
PartE

Logics of Topology and
Analysis

This part of the book is devoted to logics which presuppose different kinds of
structures than those underlying first-order logic and its extensions so far dealt
with in Parts B, C and D.

Chapter XIV is about logics where the underlying structure is a probability
space, a structure with a countably additive probability measure. In addition to
the usual propositional operations, the basic form of quantification is given by
allowing formulas

(Px > r)φ{x\

which means that the probability of the set {x: φ(x)} is at least r. Structures take
the form of probability spaces with countably additive measures. To have a
successful theory here a number of changes in perspective must be made. In the
first place, one must arrange things so that all definable sets are measurable. As a
result, the logics considered here are not closed under the usual quantifiers V and
3. Consequently, these logics do not contain first-order logic, nor do they satisfy
all the assumptions on logics given in the general definition. They also have model-
theoretic properties that have no first-order analogue, like the Law of Large
Numbers.

While the lack of ordinary quantifiers entail a loss in expressive power, we can
compensate for that, in part, by the use of countable conjunctions and disjunctions,
as in i ? ω i ω , since such operations preserve measurability (due to countable
additivity of probability measures). Expressed in terms of admissible sets, one
finds the appropriate forms of completeness and compactness results. Interestingly,
there is also an analogue of the Robinson consistency property, which fails for
ifωiω. This chapter should be read after reading the relevant sections of Chapter
VIII.

In his retiring address as president of the Association for Symbolic Logic in
1972, Abraham Robinson (Robinson [1973]) asked what logic for topological
structures was the analogue of first-order logic for algebraic structures. Chapter
XV presents the work that has gone into this problem. Obviously the structures
to be considered are of the form (SOΪ, τ), where τ is a topology on the domain of the
first-order structure 901. Examples include topological space, topological groups,
and topological fields. It has taken a lot of effort to arrive at what appears to be
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the right answer to Robinson's question. The chapter begins by describing three
of the logics for such structures that have been studied: Jδf (/"), logic with the interior
operator, j£?mon, a version of monadic second-order logic but where the set quan-
tification is taken to be only over open sets, and a sublogic of this, i f \ where such
second-order quantifiers are restricted in a certain way. The logic t£ι is stronger
than i f (/") but weaker than ifmon. Chapter XV presents results and arguments to
support the claim that 5£ι is the solution to Robinson's problem by being the
"right" analogue of first-order logic for topological logic. Unlike J?mon, if' (and
a fortiori, its sublogic £?{!")) is compact, has the Lδwenheim-Skolem property
and has a completeness theorem. However, unlike 3?(Γ\ 5£ι allows one to express
continuity, surely a desirable property for the logic of topology.

The logic <£x also satisfies the interpolation property, a result which leads to a
persuasive analogue of Lindstrom's theorem: t£x is the strongest logic for topological
structures which is compact and has the Lδwenheim-Skolem property. The chapter
concludes with some applications of the theory to specific topological theories,
including the theory of abelian Hausdorff groups, the theory of the complex num-
bers as a topological field and topological vector spaces. (The reader may find
this chapter is rather dense, but it repays study.)

Chapter XVI presents some previously unpublished work on the logic of
Borel structures, due largely to Harvey Friedman. Friedman's basic idea is that
while there are some very pathological sets and relations of real numbers, the
collection of Borel sets and relations is much better behaved. Why not restrict
attention to structures on the reals that are Borel and study the resulting logic? A
Borel structure is one whose domain is a Borel subset of R and whose relations
and functions are all Borel. Given a logic 5£, a structure is totally Borel for 5£ if all
relations definable using if-formulas are Borel.

Thus, whereas an essential feature of the other logics discussed in this part is
the structures they consider are richer, the logics studied here are richer in that
their structures are constrained to be totally Borel. The chapter applies the notion
to two different logics, ^(Q, Qm) and ^(Q, Qc) where Q is "there exist uncountably
many," Qm is "there exist a set not of measure 0" and Qc is "there is a set which is
not meager." For example,

QmχQmyΦ(χ, y) <-* QmyQmχφ(χ> y)

expresses a version of the Fubini theorem, which is true of all totally Borel struc-
tures for ^(Qm). The main results of Chapter XVI are abstract and concrete
completeness theorems for the logics ^{Q, Qm) and ^(Q, Qc) relative to the
collection of totally Borel structures. These logics are less well known but seem
very interesting in their potential applications and because they represent a really
different direction in the study of extended logics.



Chapter XIV

Probability Quantifiers

by H. J. KEISLER

In this chapter we develop logics appropriate for probability structures, these being
first-order structures endowed with a probability measure on the universe. We
consider logics having the property that in every probability structure, every
definable set is measurable. The price for this is high: The logics do not have the
ordinary quantifiers Vx and 3x. Instead, they have probability quantifiers and
countable conjuctions. The main probability logic LA P satisfies the Barwise
completeness and compactness theorems, but does not satisfy unitary compactness.
In spite of this, however, this logic does possess the Robinson consistency property.
And it also has model-theoretic properties with no first-order analog, such as the
law of large numbers, a principle that is presented in Section 3. In Section 4 we will
study logics for richer structures with conditional expectations. This development
will lead to a model theory which is closely tied to current research in stochastic
processes and which has applications to stochastic differential equations.

1. Logic with Probability Quantifiers

In this section we will introduce the logic LA P, which is quite similar to the in-
finitary logic LA except that instead of the ordinary quantifiers (Vx) and (3x),
the logic LA P possesses the probability quantifiers (Px > r). A structure for this
logic is a first-order structure with a (countably additive) probability measure on
the universe, such that each relation is measurable. The formula

(Px > r)φ(x)

means that the set {x | φ(x)} has probability at least r. Axioms and rules of inference
appropriate to our investigation will be presented in this section. The following
sections will then examine the subject in more detail.

LI. Syntax

1.1.1 Convention. We will assume throughout this chapter that A is an admissible
set (possibly with urelements) such that ω e A, and each a e A is countable (that is,
A ^ HC, where HC is the set of hereditarily countable sets).



510 XIV. Probability Quantifiers

We refer the reader to Chapter VIII of this volume for a detailed treatment of
admissible sets and the infinitary logic L A . Briefly, however, we note that the set of
formulas of L A is the set of all expressions in A that are built from atomic formulas
using negation ~i, finite or infinite conjuction, and the quantifier (Vx).

1.1.2 Definition. We will assume throughout our exposition that L is a countable
A-recursive set of finitary relation and constant symbols (no function symbols).
The logic L A P has the following logical symbols:

(a) A countable list of individual variables vn, for n e N.
(b) The connectives ~ι and /\.
(c) The quantifiers (Px > r), where x = < χ l 5 . . . , xπ> is a tuple of distinct vari-

ables and r e A n [0, 1],
(d) The equality symbol = (optional).

1.1.3 Definition. The set offormulas of L A P is the least set such that:

(a) Each atomic formula of first-order logic is a formula of L A P .
(b) If φ is a formula of L A P , then -η φ is a formula of L A P .
(c) If Φ e A is a set of formulas of L A P with only finitely many free variables,

then ΛΦ is a formula of L A P ;
(d) If φ is a formula of L A P and (Px > r) is a quantifier of L A P , then (Px > r)φ

is a formula of L A P .

It is understood that the formulas are constructed set theoretically so that
L A P c A. We denote L A P where A = HC by L ω i P . Thus,

L A P = A nLωιP.

The notions of free and bound variables are defined as usual, with the quantifier
(Px > r) binding all the variables in the tuple x.

The equality relation plays only a minor role in the logic L A P , a fact which
stems from the absence of the universal quantifier and of function symbols.

1.1.4 Definition. It is convenient ot use the following abbreviations in L A P :

(i) (Px < r)φ for ~i (Px > r)φ.
(ii) (Px < r)φ for (Px > 1 - r) ~ι φ.

(iii) (Px > r)φ for ~i (Px > 1 - r) ~i φ.
(iv) \JφeΦ ψ for -l f\φeφ -i φ.
(v) The finitary connectives Λ , v ,-•,<-• are defined as usual.

The quantifier (Px > 1) is a weak analog of (Vx), while (Px > 0) is a strong
analog of (3x). In principle, it would be possible to make do with the one-variable
probability quantifier (Px > r) alone and introduce the π-variable quantifier
(Px > r) as an abbreviation. However, this abbreviation would be quite compli-
cated, and it is simpler to include (Px > r) explicitly in the language.



1. Logic with Probability Quantifiers 511

1.2. Probability Models

We will begin with some very basic notions from probability theory. First, a
finitely additive probability space is a triple <M, 5, μ> where S is a field of subsets of
M, μ: S -* [0, 1], μ(M) = 1, and for X, Y e S,

μ(X u Y) = μ(X - Y) + μ(Y - X) + μ(X n Y).

The sets X e 5 are μ-measurable, and μ is called a finitely additive probability
measure on M. Next, we say that <M, S, μ> is a probability space if, in addition, 5
is a σ-field and μ is countably additive; that is, whenever X o ς= Xi ^ in S, then

(J Xπ j = lim μ(Xn).
n / n

In this case, μ is said to be a probability measure on M. We emphasize that "prob-
ability measure" without an adjective will mean "countably additive probability
measure."

A set X is said to be a null set of μ if there is a Y 2 X with μ( Y) = 0. The product
of two probability spaces <M, 5, μ> and <JV, T, v> is the probability space

<M x N, S (x) T, μ (x) v>,

where 5 ® 7 is the σ-algebra generated by the set of measurable rectangles
X x Y, with X e S, Y e Γ and where

(μ®v)(X x Y) = μ(X) v(Y).

The n-ΐold product space is denoted by (M", Sn, μn).
In general, the diagonal set

{(x, x}:xeM}

is not μ2-measurable. However, if each singleton is measurable, then there is a
canonical way to extend the product measure to the diagonal. In the case that
every singleton has measure zero, the diagonal is given measure zero. In general,
however, only countably many singletons have positive measure, and the measure
of the diagonal is the sum of the squares of the measures of the singletons.

1.2.1 Definition. Let <M, S, μ> be a probability space such that each singleton is
measurable. Then, for each n e M, we have that <M", S(n\ μ(w)> is the probability
space such that S(n) is the σ-algebra generated by the measurable rectangles and the
diagonal sets

and μ(M) is the unique extension of μn to S{n) such that

xeM



512 XIV. Probability Quantifiers

In the sequel, we will use A Δ B for the symmetric difference of the sets A and B.
The above ideas clear, we will now consider

1.2.2 Proposition. // <M, S, μ> is a probability space such that each singleton is
measurable, then the measure μ{n) on S{n) given in Definition 1.2.1 exists and is unique.
Moreover, for each set X e S(n) there is a μn-measurable set U such that μ{n)(X Δ U)
= 0.

Proof. We will give the proof in the case n = 2. Here, S ( 2 ) is the set of all sets X c M 2

of the form

X = (YnDί2)u(Z-D12), Y,ZeS2.

Let v: S{2) -+ [0, 1] be defined by

v(X)= Σ μ{{x}f + μ\Z) - £ μ({χ})2.
<jc,x>ey <x,x>eZ

Then v = μ(2) is the unique countably additive probability measure on S ( 2 ) which
extends μ2 and satisfies

(1) v(D 1 2)= Σ M W ) 2 .
xeM

Finally, let E = {<x, x ) e D 1 2 : μ({x}) > 0} and let U = (Y n E) u (Z - £). Since
E is countable and each singleton is measurable, E and hence U are μ2-measurable.
Also, v(D1 2 - £) = 0, and X AU ^ D12 - E, whence, we have that v(X AU) = 0.

D

We are now ready to define a probability structure for L, where L is a set of
nΓplaced relation symbols Rh for ί e /, and constant symbols cj9 for; e J.

1.2.3 Definition. A probability structure for L is a structure

where μ is a (countably additive) probability measure on M such that each singleton
is measurable, each Rf is μ(Πi)-measurable, and each cf e M.

1.2.4 Theorem. Let Jt be a probability structure for L. The satisfaction relation
Jί 1= φ[α], for φ(x)eLΆP and α in M, is defined recursively exactly as for L A

except for the following quantifier clause:

Jt 1= (Py > r)φ(x, y)[fl] iff { 5 e M " : J μ φ[α, δ]}

is μ(n)-measurable and has measure at least r.

Moreover, Jί is a mode/ of a sentence φ\iJί\=φ.
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1.2.5 Theorem. For each probability structure Jί, formula φ(x, y) e L A P , and tuple
a in M, the set {beMn:Jί \= φ[a, δ]} is μ{n)-measurable. D

This theorem is needed to show that the satisfaction relation has the intended
meaning for L A P , and its proof follows easily by induction from a "diagonal" form
of the Fubini theorem. A function f:M -• R is μ-measurable iϊf~1(— oo, r] is
μ-measurable for each reU.

1.2.6 Fubini Theorem. Let μ be a probability measure such that every singleton is
measurable, and let B c Mm + n be μ(m+n)-measurable. Then

(i) Each section B^ = {ye Mn: xy e B} is μ(n)-measurable.
(ii) The function /(3c) = μ(n)(BΊ) is μ{m)-measurable.

(iii) We have μ{m+n)(B) = J f(x) dμ{m). D

The proof here is exactly like the proof of the usual Fubini theorem for product
measures. Theorem 1.2.5 would fail if we were to include both the universal
quantifier and the probability quantifiers in the language, because projections of
measurable sets need not themselves be measurable.

The model-theoretic notions of isomorphism, LAP-equivalence, and LA P-
elementary substructure are defined as one would expect, and are respectively
written as Jί ^ Jf> Jί =AP Jf, and M <;A F Jί.

1.3. Examples

The following examples of sentences of L A P indicate the expressive power of the
language.

(1) "There is a countable set of measure one" is expressed by:

(Px > l)(Py > 0)x = y.

(2) "There are no point masses" (that is, there are no singletons of positive
measure) is expressed by:

(Px > l)(Py > l)x Φ y.

Every model of this last sentence is uncountable. In the class of structures with
no point masses, every sentence of L A P with equality is equivalent to the sentence
without equality that is obtained by replacing vn = vn by "true," and vm = vn by
"false" \imφ n.
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(3) The reader can check that no two of the sentences

(Px > \)(Py > i)K(x, y),

and

P(xy > £)Λ(x, y\

are equivalent. (Consider structures with three elements of measure ̂ .)
A measurable function X: M -• IR is sometimes called a random variable. By

the Fubini theorem, each binary relation R(x, y) in a probability structure Jί
induces the random variable X(u) = μ{v\R(u,v)}. In the following examples,
let the language L have binary relation symbols R, Rn, neN, and denote the
corresponding random variables by X, Xn9 n e fU

(4) The condition X(u) > r is expressed by:

(Pυ > r)R(u, υ).

(5) \Xι(u) — X2(
w)l < ^ is expressed by:

κ) > 9 ^ ^ 2 ( M ) > ^ - r) Λ (X 2(II)
qeQ

> q —• X\{u) > q — r).

(6) Xn -> X almost surely (a.s.) is expressed by:

(Pu > 1) /\ V /\ \Xk(u) - X(u)
n m k>m

(7) Xn -• X in probability is expressed by:

Π m k>m

(8) ΛΊ and X2 have the same distribution is expressed by

Λ Λ (Pu ^ f ) ( x i (") ^ 9) ++ (Pu ^ r){X2{u) > q)
qeQ reQ

(9) Xγ and X2 are independent is expressed by

Λ Λ (Pu ^ ^ i ( w ) > ^ Λ (Pw > fe)ΛΓ2(M) > r

-• (Pu > abXX^u) >q Λ X2(u) > r),

and similarly with (Pu <) in place of (Pu >).
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(10) 1/X(u) is integrable is expressed by

-π Λ V A(Pu>sk)\X(u)\<l.
+sn>m k = ί

1A. Proof Theory

LA P has the following set of axioms, where φ eLAP and r , s e A n [ 0 , 1]. All but
the last axiom B4 are in Hoover [1978a, b].

1.4.1 Definition. The Axioms for weak LA P are as follows:

Al. All axioms of LA without quantifiers.
A2. Monotonicity:

(Px > r)φ -> (Px > s)φ, where r > s.

A3. (Px > r)φ(x) ̂  (Py > r)φ(y).
A4. (Px > 0)φ.
A5. Finite additivity:

(i) (Px < r)φ A (Px < s)φ -> ((Px < r + s)(φ v φ));
(ii) (Px > r)φ A (PX > s)ψ A (PX < 0)(φ A φ) ̂  (Px > r + s)(φ v φ).

A6. The Archimedean property:

(Px > r)φ +-> V (Px > r + - ) φ

1.4.2 Definition. The axioms for (full) LAP consist of the axioms for weak LA P plus:

Bl. Countable additivity:

Λ (^* > r)Λψ-* ( p * ^ r)Λφ>
ψcφ

where Ψ ranges over the finite subsets of Φ.
B2. Symmetry:

( P x ! xn > r)φ ++ ( P x π l --xm> r)φ,

where π is a permutation of {1,..., n}.
B3. Product independence:

(Px > r)(Py > s)φ -» (Pxy > rs)φ,

provided all variables in x, y are distinct.
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B4. Product measurability: For each r < 1,

(Px > l)(Py > 0)(Pz > r)(φ(xz) <-+ φ(yz)),

provided all variables in x, y9 z are distinct.

The central purpose of Axiom B4 is to guarantee that φ(x, y) can be approxi-
mated by a finite union of measurable rectangles. It is obviously valid if φ(x, z) is a
"rectangle" φ(x) A Θ(Z). We will see later on that it is valid in general (the Sound-
ness Theorem).

1.4.3 Definition. The Rules of Inference for L A P are as follows:

Rl. Modus Ponens:

φ,φ-+ψt- ψ.

R2. Conjunction:

R3. Generalization:

φ -> φ(x) μ φ -> (Px > l)ψ(x),

provided x is not free in φ.

1.4.4 Definition. The notion of a deduction of a formula ψ from a set of sentences
Φ, and the expressions

Φ h- Φ, hψ, Φ \= φ, \=Φ

are defined in the usual way. A theorem of L A P is a sentence φ such that f- φ.

1.4.5 Deduction Theorem, /π either L A P or ŵ α/c L A P , ifφ is a sentence and Φ u
{φ} μ θ, ί/zerc Φ h f - ^ θ .

1.4.6 Proposition. T/ze following are theorems of L A P , and their proofs do not
require use of Axiom B4:

(i) (Px < l)φ.

(ii) (Px > r) V Φ ++ V Ψ ^ Φ (P* > r ) V ψ> w f e r ^ ψ is
(iii) (P3c > r)φ ̂  Λ« (Px ^ r " V")φ
(iv) (Px < £i)φ(x) Λ (Py < b)φ(y) -> (Pxy < αfo)(φ(x)
(v) (Px > r)φ(x) ^ (P3cy > r)φ(x).

(vi) (Pxy > a + b - αfo)φ -• (Px > a)(Py > b)φ.

Taking a = b = 1:

(vii) (Px > l)(Py > \)φ+->(Pxy > ί)φ D
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1.4.7 Theorem (Soundness Theorem). Any set Φ of sentences o / L A P which has a
model is consistent.

Outline of Proof. As usual, to prove the soundness theorem it suffices to show that
each axiom is valid and the rules of inference preserve validity. The only difficulty
lies in checking the validity of the product measurability axiom, (Axiom B4).
In view of part (iii) of Proposition 1.4.6, it suffices to show that for each q, r < 1,

(Px > q)(Py > 0)(Pz > r)(φ(xz)^φ(yz))

is valid. This can be proven by use of the Fubini theorem, Proposition 1.2.2, and
the direction (ii) implies (i) of the following lemma. D

1.4.8 Lemma. Let μ, v, and λ be probability measures on M, JV, and M x N such that

μ (x) v c X. Let U be λ-measurable. The following are equivalent:

(i) For every ε > 0, there is a finite union B of μ ® v-measurable rectangles

such that λ(U A B) < ε.
(ii) There is a μ (x) v-measurable set C with λ(U A C) = 0.

Idea of Proof From (i) to (ii), we may take C to be a limit of the B's. We then use
the monotone class theorem to show that for each μ ® v-measurable U, (i) holds.
It then follows at once that (ii) implies (i). •

Remark. D. Hoover has pointed out the curious fact that the logic L A P is equivalent
to the richer logic on L with ord(A) variables, which allows formulas with A-
finitely many free variables and quantifiers (Px > r) over A-finite sequences x. The
axioms and rules are as before with the additional scheme

(Px1x2 . . . > r)φ(xh ... xίn) <-> (Pxjί . . . xjn > r)φ(xjι . . . xjn\

where none of the other x/s are free in φ. It can be shown by the logical monotone
class theorem (Keisler [1977c]) that every sentence of the richer logic is equivalent
to a sentence of L A P . The situation is radically different, however, when universal
quantifiers are present, since well-ordering is definable in L ω i ω i .

7.5. Weak Models

We will now begin working toward the completeness theorem for L A P . To this end,
we first examine

1.5.1 Definition. A weak structure for L A P is a structure

M — {M, Kt , Cj , μn/ieijeJ,neM
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such that each μn is a finitely additive probability measure on M" with each single-
ton measurable, and (with the natural definition of satisfaction) the set

is μn-measurable for each φ(3c, y) e L A P and a in M.

By Theorem 1.2.5, every probability structure Jί induces a weak structure for
LωιP with μn = μ(">.

1.5.2 Weak Soundness Theorem. Let Φbea set of sentences ofLAP. IfΦ has a weak
model then Φ is consistent in weak L A P .

1.5.3 Weak Completeness Theorem (Hoover [1978b]). Let A be countable. IfΦ
is consistent in weak L A P , then Φ has a weak model.

Sketch of Proof. Let C be a countable set of new constants, and let K = L u C.
By a Henkin construction, Φ can be extended to a maximal weak XAP-consistent
set Γ of sentences with the following witness properties:

(1) IfΦ c Γ and Λ Φ e K A P , then Λ Φ e Γ ;
(2) If φ(c) G Γ for all c in C, then (Px > l)φ(x) e Γ.

Let C be the set of constants of K. Γ induces a first-order structure

j , C ) i e I i c e σ ,

for K in the usual way, and M = {cM \c e C}. Define μn by

μn{cM I φ(c, d)eΓ} = sup{r |(Px > r)φ(3c, d) e Γ}

for each φ(3c, y) and d. Axioms Al through A5 insure that μn is well defined and is a
finitely additive probability measure. This gives us a weak structure Ji. Axiom A6
(in the dual form of Proposition 1.4.6(iii)) insures that the above supremum is
always attained, and it follows by induction that Jί 1= Γ; and, hence, Jί \= Φ. D

1.6. Atomic and Countable Models

In this section we will dispose of the degenerate case in which there is a countable
set of measure one; that is, we will consider the situation in which

(*) (Px > l)(Py > 0)x = y

holds. Notice that the last axiom of L A P , namely Axiom B4, is provable from (*)
and the other axioms.

Assume first that L has no constant symbols.
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1.6.1 Definition. Let Jί be a probability structure. An element α e M i s a n atom
if {a} has positive measure. Jί is atomic if every element is an atom.

We list some easy facts in the next proposition.

1.6.2 Proposition, (i) If Jί is atomic, then Jί is countable.
(ii) If Jί is countable, then Jί satisfies (*).

(iii) // Jί satisfies (*), then there is a unique atomic model Jί such that
Jί < A P Jί.

(iv) If Jί and Jί are atomic and L&P-equivalent, then they are isomorphic.
(v) If Jί is atomic, then for every formula φ(xy) o/L A P and b in M, we have

Jί N (Vx)φ(xb) <-• (Px > l)φ(xb);

and

Jί N (3x)φ(xb) *-• (Px > 0)φ(χb). Ώ

Part (v) of the proposition shows that in atomic structures the ordinary quanti-
fiers can be defined in terms of probability quantifiers.

1.6.3 Theorem (Completeness Theorem for Atomic Models). A countable set of
sentences Φ o/L A P has an atomic model if and only ifΦ u {(*)} is consistent in L A P .

Sketch of Proof We may take A to be countable. Suppose Φ u {(*)} is consistent in
L&p. Then it has a weak model Jί0 in which all theorems of L A P hold. From
Section 1.4, for each m, the following are deducible from (*) in L A P :

(Pχ>

-\\J
m) I

Px> \ +-\\J [Py> -)x = y;
m) I \ n)

and

It follows that M o has a finite subset of μj-measure greater than 1 - 1/m. Thus μ1

can be extended to a probability measure μ defined on all subsets of M o by

μ(X) = sup{^(y) : Y c χ9 Y finite},

forming a probability structure Jί ΞΞAP Jί0. The atomic model Jί -< A P Jί is the

required model of Φ. D
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We now consider the general case where L has constant symbols. Define Jί to
be atomic if every element of Jί is either of positive measure or equal to a constant
symbol. With this definition, all the results remain true except for part (v) of
Proposition 1.6.2. If the set of constant symbols is ^-finite, we can still define the
ordinary quantifiers in terms of probability quantifiers in an atomic structure
Jίby

Jί |= Vxφ(xb)<r+(Px > l)φ(xb) A f\ φ(Cjb);

and

Jί 1= 3xφ(xb)^>(Px > O)φ(xb) v y φ(cjE).

2. Completeness Theorems

The main result of this section, to be given in Section 2.3, states that the set of
axioms given in Section 1 is complete. As a preliminary result, in Section 2.2 we
prove a completeness theorem for LA F without using the axiom B4. However, this
is done for a wider class of models. The chief difficulty is the construction of a
countably additive probability structure from a finitely additive one. The key to
getting past this difficulty is the Loeb measure construction from non-standard
analysis, and this we examine in the following discussion.

2.1. The Loeb Measure

We assume once and for all that we have an ωί -saturated non-standard universe

where U is a set of urelements large enough for our purposes (see Keisler [1976] or
Loeb [1979a] for the details). For r e*M,°r denotes the standard part of r. We will
briefly state the definition and main facts about the Loeb measure. They are due to
Loeb [1975].

2.1.1 Definition. Let M be an internal set in Kω(* U) and let <M, S, μ> be an internal
•-finitely additive probability space. (Thus, μ and S are internal and μ: S -» *[0, 1].)
The Loeb measure of μ is the unique (countably additive) probability space
<M, σ(5), μ) such that:

(i) σ(S) is the σ-algebra generated by 5.
(ii) μ(X) = °μ(X) for all XeS.
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2.1.2 Theorem. The Loeb measure exists and is unique.

Proof. Use ωλ -saturation and the Caratheodory extension theorem. D

2.1.3 Theorem. Let X e σ(S). Then,

(i) for each neM, there exist Y,ZeS such that Y c X c Z and μ(Z - Y) <

(ii) there exists Y eS such that μ(X Δ Y) = 0.

Proof. Part (i) of the theorem uses the monotone class theorem, and part (ii) follows
from part (i) by ωx-saturation. D

Intuitively, part (i) says that every Loeb measurable set can be approximated
above and below by internal measurable sets.

2.2. Graded Probability Models

A graded probability structure is a generalization of a probability structure in
which the diagonal product μ(n) is replaced by any probability measure on Mn which
satisfies the Fubini theorem. We will show that the set of axioms for L A P without
axiom B4 is sound and complete for these structures.

2.2.1 Definition. A graded probability structure for L is a structure

Jί = <M, Rf, Cf, μn>ieIJeJ,nsK

such that:

(a) Each μn is a (countably additive) probability measure on Mn.
(b) Each n-placed relation Rf is μπ-measurable, and the identity relation is

μ2-measurable.
(c) If B is μm-measurable, then B x Mn is μm+π-measurable.
(d) The symmetry property holds; that is, each μn is preserved under permuta-

tions of {1,. . . , n).
(e) <μn |we N> has the Fubini property. If B is μm+n-measurable, then

(1) For each x e Mn, the section B^ = {y\B(x, y)} is μw-measurable.
(2) The function/(3c) = μn(B^) is μm-measurable.

(3) [f(x)dμm = μm+n(B).

2.2.2 Proposition, (i) If Ji is a probability structure, then

is a graded probability structure.
(ii) Every graded probability structure is a weak structure for LωiP. D
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2.2.3 Proposition. In a graded probability structure Ji, μn is an extension ofμ{"\ D

An important example of a graded probability structure arises from the Loeb
measure construction.

2.2.4 Theorem (Keisler [1977b]). Let M be a *-finite set. For each n, let vn be the
internal probability measure on Mn giving each element the same weight (the counting
measure), and let μn = vπ be the Loeb measure ofvn. Then <μπ | n e N > has the Fubini
property. Hence, if each n-ary relation of Jl is μn-measurable, Jt is a graded prob-
bility structure. D

The following example of Hoover provides a graded probability structure which
is not LAP-equivalent to any ordinary probability structure.

2.2.5 Example (White Noise). Let H be an infinite *-finite set, let M = *0>(H) be
the set of all internal subsets off/, and take μn as in Theorem 2.2.4. Let/: M -> H be
an internal function partitioning M into H equal parts. Let R(x, y) iff/(x) e y.
Then R is internal and hence μ2-measurable.

Iff(a) Φ fib), then the sets R(a, v) and R(b, v) are independent similarly, for
f(aγ\ ... ,/(απ) distinct. This suggests the name "white noise." Thus,

Ji \=(Px> l)(Py > l)(Pz < %)R(xz) ^ R(yz).

But then,

M 1= (Px < 0)(Py > OXPz > $)R(xz) *+R(yz).

Thus axiom B4 fails in M. In fact, R is not measurable in the completion of μf\

2.2.6 Definition. By graded L A P we mean L A P with all the axioms except for the
product measurability axiom B4.

One may check that all axioms except axiom B4 hold in all graded probability
structures.

2.2.7 Theorem (Graded Soundness Theorem). Every set of sentences o/L A P which
has a graded model is consistent in graded L A P . D

2.2.8 Theorem (Graded Completeness Theorem by Hoover [1978b]). Every
countable set Φ of sentences which is consistent in graded L A P has a graded model.

Sketch of Proof Let A be countable, and assume L has countably many constants
not appearing in Φ. From the proof of the weak completeness theorem, Φ has a
weak model

= <M, Rt, Cj, μ
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such that Jί satisfies each theorem of graded LAjP, M = {Cj\j e J}, and the domain
of each μn is the set of LAP-definable subsets of M". Form the internal structure

= <*M, *Rj9 *cj9 *iOie.IJe*j.ne.».

Let

M = <*M, *Rj, *CJ9 fin>ieI,jeJ,ne^>

where μn is the Loeb measure of μn. By Theorem 2.1.3, every μn- measurable set can
be approximated above and below by *-definable sets in n variables. Using this
fact and axioms B2 and B3 in Jί, it can be shown that Jί is a graded probability
structure. An induction on formulas will show that Jί is LAP-equivalent to Jί.
Axiom Bl is used in the Λ step, and axioms B2 and B3 in the quantifier step.
Therefore, J μ Φ . Π

Remark. The graded soundness and completeness theorems hold with little change
if L has function symbols, and graded probability structures are defined so that the
interpretation of every atomic formula in n variables is μn-measurable. This is
done in Hoover [1978b].

2.3. The Main Completeness Result

We are now ready to prove the completeness theorem for LA P. The results of this
section, including the completeness theorem, are new. We make use of axiom B4
by way of the following lemma.

2.3.1 Lemma (Rectangle Approximation Lemma). Let Jί be a graded probability
structure satisfying every theorem of LA P. Then for each ε > 0 and formula φ{y)
ofL^p there are finitely many formulas ψifxyj), where i = 1,..., m, and j = 1,..., n,
such that

Jί\=(Px> 0)(Py > 1 - ε)(φ(y) <-> V Λ Φiji^j))- D
i = l j = ί

The lemma asserts that any definable set φ{y) in Jί can be approximated within
ε by a finite union of definable rectangles, uniformly in parameters x from a set of
positive measure. The proof is rather technical, and axiom B4 is used n times.

2.3.2 Definition. Let Jί and Jί be graded probability structures. We say that
Jί= Jί almost surely, (in symbols, M = yΓa.s.) if Jί and Jί have the same universe,
constants, and measures, and if for each atomic formula φ(x) of LA P,

Jί 1= φ[a] iff Jί\= φ[a]

for μπ-almost all a.
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2.3.3 Lemma. If Jί = Jί a.s. then M and Jί are L ̂ -equivalent. Also for each

formula φ(x) o/L A P ,

M »= Ψ\β\ iff Jr\= φ\a\

for μn-almost all a.

Proof The proof here is by induction on φ. D

The following theorem is the last step needed for the completeness theorem.
The proof of this result would break down if we were to allow function symbols in L.

2.3.4 Theorem. Let Jί be a graded probability structure satisfying every theorem of
L A P , and let μ = μ1. Then there is a graded probability structure Jr such that
Jf = jr fl.s.9 and each relation Rf is μ{n)-measurable. Thus, Jί induces an ordinary
probability structure.

Sketch of Proof By the Rectangle Approximation Lemma, for each ε > 0 and
LAP-definable set U ^ M" in Jί, there is a finite union B of //"-measurable rect-
angles such that μn(B Δ U) < ε. Then, by Lemma 1.4.8, there is a ^"-measurable set
C such that μn(C Δ U) = 0. By patching diagonals together, we find that for each
ί G /, there is a μ(n)-measurable relation Rf such that Jί = Jί a.s. D

2.3.5. Theorem (Completeness Theorem for L A P ). Every countable consistent set

Φ of sentences ofL&P has a model.

Proof The proof of this result is by the Graded Completeness Theorem, Theorem
2.3.4, and Lemma 2.3.3. D

By the usual L A arguments (as given in Chapter IX), we obtain Barwise-type
results. Similar results for graded L A P are given in Keisler [1977b].

2.3.6 Theorem (Barwise Completeness Theorem). The set of valid sentences of
L&p is Σ on A.

2.3.7 Theorem (Barwise Compactness Theorem). Let A be countable and let Φ
be a set of sentences o/L A P . IfΦ is Σ on A and every P^-finite Ψ c φ has a model,
then Φ has a model.

2.4. Hanf and Lowenheίm Numbers

We have seen in Section 1 that the sentence stating that Jί is atomless has no
countable models. Thus, the Lδwenheim number of L A P is at least ωv On the other
hand, given any probability structure Jί, we can obtain LωiP-equivalent structures
of arbitrarily large cardinality by adding a set of new elements of measure zero.
Thus, the Hanf number is ω but for a trivial reason. When considering cardinalities,
we should restrict our attention to reasonable structures.
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2.4.1 Definition. A probability structure Jί is reasonable if every set of measure one
has the same cardinal as M. The reasonable Lόwenheim or Hanf number of L A P is
obtained by restricting to reasonable probability structures.

2.4.2 Proposition. A reasonable structure is countable if and only if the set of atoms
has measure one. D

Let Jt and Jί be probability structures for L. Notice that if Jί -<A P Jί, then
the first-order part of Jt is a substructure of the first-order part of N but is not
necessarily an elementary substructure in the sense of Lωω.

2.4.3 Proposition. Every probability structure Jί has a reasonable L ^-elementary
substructure Jί such that μ(N) = 1 and v is the restriction of μ to N. The cardinal of
N is unique. D

The following theorem and corollary are new.

2.4.4 Theorem (Downward Lowenheim-Skolem Theorem). Let Jibe a reasonable
probability structure of power at least λ, where λ = λω. Then, for every set X ^ M
of power < λ, Jί has a reasonable LωiP-elementary substructure Jί of power λ with
X c JV.

Proof. Let X c= Xo ^ M where Xo has power λ and contains all constants. Form a
chain Xa, α < λ of subsets of M of power λ such that for every Borel combination
B of sets LωiP-definable in Ji with parameters in Xa,

(1)
(2) if μ(B) = 1 then |B n X α + 1 1 = λ.

Take unions at limit α. Form the structure Jί, with N = (Jα Xa and v(B n N) =
μ(B\ for each Borel combination B of setsLωiP-definable with parameters in N.
Then Jί is as required. D

2.4.5 Corollary. Let λ be the reasonable Lόwenheim number for L A P . Then,

(i) ωί < λ < 2ω;
(ii) Martin s axiom implies λ = 2ω.

Proof As to the argument for (i), we note that Theorem 2.4.4 shows that λ < 2ω.
In order to prove (ii), we let φ say that Rn(x\ n e l\l are independent sets of prob-
ability \. By Martin's axiom, every subset of 2^ of power < 2ω has Lebesgue
measure zero, and it thus follows that φ has no reasonable model of power < 2ω. D

2.4.6 Theorem (Hoover [1978b]). Every uncountable reasonable probability
structure Jί has reasonable LωιP-elementary extensions of arbitrarily large cardi-
nality.

Sketch of Proof. Working in a κ + -saturated universe, form *Ji and use the Loeb
process to get a graded structure Jt >ωiPJi and probability structure Jί >ωiP Jί.
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By Proposition 2.4.2, Jt has an atomless set of positive measure ε. By κ+-satura-
tion, every internal set in *M of measure > 1 — ε/2 has power at least κ+, so every
Loeb measurable set of measure one has power > κ+. D

2.4.7 Corollary. LAi> has reasonable Hanf number ω{. D

2.5. Random Variables

In this section we will consider structures with random variables instead of rela-
tions. From the examples of Section 3.1 we saw that structures with random
variables are of interest in probability theory. In general, -one could consider
random variables with values in a Polish space. We will restrict our discussion here
to random variables with values in U and will use a language L = {Xh c} \ielje J}.

2.5.1 Definition. An n-fold random variable on a probability space <M, S, μ> is a
μ(π)-measurable function X: M" -• R. A random variable structure for L is a structure

where μ is a probability measure on M, Xf is an nΓfold random variable, and
Cj e M, and each

2.5.2 Definition. The auxiliary language of L is the language L' which has the same
constant symbols c, ofL but has new relation symbols [_Xi(ύ) > r], and [ ^ ( M ) < r],
for each i e I and r e Q.

Each random variable structure Jί for L induces a probability structure Ji'
for L', where [Xfu) > r] is interpreted in the natural way.

2.5.3 Definition. We will use the following abbreviations:

> r ] for

[X{ΰ) < r] for -\[X(ύ)>f\.

2.5.4 Definition. The language LAP((R) has the same set of formulas as L A P . It has
all the axioms and rules of inference of L A P , plus four new axioms, where r,seQ:

Cl. [X{ΰ) > r] -» [X(ΰ) > s], where r > s;
C2. [X^S) > r] <

C3. IXiύ) > r] Λ ^ /]
C4. \/M ([Xi(tί) > — n] Λ [Xι(w) < ή]\ and each singleton is measurable.

2.5.5 Theorem (Soundness and Completeness Theorem for LAP(R)). A countable
set Φ of sentences o/LAP([R) /zαs α random variable model if and only if it is consistent
in LA P(R).
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Proof. The soundness is easy. Suppose Φ is consistent. Let Ψ be the set of sentences
of the form (Pv > l)φ9 where φ is one of the axioms Cι through C 4 . Then, Φ u Ψ
is consistent and has a probability model Jί'. Make Jί' into a random variable
model Jί by defining

XM(a) = sup{reQ\Jί' = [X(a) > r]}.

Use Ψ to show that XM is almost surely finite and uniquely defined. D

2.6. Fίnitary Probability Logic

We will now discuss the situation when ω is not an element of A, so that each
formula of L A P is finite. We will assume that the rationals are defined in such a
way that Q ^ A, so L A P has at least the quantifiers (Px > r), r e Q n [0,1]. By
throwing additional reals into A as urelements, we can obtain more probability
quantifiers. When ω φ A, the infinitary axiom Bl and the infinite conjunction rule
R2 become finite. However, the other infinitary axiom A6 is outside the language
L A P and must be replaced by a new infinite rule of inference, a rule which is due to
Hoover [1978a].

2.6.1 Definition. The rule of inference for finitary LAi> is given by

{φ -» (Px > r)(Py > s - \/ή)φ\ne N) h- φ -• (Px > r)(Py > s)φ.

With this new rule of inference, the weak, graded, and full completeness
theorems hold for the finitary case ω φ A. Hoover [1978b] has shown that when
A = HF, the set of valid sentences of L A P is complete Πj and thus not recursively
enumerable. This was done by interpreting the standard model of number theory
in a finite theory of L A P . The compactness theorem fails for L A P , so that some
infinitary rule of inference is needed.

2.6.2 Example. Let Φ be the set of sentences containing (Px > 0)R(x\ and
(Px < l/n)R(x\ for π = 1, 2 , . . . . Then every finite subset of Φ has a model, but Φ
itself has no model.

However, there is a compactness theorem for special sentences, which we will

state for L ω i P .

2.6.3 Definition. The set of universal conjunctive formulas of L ω i P is the least set
containing all quantifier-free formulas and closed under arbitrary /\, finite v, and
the quantifiers (Px > r).

2.6.4 Theorem (Finite Compactness Theorem (see Hoover [1978b])). Let Φ be a
set of universal conjunctive sentences o/L A P . If every finite subset ofΦ has a graded
model, then Φ has a graded model.
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Proof. Suppose each finite subset Ψ c φ has a model Jί^. Take an ultraproduct
*Jί of the Ji^s such that, for each φeΦ, almost every JίΨ satisfies φ. Form a
graded probability structure M from *Jl by the Loeb construction. Then, by
induction show that every universal conjunctive formula holding in almost all
Jίxv holds in M also. D

The above proof, of course, does not work for probability models, because
axiom B4 is not universal conjunctive.

2.6.5 Example. Let Φ be the set of universal conjunctive sentences

(Px > 1)1 Py > 1 - l\pz > ±)^(R(xz)~R(yz)\

where neN. Each finite subset of Φ has a (finite) probability model. However, Φ
implies the white noise sentence

(Px > l)(Py > l)(Pz < \)

of Example 2.2.3. Thus, Φ has no probability model.

However, if in Theorem 2.6.4 every instance of axiom B4 is deducible from Φ
in graded LAi>, then Φ does have a probability model.

2.7. Probabilities on Sentences ofLωιω

We can easily generalize our treatment of LA P to two-sorted logic. It is more
interesting that there is a mixed two-sorted logic which has probability quantifiers
on one sort and ordinary quantifiers on the other sort. In this mixed two-sorted
logic, we can study models which assign probabilities to sentences of LA. We will
use x, y,... for the first sort of variables, and s, ί, . . . for the second.

2.7.1 Definition. L&(P, V) is the two-sorted logic which has probability quantifiers
(Px > r) on the first sort and the universal quantifier (Vί) on the second sort.
Probability structures for L(P, V) have the form

Jί = <M, T, Rt, cj9 μ>ieijej,

where μ is a probability measure on M, and Rt(x ί) is μ(π)-measurable for each t in T.

If T is countable, there is no difficulty in defining the satisfaction relation in
Jί, with the usual clause for (Vί) This is the case which is needed for the complete-
ness theorem.
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There is also a definition of satisfaction which applies to any probability
structure for L(P, V), as introduced by Gaifman [1964] and extended by Krauss-
Scott [1966]. The idea underlying this development is to assign, for each φ(x; i) and
b in T, an element φ(x; b)M of the measure algebra of μ(w) modulo the null sets. The
V clause is

(Vί)φ(x hr = inf {φ(x; 5, cY\c e T}9

taking inf in the measure algebra. This coincides with the natural definition of
satisfaction when T is countable, but not when T is uncountable.

2.7.2 Definition. The axioms for L&(P, V) consist of all axiom schemes for L A P and
L A , with quantifiers on the appropriate sort, plus the new axiom

(Px > r)(Vt)φ(x; r) «-> Λ (Vί x ) . . . (Vίπ)(Px > r) j \ φ(x; tk).
n fc=l

The rules of inference for LA(P,V) are the natural combination of rules for L A P

a n d L A .

2.7.3 Theorem (Soundness Theorem). Every set Φ of sentences of LA(P, V) which
has a model is consistent. D

2.7.4 Theorem (Completeness Theorem). Every countable consistent set of sen-
tences ofLA(P, V) has a model Jί with T countable.

Proof Form a countable weak model. Then keep the second sort fixed while using
the method of Sections 2.2 and 2.3 to extend the first sort to a probability model. D

The following simpler logic is of particular interest.

2.7.5 Definition. Let L be a first-order language with variables ί0, tl9... and rela-
tion symbols R(t). By L-probabilίty logic we mean the two-sorted logic L'MC(P9 V)
which has only one variable x of the new sort and where L is formed by replacing
each relation R(t) of L by R(x; t).

L-probability logic is a logic which assigns probabilities to sentences of
Lωίω = LHC. Its model theory was studied by Krauss-Scott [1966]. A probability
structure

for L-probability logic may be regarded as an indexed family (Jίx\xeM} of
first-order structures Jίx for L each with universe Γ, together with a probability
measure μ on M such that each {x\R£x; t)} is measurable.
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2.7.6 Definition. A probability on Lωιω is a function μ from sentences of L ω i ω to
[0, 1] which is countably additive with respect to \/, ~ι and such that each valid
sentence has measure one.

Each structure M for L-probability logic induces the probability μM on L ω i ω

given by

μM(φ) >r iff Jί t= (Px > r)φ.

The axioms and rules for L- probability logic are like those for LMC(P, V) except
that axioms A3, B2, B3, and B4 disappear. The soundness and completeness
theorems still hold and have easier proofs which avoid graded structures.

The following completeness theorem was proved by Krauss-Scott [1966],
extending results of Gaifman [1964] andZos [1963]. Although it does not follow
from Theorem 2.7.4, it can be proven by a similar argument.

2.7.7 Theorem. Let μbe a probability on L ω i ω which assigns 0 or 1 to pure equality
sentences. For every countable set Ψ £ L ω i ω , there is a structure Jifor L-probability
logic such that μM agrees with μ on Ψ. D

Other work on probabilities of sentences can be found in Havranek [1975],
Fenstad [1967], Fagin [1976], Compton [1980], Lynch [1980], Gaifman-Snir
[1982], and Krauss [1969].

The logic L A P should be compared with the logic L(Qm) of H. Friedman, which
is discussed in Chapter XVI. This logic also has models with measures as well as
both the classical quantifier (Vx) and the measure quantifier (Qmx) which has the
same interpretation as our (Px > 0). In order to have both quantifiers, one must
pay the price of restricting attention to those structures in which every definable
set is Borel (the absolutely Borel structures). A similar treatment of logic with both
quantifiers Vx and (Px > r) for absolutely Borel structures should be possible
and interesting.

3. Model Theory

In this section, we will develop the model theory of the logic L A P . In Section 3.1
we state a model-theoretic form of the law of large numbers, showing that every
probability structure is "approximated" by almost every sequence of finite sub-
structures. This result is used in Section 3.2 to prove the existence and uniqueness
of hyperfinite models, which play the role for L A P that saturated models play in
classical model theory. These models are used in Section 3.3 to prove the Robinson
consistency and Craig interpolation theorems for L A F . The section concludes with
the development of integrals, which eliminate quantifiers from L A P in a manner
analogous to Skolem functions in classical logic.
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3.1. Laws of Large Numbers

The results in this section hold for all graded probability structures. First, we have

3.1.1 Definition. A finite universal formula ofLAP is a formula of the form

where φ is a finite quantifier-free formula of L. A finite existential formula of L A P is a
formula of the form

(Px, > n ) . . . (Pxn > rM>A,

where ι/̂  is as before.

Note that since —ι (Px > r)φ is equivalent to (Px > 1 — r) ~\ ψ, the negation
of a finite existential formula is equivalent to a finite universal formula, and vice
versa. We shall see that the laws of large numbers for L A P deal with finite existential
sentences. To state them, however, we need the notion of a finite sample of Jί.

3.1.2 Definition. Let Jί be a graded probability structure for L, and let ak =
< α 1 ? . . . , ak} e Mk be a /c-tuple of elements of M. The /̂zmίe sample Jί(ak) is the
probability structure whose universe is the union of {aί9..., ak} and the constants
(if any) of M, whose first-order part is a substructure of Jί, and whose measure v
is given by

v(S)=\{m<k\ameS}\/k.

Thus, the finite set {aί9..., ak} has measure one in Jϊ(ak\ and the measure of a
singleton {a} is l//c times the number of occurrences of a in the sequence ak.

3.1.3 Theorem. Let Jί be a graded probability structure for L with measures μn,
and let φ be a finite existential sentence ofLΆP such that Jί \= φ.

(i) Weak Law of Large Numbers for L A P :

\\mμk{akeMk\Jί{ak) \= φ} = 1.
fc->oo

(ii) Strong Law of Large Numbers for L A P . Let μM be the completion of the
measure on MM determined by the μn. Then, for μN almost all sequences
a e MN

9 Jί(ak) \= φfor all but finitely many keN. D

The above theorem is a reformulation of Lemma 6.13 in Keisler [1977b]. In
the special case in which φ has the form (Px > r)ψ(x), the result follows directly
from the weak and strong laws of large numbers in probability theory. Hoover
has pointed out that the case in which φ has the form (Px > r)φ(x) can be proved by
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the same argument as the proof of the strong law in probability theory, using the
martingale convergence theorem. The general case uses an induction on the
number of quantifiers.

3.1.4 Theorem (Normal Form Theorem (Hoover [1982])). Every formula φ(x) of
graded LωιP is equivalent to a countable boolean combination of formulas of the
form (Py > r)φ(xy\ where φ(xy) is a finite conjunction of atomic formulas ofL.

Proof By a prenex normal form argument, it can be shown that every formula of
graded LωιP is equivalent to a countable boolean combination of finite universal
formulas (with the same free variables). By the Weak Law of Large Numbers, each
statement below implies the next, where φ is a finite quantifier-free formula.

(1) Jΐ\=(Px> r)(Py > s)φ

(2) /\ Jί \= (PX > r - -)(py > s - -\φ

(3) Λ \ιm μk\ak\Jί{ak) ϊ= (PX > r-^\(py > s - %\ = 1

(4) /\ limμiak\ Jί(ak) |= (PX > r - ^jlpy > s - %X > 0

(5) l\Jtϊ

(6) Jί t= (Px > r)(Py > s)ψ

Hence, these statements are equivalent. Each property

Jt{zk) \=\Px>r- -)[Py > s - - ]

is expressible in Ji by a finite quantifier-free formula θ(zk) of L. It follows, then,
that each formula is equivalent to a countable Boolean combination of formulas of
the form (Pz > t)θ, where θ is finite and quantifier-free. Finally, we reduce to the
case in which θ is a conjunction of atomic formulas using the probability rules

and

P(φ vφ) = P(φ) + P(φ) - P(φ A φ). D
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3.1.5 Corollary. Let Jί and Jί be graded probability structures for L. The following
are equivalent.

(a) Jί=ωiPJί.
(b) M=^PJί.
(c) Jί 1= φ iff Jί 1= φfor each sentence φ ofL^P in the normal form of Theorem

3.1.4. D

The following consequence characterizes LAJ> equivalence in terms of truth
values in finite samples. It has no analog in first-order logic.

3.1.6 Theorem. Lei Jί and Jί be graded probability structures for L. The following
are equivalent.

(a) Jί and Jί are L^-equivalent.
(b) For every sentence φ o/L A P and keN,we have

μk{ak\Jί(ak) \= φ} = vk{bk\jr(bk) N φ).

That is, φ has the same probability in the set ofk-element samples of Ji as in
the set ofk-element samples of Jί.

(c) For each sentence φ ofLAP,

\\mμk{ak\Jί(ak)\= φ} = 1

if and only if

fc^oo

That is, φ has large probability in large finite samples in Jί iff it does in Jί.

Proof. We give a proof using Hoover's normal form theorem. The result can also be
proved directly from the Weak Law of Large Numbers for L A P . Now, (a) implies
(b), because for each k and φ there is a formula \l/(vl9..., vk) of L A P which says that
a fe-element sample satisfies φ. It is trivial that (b) implies (c). Assume then that
(c) holds, and let φ(x) be a finite quantifier-free formula. Suppose that M 1=
(Px > r)φ(x\ and let s < r. By the Weak Law of Large Numbers, we have

\\mμk{ak\Jί{ak) \= (Px > s)φ} = 1.
fc-00

By (c), the same holds in Jί. Applying the Weak Law again, we thus have Jί 1=
(Px > s)φ. Since this holds for all s < r, Jί 1= (Px > r)φ. It follows from the
Normal Form Theorem that Jί =ωιP Jί. D
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3.2. Hyper finite Models

We will assume throughout this section that L has only finitely many constant
symbols. We have seen in Example 1.3.2 that the sentence

(Px > l)(Py > l)x Φ y,

stating that Jl is atomless, has no countable models. In this section, we prove an
analogue of the Lόwenheim-Skolem theorem for atomless probability structures,
but with infinite *-finite numbers in place of infinite cardinals. We will show that,
for each atomless structure Jt and infinite *-finite number //, there is an essentially
unique hyperfinite probability structure Jr =ωiPJί of *-cardinal H. We will use a
fixed ωx -saturated nonstandard universe.

3.2.1 Definition. A (uniform) finite probability structure is a probability structure
Jί whose universe M is finite and whose measure is the counting measure μ(Y) =
I Y I/I MI. A *-finίte probability structure is a finite probability structure in the
sense of the nonstandard universe. A hyperfinite probability structure is a prob-
ability structure M such that the universe M is an infinite *-finite set and μ is the
Loeb measure determined by the *-counting measure on M. A hyperfinite graded
structure is a graded probability structure whose universe M is an infinite *-finite
set and each μn is the Loeb measure determined by the *-counting measure on Mn.

3.2.2 Proposition. Every hyperfinite probability structure or graded structure is
atomless. D

Here is a reformulation of Proposition 2.2.4.

3.2.3 Proposition. Let Jί0 be a first-order structure such that the universe M is an
infinite *-finite set and each relation of Jί0 is Loeb measurable with respect to the
^-counting measure on Mn. Then there is a unique hyperfinite graded structure with
first-order part Jί0. D

We will now introduce an important relation between hyperfinite and *-finite
structures, called a lifting.

3.2.4 Definition. Let Ji be a hyperfinite graded structure. A lifting of Jί is a
•-finite probability structure Jί such that Jί has the same universe and constants
as Jί, and for each atomic formula φ(x), the set

[a\J(\=φ[a] iff Jί μ= φ[a]}

has μn-measure one. By a lifting of a hyperfinite probability structure Jt we mean a
lifting of the unique hyperfinite graded structure Jt' which has the same first-order
part as M.
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3.2.5 Lemma, (i) Every infinite *-finίte probability structure is a lifting of some
hyperfinite graded structure.

(ii) Every hyperfinite graded structure has a lifting.
(iii) // Jί and Jί are hyperfinite graded structures with a common lifting, then

Jί = Jί a.s. and Jί = ω i P Jί.

Proof. The argument for part (i) follows by Proposition 3.2.3. The argument for
part (ii) follows by Theorem 2.1.3. And the argument for part (iii) follows by
Lemma 2.3.3. D

3.2.6 Theorem (Existence Theorem for Hyperfinite Models (Keisler [1977b])).
Let Jί be an atomless probability structure for L, and let M be an infinite *-finite set.
Then there exists a hyperfinite probability structure Jί with universe M which is
L^p-equivalent to Jί.

Proof Assume first that L has no constant symbols. Let S be the set of all infinite
sequences a of elements of Jί such that for every finite existential sentence φ of
L A P , if Jί |= φ then Jίζa^ \= φ, for all but finitely many k. By the Strong Law of
Large Numbers, vN(S) = 1. Since Jί is atomless, vM almost every sequence a is
one-to-one; and, hence, each Jr{a]) is a uniform finite probability structure.
Thus, there exists a e S such that a is one-to-one. Let K be an infinite hyperinteger.
Then Jί^a^) is a *-finite probability structure of *-cardinal K and is a lifting of a
hyperfinite graded structure Jί'. Since a e 5, for each finite quantifier-free sentence
φ(x) and each r, Jί 1= (Px > r)φ implies Jί' \= (Px > r)ψ. It follows then that,
for each φ and r, Jί 1= (Px > r)φ iff Jί' 1= (Px > r)φ. By the Normal Form
Theorem, Jί' is LAP-equivalent to Jί. By Theorem 2.3.4, there is a hyperfinite
probability structure Jί with Jί = Jί' a.s. Then Ji is LAP-equivalent to ΛΛ

The case in which L has finitely many constants is the same except that the
measure on *Jί^a^) is slightly different from the counting measure since constants
have measure zero. D

The Existence Theorem also holds for graded probability structures, with the
same proof. For L A P without equality, the existence theorem holds even without
the hypothesis that Jί is atomless.

3.2.7 Definition. Let M and Jί be probability structures. An almost sure isomorph-
ism from i t o / (in symbols, h: Jί ^ Jί a.s.) is a bijection h:M -* N such that

(a) h is an isomorphism on the probability spaces, h: <M, μ> = <ΛΓ, v>;

(b) for each atomic formula φ(x\

Jί 1= φ\a\ iff Jί \= φ\ha\

almost surely in μ(n).
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3.2.8 Lemma. Suppose h:Jί^Jr a.s., then

(i) for each formula φ(x) of L A P ,

M \= φ\β] iff Jί 1= φ\ha\

almost surely in μ{n);
(ii) Jί and Jί are L^-equivalent.

Proof The proof follows by induction on φ. D

The following result is new.

3.2.9 Theorem (Uniqueness Theorem for Hyperfinite Models). Let Jί and Jί
be hyperfinite probability structures with the same universe M. The following are
equivalent:

(a) M and Jί are L ^-equivalent.
(b) There is an h: Jί = Jί a.s.
(c) There is an internal h such that h:Jί = Jί a.s.

Idea of Proof We assume that (a) holds and prove that (c) must hold also. Note
that any internal bijection preserves measure. Consider an n-tuple of atomic formu-
las ψγ(y\..., φn(y) of L and let ε > 0. Using the Rectangle Approximation Lemma
(Lemma 2.3.1), one can find a bijection ho:M -> M such that

μim)(f)fr\Jί\=φkla] iff Jί \= φkίhoa]}\ > 1 - ε.

The idea is to use Theorem 2.1.3 in choosing an h0 which approximately preserves
each coordinate of the rectangles which approximate φk. Now let Jt> JV" be liftings
of Jί, Jί. By ωί -saturation, we can find an internal bijection h so that for all atomic
φ(y) and all real ε > 0,

μ{m){{a\J \= φ[α] iff Jί μ= φ[ka]}) > 1 - ε.

It follows then that h: Jί ^ Jί a.s., and thus (c) holds. D

As a consequence of the preceding, we obtain a "soft" characterization of the
LAP-equivalence relation, namely

3.2.10 Corollary. Let « be an equivalence relation on the atomless probability
structures for L such that:

(a) IfJί^JT a.s., then Jί π Jί.

(b) For each Ji and each infinite ^-finite set H, there is a hyperfinite probability
structure Jί with universe H such that Jί « Jί.

(c) ifJίπJί, then Ji = A P Jί.

Then « is the relation = A P .
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3.2.11 Example (D. Hoover, unpublished). This example shows that the unique-
ness theorem (Theorem 3.2.9) is false for hyperfinite graded models. Let M be a
hyperfinite set of the form M = i u ΰ u C u ΰ where A, B, C, D are disjoint sets
with *-cardinalities

\A\=$\M\, |fl| = i|Λί|, |C | = |D| = i | M | .

Let/be an internal bijection from C to D. By using an exponential form of Cheby-
shev's inequality, it can be shown that there is an internal binary relation R c
A x (BuCuD) such that: Λ

(1) For a l l y e £ u C u D ,

μ{x\R(x,y)}=i

(2) For all yeC,

(3) For all y, z e B u C u D with zΦ y,zφfy,

μ{x\R(x,y) ΛR(X,Z)} = | .

Let Jί and Jί be the graded hyperfinite structures with first-order parts Jί0 =
<M, B, JR>, and Jί0 = <M, C u D , R}. The reader can check that M and Jί are
LωiP-equivalent but for any internal bijection h on M which maps B onto C u D ,
the set

y) iff

has measure at most § .̂

A weak uniqueness theorem for hyperfinite graded models is given in Keisler
[1977, p. 34].

33. Robinson Consistency and Craig Interpolation

The results of this section are due to Hoover [1978b]. The hyperfinite structures
play the same role that saturated structures play in first-order model theory.

3.3.1 Theorem (Robinson Consistency Theorem for LAP). Let L1 and L2 be two
languages with L° = L1 nL2. Let Jί1, M2 be probability structures for L1, L2

respectively whose reducts Jίx \ L°, Jί2 \ L° are L%-equiυalent. Then there exists
a probability structure Jί for L1 u L2 such that

Jί\Lx=r, Jt1 and Jί \L2 =Li Ji2.
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Proof. We give the proof when L1 and L2 have no constants and J(ι, M2 are
atomless. The general case will follow by adding a new relation symbol for each
atomic formula, and working with the atomless parts. By Theorem 3.2.6, we may
take Jίx and Jί2 to be hyperfinite probability structures with the same universe
M. By Theorem 3.2.9 there is an internal bijection h'.Jί1 \L° ^ M2 {L° a.s.
Renaming elements, we can take h to be the identity map. By changing the L°
relations of Jί2 on a set of measure zero, we get Jίγ \ L° — Jί2 \ L°. Let Jί be
the common expansion of J4γ and Jί2. D

3.3.2 Theorem (Craig Interpolation Theorem for LAP). Let L° = L1 n L2 and let
φ1 e L A P , and φ2 e L A P be sentences such that \= φ1 —• φ2. Then there is a sentence

φ° e L A P such that \= φ1 -• φ°, and t= φ° -+ φ2.

Proof. Suppose there is no such φ°. By a Henkin construction, there then are weak
models M1 of φ1 and Ji2 of -η φ2 for LiP and L | P such that Mι \ L° and J(2 \ L°
are LAP-equivalent, and all the axioms of L^P, L\P are valid. By the completeness
proof, we then obtain probability models Jίγ of φ1, Jί of ~iφ2, where Jίx \ L°
and Jί2 [ L° are L^P-equivalent. By Robinson consistency, φ1 Λ -iφ2 has a
model—contradicting 1= φ1 -• φ2. D

Since the compactness theorem fails for LA P, we cannot apply the general fact
that Robinson consistency and compactness implies Craig interpolation. A separate
Henkin construction is thus needed. Mundici, in Chapter VIII, showed that for
many logics, Robinson consistency implies compactness. The logic LA P fails to
satisfy several of his hypotheses, including closure under universal quantification
and under disjoint unions.

Hoover [198?] has recently proved the following stronger interpolation
theorem, thus improving an earlier result which appeared in Hoover [1982].

3.3.3 Theorem (Almost Sure Interpolation Theorem). Let L° = L1 n L2 and
suppose the symbols ofL° have a well-ordering in A. Let ε > 0 and let φι(v) e L A P ,

and φ2(v) e L A P be formulas such that

\=(Pϋ>l- ε)(φ(v) -> φ(v)).

Then, for every δ > ε 1 / 4 + ε1 / 2, there is a formula θ(ϋ) e L A P such that

ϊ=(Pv>l - δ)(φ(v) -> θ(v)) and 1= (Pv > 1 - δ)(θ(v) -* ψ(v)).

Moreover, if

N (Pv > l)(φ(ϋ) - φ(v)X

then there is a formula θ(ϋ) e L A P such that

\= (Pv > l)(φ(v) -+ θ(v)) and \= (Pv > l)(θ(v) -> φ(v)). D
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Hoover proved each of the results Sections 3.2.1-3.2.3 for graded probability
structures, and the results for probability structures follow. His proof of the
Robinson consistency theorem was somewhat more difficult, because the unique-
ness theorem for graded hyperfinite structures is false.

Additional model-theoretic results for L A P are in Keisler [1977b] and Hoover
[1982]. Hoover [1981] gives some applications to probability theory. Kaufmann
[1978a] in his thesis gave a back-and-forth criterion which is sufficient for two
graded structures to be LAP-equivalent, and necessary for two hyperfinite graded
structures to be LAP-equivalent.

3.4. Logic with Integrals

Properties of random variables are usually easier to express using integrals rather
than probability quantifiers. We will now introduce a logic L A j (from Keisler
[1977]), which is equivalent to L A P . It has no quantifiers, although it does have
an integral operator which builds terms with bound variables. Indeed, the logics
L A P and L A J correspond to two alternative approaches to integration theory:
Lebesgue measure theory and the Daniell integral. The completeness proof for
L A P used Loeb's construction of a measure by non-standard analysis, while the
completeness proof for L A J will use the construction of the Daniell integral as
given in Loeb [1982].

Given a relation R(x\ the indicator function l(R(x)) is defined by

0 if Λ(x) is false.

The language L A J will have atomic terms interpreted as the indicator functions of
the atomic formulas of L, and more complex terms will be built from these by
applying continuous real functions and integration. The atomic formulas of L A J will
be inequalities between terms.

3.4.1 Definition. Let L be an A-recursive set of finitary relation and constant
symbols. For each atomic formula

R(x) or x = y

of the first-order logic L, L A j has an atomic term

l(R(x)) or l(x = y).

The set of terms of LΆί is the least set such that:

(a) Every atomic term is a term.
(b) If τ is a term and x is an individual variable, then j τ dx is a term.
(c) Each real number r e A n R is a term.
(d) If τl9 . . . , τn are terms and F belongs to the set CA(RΠ) of continuous

functions/1: Un -> R such that F [ Qn e A, then F ^ , . . . , τn) is a term.
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Clause (c) is just the special case of Clause (d) when n = 0. We will usually
identify the function F and the corresponding logical symbol F. Note that indivi-
dual variables and constants are not terms of L A J . The notion of free and bound
variables in a term are defined as usual, with the integral j τ dx binding x. A
closed term is a term with no free variable.

3.4.2 Definition. The set offormulas o/L A J is the least set such that:

(a) For each term τ of L A s, τ > 0 is an atomic formula.
(b) If φ is a formula, so is —i φ.
(c) If Φ is a set of formulas with finitely many free variables and Φ e A, then

ΛΦ is a formula.

A sentence is a formula with no free variables. The structures for L A J are the same
as the structures for L A P , namely, the probability structures for L.

3.4.3 Definition. Let Ji be a probability structure for L. The value τ(a)M of a term
τ(v) of L A j in Jί at a tuple a in M is defined by:

for each atomic formula φ(ϋ) of Lωω.

(b)(fτ(x,3)dx)^ = fτ(fc,a)^d/ι(6).
(c) r ^ = r.
(d) F ( τ 1 ? . . . , τn){a)M = F^a)-",..., τB(δ) " ) .

Since each atomic term has values in {0, 1}, by induction we see that each function
τ(a)M is bounded and μ(k)-measurable. In particular, the integral in Part (b) exists
and is finite. The satisfaction relation Jί 1= φ[a] for L A ί is defined in the natural
way, with the atomic formula rule

M μ= (τ(ϋ) > 0)[a] iff τ(a)M > 0.

3.5. Completeness Theorem with Integrals

3.5.1 Definition. The axioms for L A ί , where σ, τ are terms, r, s are elements of
A n H , and x, y are individual variables are:

Dl . All axiom schemes for L A without quantifiers, with l(x = y) = 1 in place
of x = y.

D2. For each atomic term τ, we have τ = 0 v τ = 1.
D3. Order axioms. Using abbreviations, we have

(i) r > r.
(ii) τ > r -• τ > 5, when r > s.

D4. For each rational closed rectangle S ^ Um, and each F e CA([Rm) with
image F(S) = [α, b], we have

< τ l 9 . . . , τw> e S -* F ( τ 1 ? . . . , τM) e [a, b].
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D5. Integral axioms.
(i) I r dx = r.

(ii) f τ(x) dx = J τ(y) dy.

(iii) JJ τ(x, y) dx dy = JJ τ(x, y) dy dx.

(iv) J (r σ + 5 τ) dx = r J σ dx + 5 j τ dx.
D6. Archimedean axiom.

τ > r<->V τ > r + -.

D7. Product measurability. For each m e f\J, we have

V JFk(l - JFm(j\τ(x, z) - τ(y, z)\ dz) dy) dx > 1 - i ,

where dx is dxj ... dxn, and

ίθ ifϋ<l/fc,

Fk(ύ) = I linear for ί/k < u < 2/fc,

[ ifw>2//c.

This is essentially a translation of the axiom B4 for LA P.

3.5.2 Definition. The rules of inference for L A J are:

51. Modus ponens: φ, φ —> φ \— φ.
52. Conjunction: {φ-+φ\φ εΎ} \- φ-> ΛΨ.
53. Generalization: φ -> (τ(x) > 0) h- ̂  -• (J τ(x) dx > 0), where x is not free

in φ.

This set of axioms was motivated by the thesis of Rodenhausen [1982].

3.5.3 Theorem (Soundness Theorem for LA $). Any set Φ of sentences for LA s which
has a model is consistent. Π

3.5.4 Theorem (Completeness Theorem for LA J). A countable consistent set Φ of
sentences o/LAJ has a model, ϋ

Idea of Proof. As in the case of LA P, the main steps are to prove a weak complete-
ness theorem, and then use a construction from non-standard analysis to obtain a
graded model of Φ. This done, the product measurability axiom is then used to
get a model of Φ.

A weak structure for LAj is a structure



542 XIV. Probability Quantifiers

where <M, Rh Cj} is a first-order structure and / is a positive linear real function
on the set of terms of L A ί with at most one free variable x and parameters from M.
That is,

(1) /(r) = r.
(2) I(r σ + s τ) = r /(σ) + s /(τ).
(3) If τ(b, 5)^ > 0, for all fc e M, then J(τ(x, α)) > 0.

The recursive definition of τ(a)M is the same as for ordinary probability structures
but with the integral clause

τ(x,a)dx) =/(τ(x,δ)).

A Henkin argument is used to construct a weak model of Φ in which each
axiom of L A ί is valid. Then the internal structure M is formed in the non-standard
universe. The Daniell integral construction of Loeb [1984] produces a probability
measure μ on *M such that for each *-term τ(x), the standard part of */(τ) is the
integral J °τ{b)Jί dμ{b). Define measures μn on *M" using iterated integrals. This
yields a graded model of Φ,

which satisfies the produce measurability axiom almost everywhere. Finally,
Theorem 2.3.4 is used, as before, to obtain a probability model Jί of Φ. D

3.6. Conservative Extension Theorem

We will now show that the logics L A P and LΆί are equivalent in a strong sense.
This is done by considering their common extension L A P ί .

3.6.1 Definition. L A P J is the language which has all the symbols and formation
rules of L A P and L A J . The satisfaction relation in probability structures is defined
as before.

3.6.2 Theorem. L A P J is a conservative definitional extension of both L A P and L A J .
That is:

(i) (Conservative): For any sentence φ in L A P , we have L A P ί 1= φ iffL&P \= φ.
And,for any φ in L A J , we have L A P J \= φ iffL^^ \= φ.

(ii) (Definitional): For each φ(v) in L A P J , there are \j/(v) in L A P and θ(v) in L A J

such that L A P ί |= φ(ϋ) <-* ψ(v\ and L A P J |= φ(v) <-> θ(v).

Remark. The L A ί case is given in Keisler [1977b] and the L A P case in Hoover
[1978b]. In his work Hoover also gave an axiom set and completeness theorem
f o r L A P J .
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Idea of Proof of Theorem 3.6.2. The proof of part (i) is trivial. Concerning the proof
of part (ii), interpretations

can be defined first for atomic formulas τ > r by induction on terms τ, and then by
induction on formulas. The idea is to formalize the definitions of integral in terms
of measure and vice versa. It is important in this result that ω e A, so that the
appropriate limits can be expressed in L A J and L A P . The finitary analogs of L A P

and L A J do not seem to be equivalent. D

This theorem often allows one to convert a theorem about L A P to a similar
theorem about L A J , and vice versa.

3.6.3 Corollary (Keisler [1977b] and Hoover [1978b]). Let Jί and Jί be probability
structures for L. The following are equivalent:

(a) Jί = A P ΛΛ
(b) Jί =MJί.
(c) For each closed term τofL&^τM = τΛ

Proof The proof of this result follows from the conservative extension and normal
form theorems. D

The Barwise completeness and compactness theorems also hold for L A J .
For these one must check that the interpretation functions / and g in the proof
of Theorem 3.6.2 are A-recursive.

3.6.4 Theorem (Finite Compactness Theorem (Keisler [1977b])). Let Φbea set of
sentences o / L A ί of the form τ e [r, s]. If every finite subset ofΦ has a graded model,
then Φ has a graded model.

Proof The proof follows by an ultraproduct construction. D

The Strong Law of Large Numbers takes a particularly nice form for LΆί.

3.6.5 Theorem (Strong Law of Large Numbers forLA ί). For any (graded) prob-
ability structure Jί and term τ with no variables in L A J ,

limτJt(ak) = τJί

fc->oo

for μH-almost all sequences a e MH.

3.6.6 Definition. When the product measurability axiom, (Axiom D7), is omitted,
we obtain the logic graded L A f . Satisfaction in graded probability structures is
defined in the natural way.

All the results in Sections 3.5 and 3.6 hold for graded L A J and graded L A P .
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4. Logic with Conditional Expectation
Operators

The logic L A P is not rich enough to express many basic notions from probability
theory, notions such as martingale, Markov process, and stopping time. The missing
ingredient here is the concept of conditional expectation. In this section, we will
develop an enriched language in which these notions can be expressed. It is easier
to work with logic having integral operators rather than with probability quantifiers
when we add conditional expectations.

4.1. Random Variables and Integrals

We first prepare to extend our logic by introducing a random variable form of
L A J which is equivalent to the random variable logic LA P(R) of Section 2.5. In
L A J , each term τ(v) is interpreted by an rc-fold random variable τM\a\, and the
atomic terms have values in {0, 1}. In the new logic LA J(R) the atomic terms are
allowed to have values in U. Let L be the language L = {Xi9 Cj\ίelje J).

4.1.1 Definition. The logic LA J(R) has atomic terms

where ΰ is a tuple of constants or variables and reQ + . The set of terms and formulas
of LAj([R) is defined exactly as for L A J .

The structures for L A J ( R ) are the random variable structures

Jί = <M, Xf, cf, μ>

as defined in Section 2.5.

4.1.2 Definition. The value τ{a)M of a term τ(v) of LA J(R) in a random variable
structure Jί is defined as for L A ί except for the following new rule for atomic
terms:

]ΪXf(a)>r,

ίXi(a)[rr=\-r if Xf(a) < -r,
^(α) otherwise.

Thus, [Xi(a) {r\M is equal to Xf(a) truncated at r. The reason the atomic
terms are truncated is so that each term will be interpreted by a bounded, and
hence integrable, random variable.
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4.1.3 Definition. The axioms and rules of inference ofLΆί(U) are exactly the same
as for L A J except that the atomic term axiom, (Axiom D2), is replaced by the
following list of axioms, where ΰ is an w-tuple of constants or variables.

E l . l ( n = v) = 0 v l(u = v)=l.

E2. [Xiiu) Γ 5] = min(s, max(-s, \_X(ΰ) \ r])) when 0 < s < r.

E3. V ( i ™ 0 Γ * + i ] l < * )
k

This says that X^u) is finite.

E4. For each me N,

V \\ίXi(ΰ) [k + 1] - [Xf(fi) \k]\dύ < - .

(The probability that \Xi(u)\ > k approaches zero as k -> oo.)

We state the main facts without proof.

4.1.4. Theorem (Soundness and Completeness Theorem). A countable set Φ of
sentences ofL^s(U) has a model if and only if it is consistent. D

4.1.5 Theorem. The logics LA J(R) and LAP(U)for random variable structures have
a common conservative definitional extension. D

In other words, LAy(R) and LA P(R) are equivalent logics. Those logics may be
generalized to study random variables with values in a Polish space S instead of in
U. The only changes needed are in the definition and axioms for atomic formulas of
L A P (S) and atomic terms of L A ί (§) .

4.2. Conditional Expectations

We will introduce the logic LA£((R) by adding a conditional expectation operator
E to the logic LAJ([R). A structure for LA £(R) has the form (Ji9 &) where Jί is a
random variable structure and 3F is a σ-algebra of measurable subsets of M. We
first review the notion of conditional expectation.

4.2.1 Definition. Let <M, S, μ> be a probability space, let 3F be a σ-subalgebra of
S, and let g: M -• U be bounded and measurable. A conditional expectation of g
with respect to 3F is an ^-measurable function h: M -> R such that for all
$Bgdμ = $Bh dμ. It is denoted by h = E[g\&], or h(x) =

4.2.2 Proposition, (i) The conditional expectation h(x) = E[g{-)\^~\{x) exists
and is almost surely unique in the sense that any two such functions are equal except on
a null set. D
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This is a standard consequence of the Radon-Nikodym theorem. Here, h is
the Radon-Nikodym derivative of the measure v(B) = j β g dμ, for Be^, with
respect to μ [ 3F.

We now introduce the logic LA £(R).

4.2.3 Definition. The logic LA£((R) has all the formation rules of LA J(R) plus the a
term-builder, the conditional expectation operator'. If τ(w, v) is a term and w, w are
individual variables (with u not in v\ then

Elτ(u,ΰ)\u](w)

is a term in which the occurrences of u are bound and w is free.

This logic has not been considered before in the literature.

4.2.4 Definition. We will use the abbreviation:

Elτ(u,v)\u] for E[τ(u, v)\u](u).

Thus, u is free in E[τ(u9 v)\u].

The values of a term of LA £(R) are only almost surely unique in a structure.
Here are the details.

4.2.5 Definition. A conditional expectation structure for L is a pair Jί = (Jfθ9 #"),
where Ji§ is a random variable structure and 3F is a σ-field of μ-measurable sets.

4.2.6 Definition. An interpretation of LA £(R) in a conditional expectation structure
Jί assigns to each term τ(uu . . . , un) a μ(π)-measurable function τM\ M" -• U such
that

(a) The clauses of the definition of τ(a)M for LA J(R) hold.
(b) (E[τ(a, v) \ υ]{b))M is μin) x J^-measurable and, for each a s M",

(£[τ(α, υ)\υ-]{b))M = JB[τ(α, Y\&W)

for μ-almost all b.

4.2.7 Lemma. For every conditional expectation structure Jί for L, there exists an
interpretation o/LA£(IR) in Jί, and two interpretations agree almost surely on each
term. The values of closed terms and sentences in M are the same for all interpre-
tations. D

4.2.8 Definition. The logic LA £(R) has all the axiom schemes and rules of inference
of LAj(R) as well as:

Fl . E[τ(x, v)\x~](w) = E[τ(y, v)\y]{w) where x and y do not occur in v.
F2. j £[σ(u) I u] τ(u) du = j E[_σ(ύ) \ u] E[τ(u) \ ύ] du. This formalizes the defi-

nition of conditional expectation.
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4.2.9 Definition. The bound \\τ\\ of a term τ of L A £ is defined by:

(i) \\LXι{u)[r]\\ = r.
(ii) \\l(x = y)\\ = 1.

(iii) Hfτdxll = ||τ||.
(iv) | |£[τ|u](w)| | = | |τ| |.
(v) \\F(τu...,τn)\\ = s u p { | F ( S l , . . . , S | | ) | | | s i | < | | τ ί | | } .

(vi) ||r|| = r.

4.2.10 Lemma. \τ(a)M\ < ||τ||. D

4.2.11 Theorem (Soundness and Completeness Theorem for LAE(U)). A countable
set of sentences o/LA£([R) has a model if and only if it is consistent.

Proof. The proof of soundness is easy. Let Φ be consistent. Form a new language
K ^ L by adding a new random variable symbol Xτ(v) for each term τ(v) of
LAE(R) of the form £[σ|w](w). Each such term τ(v) translates to the atomic term
[Xτ(v) Γ ή] where n > \\τ\\ and, hence, each term and sentence of LA£([R) has a
translation in K A S(W). Let Ψ be the theory in K A J (R) consisting of: all translations
of sentences of Φ, all translations of theorems of LΆE(U\ and

(Pv > l)lXτ(v) p r] = IXJS) Γ s], r, s > \\τ\\.

Ψ is consistent in KAf([Rf) and has a random variable model J(. Let & be the σ-
algebra on M generated by the sets

where τ(w, w) has the form E[σ{ΰ, v) \ v]{w) and c is in M. Let Jί0 be the reduct of
Jί to L and Jί = {Jί0, $F). Using the axioms, it can be shown by induction on τ
that if τ has translation σ, then τ{af = σM(a) is an interpretation of LA£(IR) in Jί,
and thus Jί is a model of Φ. D

Our treatment of LA £(R) can be readily extended to logics with two or more
conditional expectation operators and to logics with conditional expectation
operators on n variables. A case of particular interest is two operators Ex and E2

where one σ-algebra is to be contained in another. The author's student, S. Fajardo,
has proved the following.

4.2.12 Theorem. Let Φbea countable set of sentences in LAE(U) with two conditional
expectation operators. Φ has a model Jί = (y#0> &u ^iX w i t n &\ - ^i if and
only ifΦ is consistent in L A £ with the additional axiom scheme

)\ύ] = E2lE1[τ(u,S)\ύ]\ύ]. Π
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4.3. Adapted Probability Logic

We now consider a special case of the logic LA£(R), a case that is appropriate for
the study of stochastic processes. Throughout this section we will assume that μ
is a probability measure on M and β is the Borel measure on [0, 1]. By a (continuous
time) stochastic process we mean a (μ ® ^-measurable function

X:M x [0,1]-> U.

In probability theory, the evolution of a stochastic process over time is studied
by means of an adapted probability space as defined below.

4.3.1 Definition. If B c M x [0,1] and t e [0, 1], the section Bt is the set Bt =
{weM|<w,ί>eJ3}.

4.3.2 Definition. An adapted (probability) space (or stochastic base) is a structure

where:

(a) μ is a probability measure on M.
(b) Each #' f is a σ-algebra of μ-measurable subsets of M.
(c) For each t e [0, 1], ̂  = f]s>t^s, that is, #", is increasing and right con-

tinuous.

The family of σ-algebras <#", | ί e [0, 1] > is called the filtration of Sf. Intuitively, M
is the set of possible states of the world, and a set B ^ M belongs to Ssr

t if B is an
event whose outcome is determined at or before time ί.

Adapted spaces have been extensively studied in the literature (see, for example,
Dellacherie-Meyer [1981], or Metivier-Pellaumail [1980]).

4.3.3 Definition. Let L be a set of "stochastic process" symbols Xt, iel. An
adapted (probability) structure for L is a structure

Jί = <M, Xi9 μ, ^ ί ) i e j , ί e [ o , I]?

such that <M, μ, ^t} is an adapted space and each Xf: M x [0, 1] -> U is a
stochastic process on <M, μ>.

4.3.4 Definition. The adapted probability logic LAad(IR), or more briefly Lad, is a
two-sorted form of LA£(R) with just one variable w of the first sort, and countably
many variables tί912,... of the second sort, called time variables. The non-logical
symbols of L are stochastic process symbols Xt with just one argument place of
each sort. Lad has no equality symbol. This logic was introduced in Keisler [1979]
and has been studied further in Rodenhausen [1982].
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4.3.5 Definition. The terms of Lad are as follows, where s, t are time variables.

(a) For each r ε Q + , [^(w, ί)|>] i s an atomic term.
(b) Each time variable t is a term.
(c) Each real r ε A n R is a term.
(d) If τ is a term, so are

τdw, \τds,

(e) If τί9..., τn are terms and F e CA([R"), then F(τu . . . , τn) is a term.

For each term τ, τ > 0 is an atomic formula, and formulas are closed under
and Λ.

4.3.6 Definition. The adapted structure

Jt = <M9Xi9μ,&ty

for L is identified with the two-sorted conditional expectation structure

Here, β is Borel measure on [0, 1], and 3F is the σ-algebra on M x [0, 1] generated
by the set of (μ ® β)-measurable sets B such that for each ί, Bt e 2Ft and Bt =
f]s>t Bs. 3* is called the optional σ-algebra.

4.3.7 Definition. The notion of an interpretation τM of a term τ(w, ΐ) in an adapted
structure M is defined as in Definition 4.2.6 for LA£((R), but with the following
stronger clause for the conditional expectation operator.

For each term τ(w, s, b) with n parameters b from [0,1], (bl) through (b3) hold:

(bl) (£[τθ, 5, δ)|s](w, a))M is & ® j8"-measurable.
(b2) Foreachδ,(E[τ(w,s,B)|s](w,α))^ = E[τ(', ,b)Jί\^(w9a)(μ®β)-almost

surely.
(b3) For each b and α ε [0, 1], (£[τ(w, 5, δ)|s](w, a)Y = £[τ( , α, δ ^ l ^ J ί w )

μ-almost surely.

4.3.8 Lemma. £ι;ery adapted structure J( has an interpretation τ i—• τM. For each
term τ(w, 5) and all tuples a in [0,1], any Wo interpretations agree at τ(w, a) for
μ-almost all w. In particular, ifw is not free in τ(a\ then any two interpretations in
Jί agree at τ(ά)for all a in [0, 1].

Idea of Proof The main difficulty here lies in proving the existence of an interpre-
tation by induction on τ, at the conditional expectation step. We use the fact that
for any random variable/(w), £[/(•)I-^JOv) has a right continuous version, and
any right continuous process is measurable in the optional σ-algebra <F (see
Dellacherie-Meyer [1981]). This done, we then show that £[#(-, O I ^ J O ) is
^-measurable by applying the monotone class theorem. D
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Remark. In case L is the empty language, the adapted structures for L are just the
adapted spaces. In this case, the value of each term r*(w, a) depends only on a and
not on w or Jί.

4.4. Examples

As an indication of the expressive power of the logic Lad, we formalize some central
notions from the theory of stochastic processes. In each example, the process τM

has the stated property if and only if the formula holds for all 5, t in [0, 1]. We use
the abbreviations

E[τ\s] for £[φ](w, s),

and

σ(s) = τ(s) a.s. for | σ(s) — τ(s) | dw < 0.

(1) σ(s) is a version of τ(s): σ(s) = τ(s) a.s.
(2) τ(s) is adapted: τ(s) = £[τ(s)|s] a.s.
(3) τ(s) is a martingale: s < t -• τ(s) = £[τ(ί)|s] a.s.; recall that s and t are

terms of Lad.
(4) τ(s) is a submartingale: τ(s) < £[τ(ί)|s] a.s.
(5) τ(s) is Markov process with continuous transition function F κ T f ( a

Feller process): For each F e CA(R),

s < t - £[F(τ(ί))|s] = TF(s, ί, τ(s)) a.s.

(6) τ(w) is a stopping time: min(τ, 5) = £[min(τ, s)|s] a.s.
(7) X is a Brownian motion (X is not bounded, so this would have to be modi-

fied to fit within the language Lad):
(a) X is a martingale
(b) s = 0 -> X(s) = 0 a.s.
(c) s < t -> E[(X(ί) - X(s))2|s] = ί - s a.s.
(d) s < ί -> £[F(J!f(ί) - X(s))|s] = j F(X(ί) - X(s)) rfw a.s.; that is, X(t)

- X(s) is independent of J^s.

4.5. Axioms and Completeness

4.5.1 Definition. The logic Lad has all the axiom schemes and rules of inference
for two-sorted LA£([R) (with only one variable of the first sort, and E applied to
one variable of each sort) as well as:

Gl. For any F e CA([0, 1]) with JJ F(x) dx = r,

F(t) dt = r.ί<
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G2. s < t -• E[τ\s] = £ [ £ [ τ | s ] | ί ] ; that is, s < t implies J% ^ # \ .
G3. [\m \Jn fff |τ(w, s) - τ(w, ί)l max(0, 1 - \s - t| ή) ds dt dw < ί/m n.

That is, τ is (μ (x) β)-measurable. Intuitively, on a small diagonal strip
{<w, 5, ί>: \s — t\ < 1/n}, τ(w, s) is usually close to τ(w, t).

This set of axioms is essentially due to Rodenhausen [1982].

4.5.2 Theorem (Soundness and Completeness Theorem for La d (Rodenhausen
[1982])). A countable set Φ of sentences of Lad has a model if and only if it is con-
sistent. D

The proof of Rodenhausen is direct and quite long. A fairly short alternative
proof can be given using the completeness theorem for the two-sorted logic
LAE(M). The idea is to add an extra stochastic process symbol I(t) to L to represent
the term t. A two-sorted model Ji for L A £ is made into an adapted model by using
lM to replace the second universe of Jί by [0, 1]. The extra axioms Gl through G3
are needed at that point.

The Barwise completeness and compactness theorems, and the finite compact-
ness theorem, carry over to La d.

4.6. Elementary Equivalence in Adapted
Probability Logic

There are two natural notions of elementary equivalence in La d.

4.6.1 Definition. Let Jt and Jί be adapted probability structures for L.

(i) M and Jί are weakly Lad-equivalent, in symbols,

M =wJί,

if Jί and Jί satisfy the same sentences of La d.
(ii) M and Jί are strongly Lad-equivαlent,

Jί =sJί,

if for each tuple α in [0, 1] and formula φ(t) of La d in which w is not free,

Jί |= φ[α] iff Jί 1= φ[α].

4.6.2 Proposition. Any two adapted spaces (adapted structures for L = 0 ) are

strongly Lad-equivalent. D

The strong Lad-equίvalence relation is more important than weak Lad-equiva-
lence, because each adapted structure has the same second universe [0,1]. Each
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notion in Example 4.4 is preserved under strong Lad-equivalence but not under
weak Lad-equivalence. Following are some useful characterizations of these
relations.

4.6.3 Proposition (Hoover and Keisler [1984]). The following or equivalent:

(a) M =w Jί.
(b) There is asetT c [0, 1] of measure one such that for each a in T and formula

φ(s) ofLad, Jί \= φ\a~\ iff JV 1= φ\_a\.
(c) For each term τ(s) o/La d with no integrals over time variables, τ(a)Jί = τ(aY\

for almost all a in [0, 1]. D

4.6.4 Proposition. The following are equivalent:

(a) Jί =S Jί.
(b) For each term τ(s) with no integrals over time variables, and all a in [0, 1],

τ(a)M = τφf. D

The function τ(a) i—• τ{a)M is called the adapted distribution of Jί and it is
analogous to the distribution of a random variable. Most stochastic processes
which arise naturally are right continuous (in t for almost all w). For right continu-
ous processes the two notions of Lad-equivalence coincide.

4.6.5 Theorem (Hoover and Keisler [1984]). If Jί =w Jί and each stochastic
process Xf and Xf is right continuous, then Jί =s Jί. D

Brownian motion plays a central role in the study of stochastic processes. The
following result shows that the Lad-theory of independent Brownian motions is
complete.

4.6.6 Theorem (Keisler [1984]). Let Jί and Jί be adapted structures for L whose
stochastic processes are mutually independent Brownian notions. Then Jί =s Jί. D

4.7, Robinson Consistency and Craig Interpolation

The results of this section are all from the paper Hoover and Keisler [1982], a
paper which studies Lad-equivalence and which gives its applications to the theory
of stochastic processes. The following notion corresponds to saturated structures in
first-order model theory, except that stochastic processes take the place of both
relations and constants.

4.7.1 Definition. An adapted space

Se = <M, μ,

is saturated if whenever L 1 c L2, Jί1 is an expansion of £f to L1, Jίγ =s Jί1,
and Jί1 is an expansion of Jί1 to L2, there exists an expansion Jί1 of Mγ to L2,
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such that Jί2 =s Jί2. The space <? is weakly saturated if the above condition holds
with weak Lad-equivalence instead of strong Lad-equivalence.

4.7.2 Proposition. Every saturated adapted space 9* is universal; that is, for every
adapted structure Jί, there is an expansion Jί of 9 with Jί Ξ S Jί. Furthermore,
every weakly saturated adapted space is weakly universal.

Proof Take L 1 = 0. D

4.7.3 Proposition (Hoover and Keisler [1984]). Every saturated adapted space is
weakly saturated. D

4.7.4 Definition. An adapted Loeb space is an adapted space

such that for some internal *-adapted space

with universe M, μ is the completion of the Loeb measure of v and ^ is the σ-
algebra generated by

(J ^ s u (null sets of μ).
°s = t

The following theorem is the main result in Hoover and Keisler [1984].

4.7.5 Theorem. Every adapted Loeb space which admits a Brownian motion is

saturated. D

Remark. Anderson [1976] constructed an adapted Loeb space which admits a
Brownian motion. Hence, saturated adapted probability spaces exist.

4.7.6 Theorem (Robinson Consistency Theorem for La d). Let L° = L 1 n L2, and
let Jί1, Jί2 be adapted structures for L1and L2 such that Jίγ [ L° =s Jf2 [L°.
Then there is an adapted structure Jί for L 1 u L 2 such that Jί \LX =s Jί1, and
Jί \ L2 =s M2. A similar result holds for weak L^-equivalence.

Proof. There is an adapted structure Jί1 =s Jίγ on any saturated space. Then
Jίx \ L° =s Jί2 Is L°; so, by saturation, there is an expansion Jί2 oϊJί1 [ L° with
Jί2 =s Jί2. Let Jί be the common expansion of Jί1 and Jί2. D

4.7.7 Theorem. The Craig interpolation theorem holds for L a d , with or without time

constants from [0, 1].
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Proof. As in Theorem 3.6.2 for LA P, we first use a Henkin construction and then
apply Robinson consistency. D

Following is a characterization of M =s Jί as a coarsest equivalence relation
in the style of soft model theory.

4.7.8 Theorem (Hoover). Let « be an equivalence relation on adapted structures
for L with the following properties for all adapted structures Jί, Jί for L:

(a) IfL° <^LandJί % Jί, then M \ L° « Jί \ L°.
(b) ifJί ?zJί, then for each term τ(w, ΐ) with no integral or conditional expecta-

tion operators and all a in [0, 1], (j τ(w, a) dw)M = (j τ(w, a) dwY.
(c) IfXf is a martingale and Jί « Jί, then Xf is a martingale.
(d) The relation « has the Robinson consistency property.

Then Jί « Jί implies Jί =sJί. D

Aldous [198?] introduced the notion of synonymous adapted structures.
Jί and Jί are synonymous if x(a)M = T(a)^, for each term τ(v) with at most one
conditional expectation operator and each a in [0, 1]. He showed that each prop-
erty in Section 4.4 is preserved under synonymity. In Hoover-Keisler [1982]
there is an example of two synonymous adapted structures which are not weakly
Lad-equivalent. It follows from Theorem 4.7.8 that the Robinson consistency
property fails for synonymity.

A theory of hyperfinite adapted structures has been developed in Keisler [1979]
and Rodenhausen [1982] with results that parallel those on hyperfinite probability
structures in Section 3.5, for both =w and = s .

The adapted Loeb structures have a number of applications to standard
probability theory, this is particularly true of existence theorems for stochastic
differential equations where the richness of the space is necessary. See Cutland
[1982], Hoover-Perkins [1983a, b], Keisler [1984], Kosciuck [1982], T. Lindstrom
[1980a-d], and Perkins [1982].

Our treatment of adapted probability logic can be extended in several ways
such as the following:

(a) The optional σ-algebra 3F may be replaced by any σ-algebra ^ =2 3F of
(μ ® /immeasurable sets such that for each Ue^ and te [0, 1], Ute^t.
Each interpretation in (Jί, &) is then an interpretation in (Jί, &\ and
hence (Jί, &) = (Jί, <S).

(b) The language L has constant time symbols cr, r e A n [0, 1], which occur
in place of time variables (only finitely many in a single formula). The
additional axiom scheme is

G4. cr = r.

(c) The time variables range over [0, αo) instead of [0, 1]. Changes must be
made since β is no longer a probability measure.
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5. Open Questions and Research Problems

Following is a list of questions and problems which suggest some fruitful areas of
research with respect to some of the notions and relationships that were examined
in this chapter.

Problem 1. Develop a form of LA P which has the universal quantifier (Vx).

Three ways to add (Vx) so that the satisfaction relation behaves properly are:

(a) Restrict to absolutely Borel structures as indicated at the end of Section 2.
(b) Add (Vx) to LA P with the restriction that no universal quantifier may occur

within the scope of a probability quantifier.
(c) Add (Vx) to L A J with no restrictions.

None of our major proofs carry over to these logics, because the Loeb measure
construction does not preserve truth values involving (Vx).

Problem 2. Develop a logic with (Vx) and quantifiers for inner measure at
least r and outer measure at least r.

Since inner and outer measure are defined for all subsets of M, there is no dif-
ficulty in defining the satisfaction relation.

Problem 3. Study a logic such as LA P for structures with infinite measures
instead of probability measures.

Problem 4. Study a logic such as LA P for structures with two measures (and
corresponding quantifiers). Obtain completeness theorems for structures with two
measures μ, v such that:

(a) μ is orthogonal to v.
(b) μ is absolutely continuous with respect to v.

Problem 5. Define hyperfine conditional expectation structures appro-
priately and prove an existence and uniqueness theorem for LA £.

Problem 6. Does LA E have the Robinson consistency and/or the Craig inter-
polation property?

Problem 7. Extend the results for adapted probability logic to allow universal
quantifiers (Vί) for the second sort [0, 1].

Problem 8. Study various operations on probability structures from the
viewpoint of the logics examined in this chapter.

A small beginning for LA J is in Keisler [1977b].

Problem 9. The results on graded LA P carry over without difficulty when L
has function symbols (Hoover [1978b]). Do the results on LA P carry over when
L has function symbols?

The difficulty lies in the proof of Theorem 2.3.4.
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Problem 10. Reexamine abstract model theory in the light of logics such as

The hypotheses for a logic in the enriched abstract model theory of Mundici,
Chapter VIII, fail badly for LA P and the other logics of this chapter. Mundici
proved (under the set-theoretic assumption b|) that every logic with relativization
which has the Robinson consistency property is compact. Since LA P is not compact,
it follows that no extension of LA P which is a logic with relativization in the sense
of Mundici has the Robinson consistency property.

The logic LA P does not have universal quantifiers and does not allow function
symbols. The relativization property holds only for relativizing to a set of positive
measure. Moreover, there does not seem to be a way to make the class of prob-
ability structures into a semantic domain in the sense of Mundici. Closure under
strict expansion fails. The natural notions of isomorphic enibedding which come
to mind fail to satisfy either factorization, or existence and closure under disjoint
union.

An essential characteristic of LA P is that sets of measure zero are unimportant.
It appears that to prove that Robinson consistency implies compactness, con-
structions are needed which make sets of measure zero important.

Problem 11. Is there any equivalence relation « on adapted structures
which satisfies conditions (a)-(d) of Theorem 4.7.8, is strictly finer than = s, and is
strictly coarser than ^ ? Here h: M = Jί means that h sends μ to v modulo null
sets, and for all ί, h(tFt) = ^t modulo null sets, and Xt(w, t) = X /̂zw, t) for μ-
almost all w.

Added in proof: Problems 3, 4, 5, and 6 were solved while this article was in press.
M. Raskovic solved Problem 3 in the forthcoming paper " Model Theory for LA M

Logic ". M. Raskovic and R. Zivaljevic solved Problem 4 in " Barwise Completeness
for Biprobability Logics". S. Fajardo will publish affirmative solutions to Problems
5 and 6 in "Probability Logic with Conditional Expectation".




