natural} be such that the

intervals [0(g) — ε ( q ) , g ( q ) + ε ( q ) ] are pairwise disjoint and g is order preserving

(possible: let Q = {qn : n < ω} and define f(qn)^ ε(qn) by induction on n).

Now define /* as follows: x G Tα+ι => f * ( x ) = g(f(x))

x G Γα,α limit => /*(x) - Sup{0(/(j/)) :y<x,y£ Tβ+ι,β < a} .

Now /* r-specializes T; the only point to check is:

x G Tα+ι,α limit =» flf(/(x)) > Sup{^(/(τ/)) :y<x,ye Tβ+ι,β + I < a}

which follows by g's definition (the sup is < g(f(x)) - ε(/(x)) as for every

y < χι #(/(x)) ^s smaller than it). Πa.n

§4. Independence Results

It is well known that

4.1 Claim. If Γ is an Ni-Souslin tree, λ > NI, N X (ίf(λ),€), ||-/V|| = KO

Γ G A^,x G TS, δ = α i Π AT Λen 5T(x) = {y G T<^ : y < x} is generic for

(T, TV), i.e., for every I £ N,I CT which is pre-dense in Γ, we have:

I n βτ (x) - J n TV n Bτ (x) + 0-

4.2 Definition. 1) For an Aronszajn tree Γ,

Q(T) = {(/ι, /) : h is a partial function from ω\ to ω\\

a < β & {α, β} e Dom(h) ̂  0 < α < /ι(α) < /3 <

/ is a finite function,
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Dθm(/) C Uα6Dom(/ι) Th(a) ',

x e Th(a) => f ( x ) e a x ω;

x < I/ & [a .y € Dom(/)] =}> f(x) φ f(y)}

The order on Q(T) is denned by (h,f) < (Λt,/*) if Λ C tf,f C

We let ' "

2) We say that T is (5, /ι)-st-specialized by / if: 5 is a stationary subset of ωi,

and /ι is a function from 5 to ωι satisfying (Vα € 5)(α < ft(α)) and ft is a

function with domain (J T^(α) satisfying
a£S

α € 5 & x G T α ^ > /(x) G a x ω and

α < β & x G TΛ(β) & j/ G Γh(/3) & x <τ ί/ => F(αr) ^ /(y).

So T is (S, Λ)-st-special if some / (5, /ι)-st-specialized it.

(Easily implies T is not Souslin.)

4.3 Definition. For an Aronszajn tree T and stationary set 5, Q(T, 5) =

{(Λ, /) : (Λ, /) € Q(T), and α G (Dom(Λ)) Π (S\ {0}) implies Λ(α) = a}, order

- as before.

Explanation. Our aim is to get a universe in which SH (Souslin Hypothesis)

holds (i.e., there is no Souslin tree) but not every Aronszajn tree is special. The

question was raised by Baumgartner Malitz and Reinhardt [BMR], and later

independently by U. Abraham, and is natural as, until now, the consistency

of SH was proved by making every Aronszajn tree special; see the proof of

Solovay and Tennenbaum [ST], Martin and Solovay [MS], Baumgartner, Malitz

and Reinhard [BMR] without CH, and Jensen proof in Devlin and Johnsbraten

[DeJo] with CH (and Laver and Shelah [LvSh:104] for N2-Souslin tree). For this

aim we have introduced in §3 various notions of specializations (each implying

the tree is not Souslin). So the program is to make every tree special in some

weaker than the usual sense. The notion r-special which had been introduced

by Kurepa [Ku35] is not suitable, as if every Aronszajn tree is r-special then
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every Aronszajn tree is special (see 3.6(2)). Similarly "ft-special" for any fixed

increasing h : ω\ —> ω is not suitable by 3.6(1) (see Definition 3.2(4)).

So a natural candidate is "/ι-special for some /ι" (i.e., for every tree there

is an h for which it is Λ-special). Forcing with Q(T) does the job for T -

we take generic h and /. (It would be more natural to let / go to Q and be

monotonically increasing, but by 3.5(2) the forcing Q(T) makes T ft-special

for some ft, and this way we have more uniformity with Definition 4.3.) So we

should iterate such forcings, but retain some T as not special.

A second way is to make each T S — si-special for some fixed stationary

5; for this Q(T, 5) is tailored. (Note that the / we get from a generic subset of

<2(T, S) has domain LLeSi ^« where S\Sι non-stationary.) For 5 — 0 we get

the previous case, so we shall ignore Q(T).

This leads to a secondary problem: Can every Aronszajn tree be Si — si-

special, but some Aronszajn trees are not 82 — si-special (Sz\Sι stationary,

of course)? We answer positively.

4.4 Claim. 1) For T an Aronszajn tree, 5 C ω l 5 Q(Γ, 5) is proper.

2) For T an Aronszajn HI-tree, and 5 C ω\ we have:

II-Q(T,5) "T is not Souslin tree, in fact for some

function h is (ωi, ft)-st-speciaΓ.

3) In part (2), if S is stationary then H-Q(T,S) "71 is 5-st-special".

Proof. We can assume w.l.o.g. |T0| = NO- Let λ > (2Kl), N ^ (jff(λ),e) be

countable, T, 5 G N, po = (ft, /) G Q(Γ, S) Π TV, and let δ = N Π ωl.

Then pl = ( h \ J { ( δ , δ ) } , f ) G Q(T,S) exemplifies what is required.

For checking, we really repeat the proof of Baumgartner Malitz and Rein-

hardt [BMR] that the standard forcing (now) for specializing an Aronszajn tree

satisfies the NI-C.C. (or read the proof of demand (iii) in the proof of 4.6 - it is

just harder).

2) Let h = \J{h : (ft,/) G Gg(τ>5)}, and C - Dom(ft) and / - |J{/ : (Λ '/) ̂
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GQ(T,S)}- We know (see III) that it is forced that C is a club of ω\, so T

becomes (C, /ι)-st-special.

3) Should be clear. 04.4

4.5 Definition. We call a forcing notion P, (Γ*, 5) -preserving (do you have

a better name?), where T* is an Aronszajn tree, S C ω1? if: for every λ >

(2lpl+Nι)+, (P,T*,S) G TV ̂  (H(X),e),N countable, 5 =f TV Π α i g 5 and

p G N ΓΊ P, there is pi which is preserving for (p, TV, P, T*, 5); i.e.,

(i) P<Pi£P,

(ii) pi is (TV, P)-generic,

(iii) for every x G T^, z/

(*) x G A -> (3j/ < x)(j/ G A) holds for every ACT*,A e N,

then

(**) for every P-name A,Ae N such that lhP "A C T*"

the following holds:

4.6 Lemma. If Γ*,T are Aronszajn trees, 5 C ω\, then Q(T,5) is (T*,5)-

p reserving.

Remark. If T* is Souslin tree then (*) from Definition 4.5 is satisfied by every

countable TV -< (#(λ), G) and x G Γ5* when TV Π ω\ = 5 (this follows by 4.1).

Proo/. Let P d= Q(Γ,5). Let TV X (JT(λ),€), J d= TV Π ̂  ^ 5, | |TV| | - N0,

{T*, T, 5} G TV hence P G TV, p - (Λ0, /o) € P Π AT (as in Definition 4.5.), and

(remembering δ - TV Π ωj let 5* = sup{/(J) + 1 : / G N , f ( δ ) is an ordinal

Define pi = (/ι0 LJ{(^^*)})/o)5 demands (i) of Definition 4.5 is trivial,

and demand (ii): its proof is easier than that of demand (iii), so let us check

condition (iii). So suppose x G Tg and

(*) if 4 C T * , A G T V , z G , 4 t h e n (3y)(y <τ
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Let A be a Q(T, S)-name of a subset of Γ*, and A G N. We shall prove

that for every p%,pι < pi G Q(Γ, 5), for some ^3,^2 < Pz £ Q(T,S), and

Pz Ih "x ^ A" or p3 Ih "y G A for some y <τ* x"

Let p2 = (/i2, /2), if P2 lt~p "̂  ^ ^4" , then we can choose pa = p2 Otherwise

there is p% G P, such that

lhP "

Let p^ - (4»/2 f)» ^ - P2llP2? where p5 - (/i^/2

α), ^2

^2 — ̂ 2^5 ^2 — ̂ Γl^^i) (closed open interval) and

Note that by the definition of Q(Γ, 5):

4.6A Fact.

(1) p ^ G P Π T V ,

(2) z G Dom(/|) => rkτ(z) > (5*.

Now let α0 = SupRang(Λ,2) (which is < δ) and we define a function F as

follows:

Dom(F) = {y G T* : rk(y) >τ

F(y) = Sup{α* < ωi : there is (*Λ|,*/|) (in Q(T,5)) such that:

(a)Min(Dom(*h|)) =

(c)

(so we demand also that (Λ§ |J *hξ, /f |J */|) is in Q(T, 5)).

Now clearly F G AT (as it is defined by a (first-order) formula in (if (λ), G)

whose parameters are in AT). Clearly F(y) < ω\ (for y G T* \ T<αo). Let

A* = {y G T* : rkτ*(y) > α0, F(y) - α i}. (Note that A* C Γ* is a set, not a

P-name of a set.).

Let F* be a function from ω\ to ω\ defined by:
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F*(α) - Sup{F(y) + 1 : y G T^rkτ*(y) > a0,y £ A*, i.e.,

As |T<J < NO, we have F* : α i — > α i, and clearly F* £ N (same reason).

By the definition of £*, F*(ί) < 5*. But (Λξ,/!) exemplify F(x) > ί*, so

necessarily F(x) = ωι. So by the definition of A* above x G A*. Hence by the

hypothesis (*) there is y <τ* x such that y G A" . So (in H(\), hence in TV) we

can define a sequence p = ((h^1 ', /2'*) : i < α i) such that:

(a)' Min(Dom(/i2'')) = rkτ*(y) > α0,

(by Λ

(c)' (

For i < δ let pj - (Λg |J ^2 U Λg1*, /2

α U /2 U /2

6'') If Pz £ Q(T> S) then by

clause (c)' and as y <τ x, this condition is as required.

Why can p\ be not in Q(T,5)? The first coordinate (h% (J h2 (J hb^) is

O.K., as h% C hb^ G N.

What about the second? Note that fξUf^fξUf^ are ° κ as Pi £

Q(T, 5) and by (c)7 above correspondingly. Hence the only danger is that there

are 2* G Dom(/|),z2 G Dom(/2

6ί<), z2 <τ zl (as /*'* G TV, τk(Zl) > hb

2(δ) = ί*

this is the only bad possibility).

But remember that in -ff(λ) we have z G Dom(/2'z) ^> rfc(z) > i, so by a

lemma on Aronszajn trees due to Baumgartner, Malitz and Reinhart (in their

proof of MA h "every Aronszajn tree is special" ) which appears in the proof

of III 5.4, there is a sequence (in : i < ω}(in < ωι) such that

m ^ n & Zl G Dom(/2)
6ϊ<TO &

So again there is such a sequence in TV, and all but at most |Dom(/2)| are O.K.,

i.e., p\ G <2(T, 5). So we finish. D4.6

4.7 Theorem. Let T* be a Souslin tree. Suppose Pa(ot < αo), QQ;(O: < QO)

form an Ki-free iteration (i.e., Pa+ι = Pa * ζ?α> -P* — Flίmα<α0^") anc^ ^or

every α at least one of the following holds:
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(α) Qα is (in yp«) (T*,S)-preserving,

(β) there is a P^-name 2a of an antichain of T* (in VPa), Sa == rk(Zα) C ωι\S

where rk(Jα) — (rk(x) : x G Jα}, and in VPθί:

9« = Qc/nfe(^i \ Sa) = {g : for some i < ωι, Dom(#) = i + 1, Rang(#) = {0,1},

{.7 < ϊ : #(0 — 1} is closed and is C α>ι \ 5α},

Then Pao is (T*,5)-preserving.

4.7A Remark. l)We can amalgamate conditions (α) and (β) but it has no

use.

2) See on such theorems in XVIΠ§3.

3) Note that the forcing notion Q(T, S) (T is an Aronszajn tree, 5 C ω\ co-

stationary) adds an antichain T of T such that rk(Z) \ 5 is stationary. This is

because by the proof of 4.4 H-Q(T,S) "{^ < ωi for some (/ι,/) € GQ(τts)ι we

have ί G Dom(/ι), ft(ί) = 5 e 5} is stationary" (together with Fodor's lemma).

Proof. We prove by induction on a < αo the following:

Θα Suppose β < a < a0, N ^ (fΓ(λ),e), β e N,a e N, (Pi : i < a) £ N,

δ = NΠωi £ S, pe PaΓ(N, qie Pβ, and

(i) (a) pί/3 < <?ι (natural meaning: no ς^, qι < q^ G P^ is incompatible with

p; if we deal with complete BA, p\β is the projection),

(b) Moreover, if p\β < p^ G Pβ Π TV, then q\,p^ are compatible;

(ii) ςf! is (AT, P^)-generic,

(iii) if x G T; and (VA C T*)(A G AΓ&x G A -> (3y < x)y G A) then for very

P^-name A G N, we have gi lhP/3 "x G A -> (3y <τ* x)y G A".

Then there is p\ G Pα such that

(i)' (a) pi \β = qι, p < p\ (natural meaning).

(b) \£p\a<p^ G Pα Π N then pι,pt are compatible,

moreover (this implies (a)+(b)): ifp\a < p^ G PαΠ7V, 91 < gf G P/3,pf Γ/3 <

ς^ tfiera pt,pi, ςt are compatible (= have an upper bound),
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(ii)' pi is (7V,Pα)-generic,

(iii)' the parallel of (iii) with β \-+ a, qι *-* pi.

Case 1. a = 0. Trivial.

Case 2. a + 1. By the similarity between the assumptions on q\ and the

conclusion on pi, we can assume w.l.o.g. β = a. Let G C Pa be generic over

V, qι e G. Then N[G\ -< (JEΓ(λ), G) (see III 2.11).

Now in V[G\ (hence in H(\)[G\) we can find in Qa[Gpa] a condition

Pi > p(a), which is (A^[G],Qa[G])-generic, as in Definition 4.5. Why?

Note that we can ignore (i)'(b), as we can take a disjunction over countably

many possibilities one for each r € N[G\, Pa+ι/G, r > p. More accurately,

maybe in Qa it does not exist, but we can make a trivial change in Qa to ensure

it, without affecting the iteration (in fact, the forcing notion we actually use

has such a condition anyway).

Now our proof splits according to which of the conditions (α) or (β) from

the theorem, Qa[G] satisfies.

(α) Straightforward, by Definition 4.5.

(β) By the choice of T* (a Souslin tree), by Claim 4.1 we have: [x G A e N and

x G T5* => (3y < x)y G -A]. So by the assumption on qι for every A G V[G], A C

T*, A G Af[G], of course there is a Pα-name A € N, A[G] — A\ now we know

Qι ll-pβ "* € 4 -> (3y < x)y G Λ", hence in V[G\,xe AΓ\T£ ^ (3y < x)y G A.

In particular, we can take A = Ia[G] G A^[G] (remember Ia[G] G FPα

and as (Pi : i < a) G N hence w.l.o.g. (/^ : j < α and if Q^ satisfies clause

(/?), /^ is as there, otherwise /^ = 0}). So clearly if x G Γ5* Γ\Ia[G] then

x G >1 implies Jα[G] is not an antichain, contradiction. So Γ5* Π I a [ G ] = 0, so

δ £ Sa[G] = rk(Jα)[G], and then the desired conclusion is quite easy (remember

Qα's definition).

So we have pi as required. Now p\ is in VPa, so in V we have a Pα-name pi

for it, and let pi = (^ι,Pι) G Pa * Qa which by the usual thing for composition

of forcing, is as required.
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Case 3. a limit.

Choose an for n < ω such that /? = QI < . . . αn < αn+ι < . . . αn G N and

We define by induction on n < ω,n > 1, qn G PQn, gn+ι fαn = <?n,

#ι is given and qn+ι is obtained from qn by the induction hypothesis, with

p, <?n, ςn+ι, αn, αn+ι here standing for p, q^p^a.β there.

Let {(An, xn) : n < ω) be a list of all pairs (A, x), where A is a Pα-name of

a subset of T*, x G Γ/ and A is in AT; let (Jn : n < ω) be a list of all pre-dense

subsets of Pα which belong to TV. Let

Pi=VΛ n 4nΛΛ n (V r ^ n nNθΛ Λn<JVίP ^ Pαntf :plh P α "y G An"

for some y <τ* £n} V \f{qn Λ l\r^jT : J' C N Π Pα,,7 is definable in

(TV, {y : y < x}) and ̂ n Λ f\r^r lhPα "xn ^ An"}].

There are two facts on pi we have to prove:

(A) Pl G Pα = Flim^jPi, i.e., f\i<a(^ θ(Pi] ¥ Pl (as clearly Pl has the

right form),

(B) (i)', (ii)7, (iii)' (of Θα above) hold.

For proving both facts we do the following. We assume everything is in

some countable transitive model M (or M => V, V => V* , in V * we have

|ίf(λ)v| is countable which is easy by forcing).

Let pt ,<?t be as in (i)7 (the "moreover" version).

We let Gαι C Pαι = P^ be generic (i.e., M-generic) such that p^\β, q^ G

Gai

We shall find Ga^ C Pα(#) such that for each n the set Gα(slc) Π PQ:̂  is

generic (for (M, Pαn)), and the truth values it gives to all p G \Jn<ω Pan make

Pi Λp^ true (so we have, in V, a model exemplifying Λΐ<α(*) ^1^1 ̂  "'(Pi ΛP^)

(-fact (A)), andGαι C Ga(^.

As for fact (B), clause (B) (ii); holds trivially by the definition of pi (i.e.,

Λn(Vr€Jn r)) Similarly the last conjunct takes care of (B) (iii)'.

The "moreover" phrase of (B) (i)' holds by the free choice of p^q^ (and

the way C?αι,Gα(#) are chosen), hence p\\β = q\\ the other inequality follows

by pi's definition. So it is enough to find Gα(*).

We define by induction Gan,pn such that (as in the proof of 2.2):
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(1) Gan C Pan,Gan C Gan+1j

(2) Gan is PQτι-generic over M,

(3) pn < Pn+l,PO = P^Pn G Pα Π W,

(4) pn is compatible (in Pa) with every member of G0ίn^qn G Gttτι,

(5) p3n+ι is > ςft for some ς£ e Jn Π N,

(6) psn+2 f- AΦn or psn+2 ' — ' f n for some τn G Φn, where (Φn : n < ω) is a

list of all countable Φ C Pα, Φ G A/',

(7) in M[GαJ for every A G W[GαJ, A C Γ* we have [x G T5* &x G A -*

(3y < x)y G A] holds (^n G Gan do the job),

(8) PSn+3 Il-Pβ "(3y < Xn)y € An" OΓ p3n+3 Λ Λr€j7 Γ lhPα "^ ^ 4n" , for

some J", such that ^7 C Gα τ ι_1 5 and J' is definable in (A/", {y : y <^* xn})

(remember {(An, xn) : n < ω} list the pairs (A, x), A G N a Pα-name of a

subset of T*, and x G T£.)

As in the proof of 2.2, this suffices [for J as in (8), use the conjunct

corresponding to J U {p3n+3J in p\\. The only nontrivial part in the definition

is taking care of (8). So let n = 3k + 2,pn, Gαn, be defined, and we shall define

pn+ι,Gan+ί. We define:

Al = {y G T* : there is r G Pα,r > pn, which is compatible with every

member of Gan(— the name of the generic subset of Pan) such that

HhPα «yeAk

n}.

Clearly A\. is a Pατι-name (as we use GOLn in the definition but not Gan+ι)

and if pn fαn < r G PQ,̂  then:

(*) r Ihp^ "y φ A\n implies r Λp n lhpατι "y £ A f c".

However the inverse implication does not follow. Now if we can choose pn+ι>

such that pn < pn+ι G Pa Π Ar,pn+1 compatible with every member of Gan

(equivalently of Gan Π N) such that pn+i lhpα "y G Afc" for some y <τ* X f c 5

then we can proceed to define Gan+1 with no problem.
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So we assume that there is no such pn+ι and let pn+ι — pn. Let

J = {-πr : r G Pan Π N , r lhpβn "y G A[n for some y <τ* xk}.

Clearly J is definable in (N, {y : y <τ* Zfc}), J C Pttrι Π AT, and J C Gttτι (as

if (-<r) G JΓ, (~τ) ^ Gατι then r G <jατι so we would not have arrive here), and

Pn < Pn+1 € Pa Π N and pn+ι G Pa/Gaτι so it is enough to prove

(**) Pn Λ tfn Λ Λr(E^ r !hpα "Xfc ^ Ak".

Now Aj. is a Pατι-name of a subset of T* (and it belongs to JV), so by the

choice of qn:

qn ll-pβn "a* € ̂  -> (3y <τ* χ*)y e ̂ ".

However for each y <τ* Xk,

Jy = {re Pan : r lhpaτι «r G ̂ " or r \^Pan "y ^ 4"}

is a dense subset of POLn which belongs to N hence Jy Π AT is pre-dense above

gn (in Pttn) (as y G A/"). So qn forces that if y G ̂ (y <τ* Xfc) then some

r G v7y Π AT is in the generic subset of P0ίn ) and r ll~pαn "y G A*k". Hence

Qn Λp n G Pα forces that: if xk G A^, then necessarily x^ G AJ[ (see (*)) hence

some y <τ* ^/c is in A£. Hence some r G J^ Π AT for which r IHpαrι "y G A\." is

in the generic set , and clearly -ir G J'. So clearly (as pn G ,7) gn Λpn Λ Λr€s7 r

forces that: x/e G Afc leads to a contradiction (as r and -«r are incompatible)

so it forces x^ ^ A^ i.e. (**) holds as promised, so we have succeeded to define

Pn+ι — PS/C+S as required. There is no problem to define Gan+l, so we finish

proving (8) hence the theorem. U4.7

4.8 Conclusion. Assume 5 C ω\ is co-stationary. For some forcing notion P,

not collapsing NI, in Vp we have: every Aronszajn tree is 5 — si-special, but

some Aronszajn tree T* is not 5* — si-special for any 5* C ω\ \ S stationary,

moreover for every antichain X of T*, rk(T) \ 5 is not stationary. Also there is

no Souslin tree. Assuming 2^° = 21*1, 2Kl = ^2 we have: P is proper ^2-c.c. of

cardinality ^2-
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Remark. S is co-stationary - otherwise it is not interesting, but there is no

other restriction e.g. 5 may be empty. See more 4.9(2).

Proof. Trivial by the previous Theorems 4.6, 4.7, but note that for ensuring in a

transparent way that T* remains an Aronszajn tree we would start the iterated

forcing by Q(T*, S). As for the K2-chain condition, see VIII §2. Remember also

that our forcings are proper and proper forcings preserves stationarity of subset

of ω\ (see III). In more details, by some preliminary forcing without loss of

generality V \= "0^ + 2*1 = K2" and let T* be a Souslin tree. We can define

an Ni-free iteration (Pi, Qj : i < ω2, j < ω2) as in 4.7, such that:

(a) g0 = Q(T*,S)

(b) each Qa satisfies one of the following:

(α) Qa is proper and (T*, 5)-preserving of cardinality NI.

(β) for some P^-name of an antichain Ia of T*, rk(Jα) Π S = 0 and

Qa = Qc\ub(ωι \ rk(Jα)) = {g : for some i < ω\ g is a function from

i + 1 to {0,1}, g~l({l}) closed and included in ω\ \ rk(Jα)}.

(c) for every 7 < u;2 and P7-name I of an antichain of T* such that \\-py

"rk(Jα) Π S = 0", for some β < ω2, Iβ = I (and 7 G (/3,ω2) and

\\-pβ "Qβ = Qciub(ωι\τk(ir).

(d) for every 7 < ω2 and P7-name T of an ωi-tree for some β < α;2 we have

"~p/32 "Q0 = Q(Tβι S)ι Tβ is an Aronszajn tree, and if T is an Aronszajn

tree (in Vpβ) theπTβ = T".

Now:

(i) Pa (and Pa/Pβ for β < a) is 5-proper [Why? as in both cases in (b), Qa

is iS-proper]

(ii) Pa is (Γ*,5)-preserving [Why? By 4.7].

(iii) Pa does not collapse KI [Why? By (ii) as S C ω\ is co-stationary.]

(iv) in VPa (if α > 0) T* is an Aronszajn tree [Why? Q0 ensures it: if h* =

(J{h : (3f)((h,f) 6 GQo}}, f* = U{/ : (3Λ)[(Λ,/) € GQo]}, Dom(Λ*) =

{a(j) '• J' < ωι} is increasing and continuous (by density) we have: /* is a

function with domain Ui<ωι

 Th (<*(i)) and x G Th*(a(i)) ̂  ̂ (x) G α(*) x ω»
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[x G Dom(/*)&y E Dom(/*)&x <τ* y =» f * ( x ) ^ /*(!/)] and i e 5 =*

Q/(Ϊ) = i on 5. So by Fodor's lemma, T* has no uncountable antichains).]

(v) We can define (Pi,Qj : i < ω%,j < ω^} to satisfy condition (a), (b),

(c), (d). [The least trivial point is to ensure an instance of condition (d),

given by the bookkeeping, which is fine as for Aronszajn tree T, Q(Γ, 5)

is proper (by 4.4.) and (T*, 5)-preserving by (4.6). We succeed in having

the bookkeeping as 2Hl = ^2-]

(vi) Pω2 satisfies the ^2~c c [Why? As in III, using "(T*,5)-preservance" here

similarly to the way we use "5-properness" there. Remember we have

assume V N <>KI hence 2H° = NI ]

(vii) Pω2 collapses no cardinal and changes no cofinality.

(viίi) in VPω*, T* is 5-sί-special [Why? use Qo]

(ix) in VPωι, for every antichain J of T*, rk(I) \5 is non-stationary (remember:

rk(J) - {rk(z) : x e I}) [Why? by condition (c)]).

(x) in VPω2, every c^i-Aronszajn is 5-sί-special [Why? By clause (d) and the

definition of Q(Γ, 5)]

(xi) in VPuΊ there is no α i-Souslin tree provided that [Why? By 3.4(1) and

clause (x) above when S is stationary or 4.4(2).]

(xii) Pa preserve stationarity of subsets of α i, moreover is proper. [Why? It is

(α;ι\5)-proper by its being (Γ*, 5)-preserving clause (ii), and it is 5-proper

by clause (i)]

Putting together (i)—(xii) we have clearly finished. U4.8

4.9 Concluding Remarks.

(1) We can ask: can we do it with G.C.H. and can we get independence of other

variants of "every Aronszajn tree is non-Souslin, special, etc." but we have not

tried. For G.C.H. it is natural to use a variant of the forcing used in V §6 for

the consistency of G.C.H. + SH with ZFC.

(2) By the definition of the forcing Q(T, 5); and by 3.5(2) (applied to an almost

subtree), in 4.8 we get that every Aronszajn tree is 5^-special for some S^ (the

range of the generic /ι). So for S empty, we get: every Aronszajn tree is S^-
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special for some S^ (equivalently ft-special for some h : ω\ —•> ω\) but some tree

is not 5* — si-special for any stationary S* C,ω\.

(3) Note that case (/?) in 4.7, is needed for the part of conclusion of 4.8

saying: for no antichain X C T* is rk(J) \ S stationary (we are adding a closed

unbounded subset of ω\ disjoint to any such rk(2") \ 5). Waving this we can

omit (β) in 4.7.

(4) Abraham noted that "T is ft-special for some ft" is equivalent to "T is 5 —r-

special for some closed unbounded S C ω\\ Note that we can define S — P-

special for every partial order P, and if c^ G P(i < ω\) implies (3i < j < ω\)

Oίi < OLj then "T S - P-speciaΓ implies "T is not Souslin". Note also that
11S — r-special for some closed unbounded 5" implies ω\ — M x Q-special [R-

reals, Q-rationals, the order-lexicographic]. So we have proved, e.g., "every

Aronszajn tree is ω\ — R x Q special" does not imply "every Aronszajn tree is

special".

(5) We can also try to get a model of ZFC where, e.g,

(A) (for some stationary co-stationary S C. ωι) every Aronszajn tree is

S — si-special, but some Aronszajn tree T* is not ft-special for any ft;

or

(B) there is no Souslin tree but some Aronszajn tree is not /ι-special for

any h.

For (A) it is natural to define Qf(Γ,5) = {(ft,/) : (ft,/) <G <2(Γ,S),

Dom(/) C U/ι(cθ=α^cJ ^ut ^ ^s tne uni°n of ^o disjoint copies of T*, so

Q(T, 5) cause "T* is ft-special for some ft".

(6) We can generalize Definition 4.5. Let M = (Ma : a < ωι) be a sequence of

countable models, the universe of Ma is 7^, 7α(α < ωι) increasing continuous,

and let φ(x, y, U) be a quantifier free formula, where x, y are individual variables

and U is a monadic predicate. We call a forcing notion (M, </?)-preserving

if for λ large enough and N a countable elementary submodel of (jff(λ),£),

P G 7V,p G TV, there is # > p which is (N, P)-generic and, letting δ = N Π ω\\
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if x e Mδ+ι and (MA G N)(3y G Mδ)φ(x,y, A)

then

q Ihp "(VΛ 6 ΛΓ[G])(3y 6 Mδ)φ(x,y,A).

(7) Note that if a(i) < ω\ is (strictly) increasing continuous in i, T is an ω\-

tree, /ι is a function, Dom(fr) = U«ω^α(<+i)> [χ e ^a(t+i) =^ ^(x) < a(0 x ]̂

and /ι(x) = h(y) =Φ -«(x <τ y), ί/ien there is /ι* : \Ji<ω Tα(ί+i) —> Q such that

(*) x,y € Dom(/ι*)&£ <τ y => /ι*(x) ^ Λ*(τ/) and even (^lί)"1" x, 2/ G

Dom(/ι*)&x <τy=> h*(x) < h*(y).

The proof with (*) is similar to the proof of 3.5(2). So to derive (*)+ first prove

with (*) and then use 3.5(1).




