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SPACES OF LARGE DIMENSION; 

SOME COUNTER-INTUITIVE RES"DLTS 

V.D. Milman 

In recent years we have seen the important development in functional analysis of 

the study called "geometric analysis" which concerns asymptotic properties of sets in 

finite dimensional spaces where the dimension increases to infinity. The significance 

of this development is illustrated in four example areas where the author has been a 

contributor. 

1980 Amer. Math. Soc. classification (1985 revision) 46B20. 

1. INTRODUCTION 

In this note we use the following standard notation. Let ]{ be a complex 

symm.etric compact body in IRn which we equip with the standard Euclidean in­

ner product with norm lxl 2 = (x,x) and Lebesgue volume. Let X= Xg = 

(IR n, II · II K) be a normed space such that the unit ball of X is K. Denote also by 

D the unit Euclidean ball (Dn, if we need to emphasize its dimension), the polar 

I< 0 = {x E IRn I y) :::; 1 for all y E K} and X* = (IRn, II· ). In addi­

tion we often denote by sX a subspace of X, q Y a quotient space of a space Y 

and dx = d(X,l~imX) the Banach-Mazur (multiplicative) distance between X and 

z~imX, that is, dx = inf{II'TII-IIT-1 111 T: X--+ z~imX is a linear isomorphism}. For 

convex bodies K and T C lR" we define d( I<, T) = inf {a, b I K C aT C ab I<} and 

dK = d(K,D). 
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VIle study asymptotic properties of sets K and spaces X when n increases to 

infinity. This area of Functional 1s often known as the Local Theory of 

Normed Spaces and has been one of the most developing areas of Functional 

Analysis during the last decade. In this short note I would like to explain why 

this is no accidental development. IVJ:athematicians in the past did not pay much 

attention to high dimensional spaces as such. At the beginning of this century, 

geometry (and our interest is in convex geometry) was mainly concerned with two 

and three dimensional Of course, some results were automatically extended to 

n-dimensional spaces but preserved (being isometrical) their low dimensional spirit. 

When it was realized that a study of high dimensional spaces was very important it 

was approached by infinite dimensional "approximation", And so infinite dimensional 

Functional Analysis it had been completely overlooked that this development does 

not in fact give any knowledge about high dimensional normed spaces. An infinite 

dimensional normed space is usually a bad (and even approximation for a 

dimensional space (which we could call an asymptotically infinite dimensional space). 

Later som.e other 

so on. They were 

others. 

from some points of view but not at all from 

exists and is di:fferent from both its roots: low dimensional convex geometry 

and infinite dimensional Functional Analysis. We have begun to call it "geometric 

analysis" because it has both aspects as we will. see. 

This note is not intended to give any detailed account of the theory. What I 

will try to show is that "geometric analysis" develops a new intuition which we were 

lacking. Indeed, as we will see, generally in the past we did not have a good high 

dimensional intuition. 
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2. INTRODUCTION TO CONCENTRATION PHENOMENON 

AND THE CONCEPT OF A SPECTRUM OF A CONTINUOUS 

FUNCTION 

Consider the classical isoperimetric problem on sn = 8Dn+l equipped with the 

probability rotation-invariant measure p and the geodesic distance p. Let ( * ), c sn 

be a cap of radius €. Then for any Borel subset A c sn, p(A) = 1/2, and A,= {x E 

sn I p( X, A) :::; €} 

p(A,) 2:: p((*)t+•) = 1f+•(sinB)n-l dB I 17r(sinBt-1 dB 

;::: 1 - jie-•2 nf2 ---+ 1 if n ---+ oo (for any fixed € > 0) . 

This was an observation of P. Levy dating from 1922 [13]. He used it to derive the 

following corollary. 

Corollary 2.1 (P. Levy). Let f(x) E C(Sn) be a continuous function on sn with 

the modulus of continuitywJ(€). Let Lf define the median (Levy mean) of f(x), that 

is, 

Then 

We consider now an abstract setting. 

Let (X,p,p) be a metric compact set with a metric p, diamX 2:: 1, and a 

probability measure p. Define the concentration function a( X; €) of X by 

a( X; €) = 1- inf{p(A,) I A be a Borel subset of X, p(A) 2:: t} 

(here A, = { x E X I p( s, A) :::; €} ). The above observation of P. Levy implies 

Example 2.2: Let sn be the Euclidean sphere equipped with the geodesic distance 

p and the rotation-invariant probability measure ftn· Then 
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for any fixed E > 0. 

Following this example, we call a :family (X,, Pn, p,,..) of metric probability spaces 

a Levy family ([9]) if, for any e > 0, a(X,, "'· diamX,.) -----+ 0 for n-----+ oo, and a normal 

Levy family [2] with constant ; cz) if, 

(VI/hen the factor diamXn is omitted most of the examples below become normal 

Levy families with their natural metric and natural enumeration.) 

Let f E C(X) be a continuous function on a space X with the modulus of 

continuity WJ(E). As in Corollary 1, define a median Lt (also called a Levy mean) as 

being a number such that EX: ;:: Lt} :2:: ! and p,{x EX: f(x) :::; Lt};:: t. 
Then p,(x: e). This means that if a( X, ce) is small, 

then "most" of the measure of X is concentrated "around" one value of 

In fact, the concept of a Levy especially a normal Levy :fan1ily) 

generalizes the concept behind the law of large numbers in two directions: a) the 

measures are not necessarily the product of measures (that is, no condition of "in­

and b) any Lipschitz function on the space is considered instead of 

linear functionals 

During the last 10-15 years, many new examples of Levy families have been 

discovered and different techniques of estimating the concentration function have 

been developed (see a recent survey [16]). V'Ve mention here only three more such 

examples. 

Exam.ple 2.3: The family of orthogonal groups {SO(n)}nEN equipped with the 

Riemannian metric p (which is equivalent up to 11/2 to the Hilbert-Schmidt operator 

metric) and the normalized Haar measure /Jon: 

a(SO(n);e):::; jiexp(-f?n/8). 
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(This follows from Gromov's isoperimetric inequality [8], see [9].) 

1} n has the normalized Hamming metric 

d(s t) = 1..1 J i s · -='"- t ·1 I ' n t ' ~ I ZJ 

and the normalized counting measure f-t, that is, , then 

(This follows from the Harper isoperimetric result [10]; see in such form [1].) 

Example 2.5: The group Tin of perm.utations of {1, ... , n} with the normalized 

Hamming metric 

and the normalized counting measm·e: 

a (II; E) ::; exp( -e2n/64) 
n 

(B. Maurey [14]). 

The concentration phenomenon is often used in a study of spaces of large dimen-

sion through a concept of the "spectrum" of a function with a small local oscillation. 

We outline this concept in the following example which was the original result in this 

direction (see [15]). 

Theorem 2.6. There exists a universal constant c > 0 such that, for every integer 

n and /;; = [ce2 n/log 1/e] and any continuous function f E C(Sn), there exists a 

k-dimensional subspace E such that, for any X a.J:Jd y E sk-l = E~o n sn 

Jf(x)- f(y)J < wJ(2t), 

where WJ(<') is the modulus of continuity of f(x). 

Remarks. 1. Recently, Y. Gordon [7] removed the log 1/E factor m the above 

formula for .k. 
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2. Using this theorem, we choose a function f in such a way that f = Const. means a 

given geometric property. Then, by the theorem, we find subs paces of large dimension 

where this property is "almost" satisfied. (See [18] for a number of such applications.) 

The estimate on dimension k in the above theorem is important and leads to 

orem [5] about almost Euclidean sections of a convex symmetric body in lRn (see 

[15]). 

3. APPROXIMATION BY MINKOWSKI SUMS 

Let A+ B = {x + y I x E A, y E B} be the Minkowski sum of two sets A and B 

in lRn. Let I;= [-x;, x;] C IR" be intervals of length, say, 1. Consider T = 2:::~ 1 I;. 

l!Ve want to approximate a Euclidean ball such sums, that is, for a given E > 0 

we would like to have d(T, ::;: 1 + E. Obviously, if N = n then d(T, D) :::: and, 

by an entropy consideration, it looks as if we need at least an exponential by n of a 

number of intervals to achieve a 

in [17], an easy geometric interpretation of the same old result from [6] shows that 

there exist intervals J; C ffit n, i = 1, ... , for ::;: c* log -~ ( c is a numerical 

constant) such that d(l:~o I;, D) ::;: 1 +E. 

This direction was recently intensively treated in and [ 4]. It is shown there 

that the above situation is essentially preserved when we substitute intervals by other 

convex bodies or if we consider approximation by sums of other convex bodies instead 

of D. For example 

Theorem [4]. Let a convex compact body J{ C IRn be given. There exist orthogonal 

operators Ai E SOn, i = 1, ... , No, for No ::;: c* l such that T = _L "'No A 1{ 
E No L..,1 ' 

satisfies d(T, D) ::;: 1 + t: (as usual, cis a numerical constant). 

Moreover, if D is the ellipsoid of maximal volume of symmetric J{ then we need 
J. 

in fact only No "' lo~ n. ~;- rotations to achieve an €-approximation of the Euclidean 
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ball. 

The above result may be strengthened further for some special convex bodies. 

For example, the dual form of a result of Kasin [11] gives us that for the cube 

en= [-1, 1]n c lRn there exists a rotation A E SOn such that 

(that is, uniformly boundea; C is a universal constant). 

In fact we show in [4] that for every K C lRn such that the polar K 0 is the unit 

ball of cotype 2 space X, for every € > 0 we may find a finite number p( €) of rotations 

A; E SOn (where p(e) depends on € > 0 and cotype 2 constant C2(X) but not on n) 

such that d("£f~'{ A;K, D) :::; 1 +e. 

4. GEOMETRIC FORM OF THE QUOTIENT OF A SUBSPACE 

THEOREM 

Using the language of Minkowski sums we may give an easily visualized version 

of the so called QS-Theorem from [19] which in its analytic form states 

Theorem 4.1. ({19}, see {17} in this form). For any space X = (1Rnll · II) and 

any ! < >. < 1, there exists qsX - a quotient of a subspace of X - such that 

dim qsX ~ ..\n and dqsX :::; C(1 - .A)-1 log(1 - .A)-1 . If 0 < ..\ < ! then there exists 

Y = qsX such that dim Y 2:: ..\n and dy :::; 1 + C.j).. 

(In fact, I knew of an estimate dy :=:; 1 + cJ ..\log {- and the log factor was 

removed in [7] as I have already noted after Theorem 2.6.) 

The following recent geometric form of this theorem better corresponds to the 

purpose of this note. 

Theorem 4.2. ({20}). Let K be any convex symmetric compact body in lRn. Then 

there exist a linear operator u : lRn -t 1Rn, det u = 1, and two orthogonal operators 
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A1,A2 E O(n) such that if 

T = uK + A1uK 

then the distance 

where C is a universal constant (independent of K and n ). 

Also the following E-version is true: for every E > 0 there exists an integer p(E), 

independent of n or K, such that for some operators E O(n), i = 2, ... ,p(e), 

5. ENTROPY AND COVERING NUMBERS 

Recall that the covering number 

T) = inf { N I there exists an x; 

N 

and I< C U(x; +T)}, 
1 

that the minimal number of shifts of T C lR. n needed to cover ]{ C lR. n. If 

d = d(K, then it is expected that either N(K, T) or N(T, I<) would be at least 

ncn (for some universal c > 0). 

However, for every 1( C lRn there exists a linear transform UK E SLn such that 

fork= uKK the situation is different. 

We call a position of K any affine image uK for u E GLn. Clearly, every position 

of K produces the unit ball of isometrically the same normed space as X K. It is an 

interesting feature of the (asymptotic) high dimensional theory of convex sets that 

we are, in fact, forced to consider the family of all positions of a given K (that is, all 

affine images uK, u E GLn) even when we are aiming at some volume inequalities 

or other properties of an individual K. 
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Theorem 5,L ({20]). For every convex compact body K E lRn there corresponds 

a volume preserving position (called "canonical") K = ugK (ug E SLn) such that 

for any two bodies K and T, vol. K = vol. T, 

N(K, T):::; en and N(T, K)::::: en, 

where, as usual, e is a numerical constant. 

Note that it is easy to give an example of such KandT with d(XK, Xr) :2': 

Therefore, d( K, T) :2': fo for such K and T. 

The next fact is the volume interpretation of the above theorem. It shows that, 

from the point of view of volume ratio, any K behaves as a suitable ellipsoid. Or 

precisely, 

Theorem 5,2, (See {21}, {24].) For any convex compact body K there exists an 

ellipsoid MK such that voL K = voL MK and for any other convex body T 

c~n vol. (MK + T) :S: vol. (K + T) :S: envol. (MK + T) 

(C is a universal constant). 

Remark 1. In the above theorem the family of ellipsoids does not play a special 

role. We could take any fixed body P and replace the ellipsoid !vi K by some affine 

image PK(-position) of P. 

Remark 2, I like to emphasize that G. Pisier has simplified the original proofs of the 

results of this section which originated in (22]. His approach is a mixture of vol·ume 

and entropy points of view which unexpectedly becomes much simpler than steadily 

pursuing the fixed line of volume (or entropy) inequalities (see [23], [24]). 

The last result which we will mention in this section does not require any posi-

tion. 
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Theorem 5.3. ([12}). There exist universal constants c > 0 and C such that for 

any n E lN and any convex symmetric compact bodies K and T in 1R n 

So we conclude this list of results (or examples of results) which, from our point 

of view, do not fit exactly with our standard intuition. I feel this to be a very 

preliminary note on the subject, and it has not included other important examples 

such as a study of Khinchine type inequalities, symmetrizations and many others. 

However, I hope that the results presented will bring some understanding of those 

new areas where the dimension of the space is a parameter of study. 
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