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EXISTENCE VIA INTERIOR ESTIMATES FOR
SECOND ORDER PARABOLIC EQUATIONS

John van der Hoek

In memory of a former student of J.H. Michael, the late

Robin Wittwer (17th February 1954 - 26th May 1984)

1. PRELIMINARIES

+ .
Our problems will be solved on subsets of ngl 1 with n =21 . We

label points X in ﬂ?n+l by (x,t) , x € Efl, t € IR, the (n+l)-th

component being often associated with time in physical problems. For

1
X = (x,t) , we call IX| = (llxll2 + |£l)? , the parabolic length of X ,
2 2 2 n+l
=l = Z x, if x = (X.,...4X ) . For X,¥ ¢ R , d(X,Y) = |xX-Y|
. i 1 n
i=1
denotes the parabolic distance between X and Y . Let  be a domain in
n+1 . . .
izl . A point X in the topological boundary o of ) belongs to the

parabolic boundary P2 of Q if for some Y € £ , there exists a
continuous path connecting X and Y , along which the "time" coordinate
is non-decreasing. If X € Q , then dQ(X) denotes

infld(x,¥); ¥ = (v,T) € PR, T < t} if X is the point (x,t) .

2. LINEAR PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS
Linear parabolic partial differential operators will be defined on

functions u defined on domains { to have the following form:

a 82u o du Ju
= z e — _ o
Lu (X) 2 aij(x) ax‘ax.(x) + .E bi(X) ax_(x) + c(X)u(x) at(x)
i,j=1 i3 i=1 i
for X e Q , aij , bi ; C being real valued, locally HOlder continuous
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on § with exponent o ¢ (0,1] , the matrix [aij(X)] being symmetric
positive definite for all X € . We shall here be concerned with a
certain class of such operators.

In this class, denoted by L , we éhall assume the following: there
exist 0 <v <A, 0<eg<1l sothat for all X e Q , 1 <4i,j <n the
following are true

n

Z a,.(X) E.E. =2V
ig=1 + i

2

M

g,
i

_ n
A for ;11 g = (El,...,in) € R

]

laij(x)l Sh, b (01 < M@, e <@ <AL

3. SPECIAL DOMAINS

+ . .
A non-empty domain § in r" . belongs to class A (admissible
domains) if for each 0 < v £ A , there exists a function

Yec® n Cz’l(Q) , 8 denoting the closure of § , so that
(i) v =0 if X e PR, Y(X) >0 if X e 0 ;

and, in addition, for each bounded open subset G of { , there exists

p>0,M>0,0<y<1,A>0,A>0 so that

(i1) ¥ = pdz(x) for all X e G , d = dQ ;

(iid) P(¥) < MP(X) wherever X,Y € G , d(X,¥) < yd(X) ;
n 4
(iv) [‘ z [B%P—(x)]z} < AP(X) da(x) 1 forall xeq 7
i,3=1 ‘i )
(v) for any symmetric constant matrix [aij] which satisfies

n n 5 N
z a,. Eigj > v ifl Ei for all & = (il,...,in) e IR

and Ja,.|] <A, 1<4i,j <n then for all X ¢ G,

n 2
OV iy - N -G -2
- aij 8x.3x,(x) at(X) < = A (R) A(x) .
i,j=1 i 3

For Qe A, 0 <v £\, the corresponding function whose existence has
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just been asserted will be called a (v,A)  barrier for § . Some

properties of A are given in Section 7.

4. BOUNDARY VALUE PROBLEMS
We wish to solve Dirichlet problem for operators in L and domains in

A

4.1 THEOREM. Given a bounded Qe A , L e L , £ locally H¥lder continuous
on Q with exponent o (as in Section 2), satisfying for some B > 0 ,
l£x) 1 < Bd (x) €72 for all X e Q , € being the same as that in the

definition of L e L , and ¢ continuous on P , there exists

u € C2’l(Q) ncd) so that

Lu(X) = £(X) for X € Q

u(X) ¢ (X) for X e PQ . o

Further interior regularity of u can be deduced from the interior
Schauder theory. The theory underlying this theorem and its generalizations
to operators L with unbounded and degenerating coefficients generalizes
work done by J.H. Michael for elliptic equations [1], [2], [3] and is given

in [4]. The theory is based on using only intérior Schander-type estimates.

5. OUTLINE OF THE PROOF OF THEOREM 4.1

One first notes that it is sufficient to consider the case when ¢ = 0
([4], 84-88). ﬁith 0<a<l,QeA, ¥ a (v,A) barrier for  , we
define the following Banach spaces X2+a(ﬂ,¢) and Ya(Q,w) . For

sufficiently smooth functions u defined on { , put

1 B

N, (u) = sup{¥(x) A °Plu(xX)]; x € Q}

B
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1

H?m = sup{min{y )™t a)™%, vy am V% .

o

lu(X) - u(¥)] a(x,¥) °; X,Y € §}, X # ¥} .

We say that u e X2+a(9,w) if and oﬁly if

N_{(u) + g N (—i‘}_ + Hu _BE_
R 12 B 1
i ST

i=

n 2 2
9 u o) 37u
vz Féz[ax.ax;} * Hz[ax.ax.]]
- i3 i

i,j=1
du ofdu o
(1) + Nz[SEJ + H2{§E} <

and u € YG(Q,w) if and only if
o
(2) Nz(u) + Hz(u) < o,

The expressions in (1), (2) define norms for these spaces. Let
0<v<1<A,e>0 be the parameters associated with L . Then there

exists a (V,\) barrier for § which satisfies for some A >0 , B > 0

2

(3) LP(R) < ~AP(X) d(x)~ if X e Q
€
(4) P(x) > BA(P) .
We shall use this (v,A\) barrier in our definition of X2+a" Ya . It is

now possible to show that if u e X then Lu e Ya and that there

240,

exists a constant C > 0 , independent of u and o so that
(5) |Zal < C Jul
Yu x2+0L
. 2,1 F s
and conversely if Lu ¢ Ya ;, uecC (Q) n C(R) with u(X) =0 for

X e PR, then u € X2+a and

(6) fall < C lul .
X2+0L Yu
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This last inequality is our interior Schander-type estimate. We note that
under the conditions of Theorem 4.1 and our choice of | (see (4)),

fevy .
o

The Perron procedure is used to show that if £ ¢ Yd » then there

exists u € X2+a so that

o Bzu du
z F(X) - 55(x) = £(x)

i

Hu (X)

i=1 Bxi
for all X € Q (and u=0 on PQ ). BAs the details of this procedure
(in the form we require) does not seem to be given in full in the
literature we present this in Section 6.
The "method of continuation" is used to obtain the existence for L .

That is, we show that

T={t e [0,1] (L (X, ) = Ya}

is both open and closed in [0,1] using (5) and (6). Here

Lt T tL 4+ (1-t)BE . BAs O0eT , T=1[0,1] .

6. PERRON PROCEDURE

The author thanks Professor Gary Lieberman for discussions at the
Centre for Mathematical Analysis on the version of the Perron procedure
described below. In [4] a weaker version was given, where it seemed
necessary to consider only "expanding domains®. 2k8 [5] gives another

method which also avoids this restriction.

6.1 LEMMA: Let >0, 8§ >0 and

Q=1{(xt) ¢ B, Ixl <8, 0<t<T}.

If ¢ is uniformly comtinuous on PQ = {(x,t) ¢ Q : either t =0 or

0<t<T and x| =8} , £ <s locally Hblder continuous on  , there
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exists a funetion u e Cz’l(ﬂ) ncQ) equal to ¢ on PQ and Hu= £ in

Q. Write u = Hg .

Proof: This result can be deduced from [6]. oo

6.2 LEMMA: et G be an open domain in W', T > 0 and let u be an
upper semicontinuous function on §., Q = Gx{0,T) with u<0 on ) s

Hu20 on Q, then u<0 on Q.

Proof: suppose to the contrary that u(xi > 0 at some point

X = (£,T) € Q , then u attains a positive maximum on QT B

QT = {(x,£); t £ T} n Q at some point X . Clearly % ¢ ﬁﬁ: by
assumption, and by the strong maximum principle ([6], Theorem 1, page 34),

% ¢ ﬁT ~PQ as lim sup{U(¥); Y ¢ QT, Y+ 2z} £ 0 for each Z ¢ PQT . O

We will assume henceforth that Q e A, is as in Section 5. Let

C(Q) denote the set of all cylinders of the form

1

U= {(x,t) ¢ BT, Ix-xgl <8, &, <t <t +n)

0 0

for some (xo,to) € Bgﬂi, §>0,n>0 sothat UNQ#P , but
TnPL=g.
We call a sub-temperature in § any function wu satisfying the
following conditions:
(i) =0 £ u < ®w, u > -0 on a dense subset of § ;
(ii) u is upper semicontinuous on 0
(iii) u =0 on PQ ;
(iv) if V e C(R) , ¢ is uniformly continuous on § N Pv , u £ ¢ on
{ n PV , then HV Zu on NNV,

¢

Let S denote the set of all sub-temperatures.
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6.3 LEMMA:
(a) S#40;

(b) If u,v € S then maxiu,v} ¢ S .

Proof: From Section 5, (3), U € C2'l(Q) n c() satisfies U =0 on PQ
and HY(X) € -AD(X) d(X)"% for X e 0 . Put
-1

(7) Vo = AT+ NEN Y,

o
then -v ¢ S . Let u,v € S, then clearly max{u,v} satisfies (i)-(iii)
for the definition of a subtemperature. Let V ¢ C(R) , ¢ uniformly
continuous on & n Pv , max{u,v} <¢ on Prnl, then u<d, v<d on

Vv
8n0Pv so u,v < H¢ on Snv. o

6.4 LEMMA: Let ue S ,v e C(Q) . Let {um} be a decreasing sequence in
c) converging pointwise in §& to u , and d)m the restriction of u
to 8 nPv. Put v, = HX s then {vm} is a decreasing sequence in

m
Cnv) converging to a function v which is

(a) upper semicontinuous on 2 nV ,
(b) Hv = £ im Qn VvV,
(c) v=u on Qn PV,
Furthermore, v on the set § n V does not depend on the particular

sequence {u } .

Proof: as uwe S, v >u on 2 nV . The sequence {Vm} is decreasing
by virtue of the maximum principle. Let v be defined on § n V by

v(X) = lim v_(X)
e

for all X e @ nV . Then v is upper semicontinuous on Q NV , v > =®

on a dense subset of {{ NV as v=u on V0 ; V< 49 as v < Vl .
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By applying a parabolic version of Harnack's second theorem ([6], page 89)
to the sequence {vmv-vl} ;, we conclude that Hv =f on nV . Part (c)
is immediate. Now let {ﬁm} be another decreasing sequence in ()

converging pointwise on § to u , and ¢m the restriction of u_ to

m

OnpPr. put W= Hi ; then again {wm} is a decreasing sequence in
m : .

C(Q n V) . We claim that Wz Note that H(v-—wm) =0 in QnV,

v--wm = u-wm <0 on {lnPv ; SO by Lemma 6.2, v'-wm <0 on Qnv . If

w = lim wm , then w satisfies (a), (), (¢) and w=v on O nV.

00
Likewise w =<v on QnvV. [u]

6.5 DEFINITION: rLet we S, v e C(Q) . We define the parabolic lift of u

on V (by analogy with [7], page 24), written Lz by

u(X) if X e O\V
LX(X) = v (%) if XeQnv

max{u(x), ¥(X)} if X e 3(Q n W)

where v is given in Lemma 6.4 and
V(X) = lim sup{v(¥); Y e Q n vV, ¥+ x}
for each X ¢ 3{(R n V) . Note that LZ(X) =u(X) for X e Qn PV,

6.6 REMARK: with the notation in 6.5, let w e C(Q n V) and suppose that

Bw=£f in Q@nV ,w=z2u in QnV then w2 LZ on £ NV . Apply Lemma

6.2 to LV - W .
u

6.7 LEMMA (Properties of parabolic lift). Let u,v € S, Vv ¢ C(Q) , then
(a) LZZu in 0 ;
() L) €S ;

() if uzv on {, then LZ = LX on Q.

Proof: Property (a) is immediate from the construction of LX . For (b),
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put w = Lu , then w satisfies (i) - (iii) of the definition of sub-

temperature. Now let W e C(Q) , ¢ be uniformly continuous on 8 n Pu,

= W .
w<¢ on n PW . We show that H¢ =w on § nW. Consider four cases:

(1) Vvcw . By definition of w , w =u on Q& n (W\V) , and hence

u<d on Qn Pw, so HZ >u on nw. Applying Lemma 6.2 in V ,

H 2L =w on {nW.

(2) W cv . This case follows from the maximum principle applied in

(3) Wnov#@ . Wemay assume W n PV # g , as other situations are

W -
handled as above. Clearly w 2 u , so H¢ >uon §nW and hence Hg > w

on @ o W\W\PV) . On QR aovVvonw, w—Hg satisfies the assumptions of

" W - S —
Lemma 6.2, so w < H¢ on £ nVvVnwW. Now H¢ 2u on QNVNW so by
W \% ST a——
the Remark 6.6, H¢ > Lu on QnNVaW.
(4) Wnvs= @ . Then w=u on nv.
For (c), let {um} v {Vm} be decreasing sequences in C(ﬁ) converging
pointwise in § to wu,v respectively. Let W= min{um, vm} , then {wm}

. = . . . / y
is a decreasing sequence in C(f}) converging pointwise on. §8 to v. Let ¢m,wgenote

respectively the restrictions of u , w to § nPv. Let u= lim HV ’
m m oo Om
v = lim HV on §invV , then G = v follows from HV = HV on V.
m>e wm ¢m lpm
We conclude the proof by considering the three cases in the definition of

the parabolic 1ift. . =]

6.8 LEMMA: For each uw e S , u < Vo on Qu PQ (vO given in (7)).

Proof: Let u e S then u-—vo is upper semicontinuous on Q. equal to O
on PQ . Suppose that there exists X = (§,T) ¢ § so that (u-vo)(X) >0.

Then u-—v0 attains a positive maximum on ﬁ; (see Lemma 6.2, proof) at g

say. There exists V ¢ C(Q) , V ¢ § so that % ¢V and

(u=-v) ®) = sup{(u-v ) (X); X ¢ v} .
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In V ,

) =f-Hy_29d “2zp >0

v
H(L, =¥, 0

where p depends on V,y as in Sectibh 3 (ii). Hence by ([6], Lemma 1,

page 34)
w-v) & < @ -9
v
< sup{Lu(X) “v (X)X e Pv}
=s®hm%wdm;XeW}
< sup{ (u —vo)(X); X e V}
a contradiction. ]

6.9 THEOREM: Let wu be defined by
u(X) = supiv(x); v ¢ S}

for each x e Qu PQ . Then u e C(R u PR n Cz'l(Q) and Bu = £ in Q

with uw=0 on PQ.

Proof: By Lemma 6.2 (the proof) and Lemma 6.8, |u| < vy om QuPR. To

prove the rest of the theorem it suffices to show that Hu = £ in { . Let
vVoeC , Ve , X = (£,T) be the centre point of V . By Lemma 6.3 (b),

there exists an increasing sequence {u } in 8 so that u(X) = lim u_(X) .
y n oo D
Let ﬁn =1, then {ﬁn} is an increasing sequence in S and bounded
n
above by 0 and so by [6], page 89 the function u = lim U (pointwise),
n—)oon
satisfies HU = f in V . Since u < ﬁn , u(X) € 3(X) . But

~

un(X) < u(X) [Lemma 6.7 (n)l, so u(X) = u(X) . Let ¥ = (x,t) be an

arbitrary point in V with t £ T and suppose that {Vn} is an increasing

sequence in S so that u(Y) = lim v_(Y) . Let ¥ ,v be defined as above.
n—)OOn n

Then HV = £ in V and v(Y) = u(¥) . Let wo= max{vn,un} , then {wn}

is an increasing sequence in S . Let Gn,ﬁ be as above. Since W = u
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v > ﬁn (Lemma 6.7 (c)) and hence w = U . But as w?'vn <u,

W(X) < u(X) = U(X) , so W(X) = G(X) . We have % =8 on V , H@ - =0
in V and (Ww-u)(X) = 0 , whence w =1 in Ve=Van {(tx,£); £ <1}, by
the strong maximum principle ([6], page 34). As it can also be shown that
w(Y) = v(Y¥) we conclude that u(Y) = u(¥) . But Y € VT was arbitrary, so
Hu = f in VT . As V was arbitrary, Hu = £ in Q . O
7. SOME PROPERTIES OF CLASS A

EXAMPLE

(1) The set

Q= {(x,t) ¢ 1Rn+l; t > 0, ||x—x0|| < 8}

isin A, for any 8§ >0 , x e]Rn. For 0 < Vv <A, VP defined by

0

B/2

i
Px) = U(x,t) = £2[1 -exp(~k (Ix —xOI|2 -8%))1

where K = (nA)/(Z\)GZ) is a (v,A\) barrier for  for any 0 < B <1.
(2) A is closed under non-empty finite intersections.

(3) If G is a domain in ]Rn (n 2 1) which is "elliptic" admissible
in the sense of J.H. Michael ([1], page 4), then G X (0,T) € A for any
T >0 . We can use examples in [l] to generate examples in A . This
includes the case where G is a bounded domain in R® with a C2 boundary.

2,1 n+l

(4) A is closed under C diffeomorphisms of IR .

8. CONCLUDING REMARKS

The above theory has been used to study the Dirichlet problem for
operators with unbounded coefficients on special domains extending the
results of J.H. Michael to parabolic equations (see [4]). These results

will be published elsewhere.
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