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APPROXIMATION BY COMPACT OPERATORS
BETWEEN CLASSICAL FUNCTION SPACES

David Yost

Interest in approximating a bounded linear operator T on a
Hilbert space H originated with Gohberg and Krein [7, Section II.7],
They showed, constructively, that there is always a compact operator
C which minimizes ||T - C|| . In contemporary terminology, the compact
operators K(H) form a proximinal subspace of B(H). Another constructive
proof of this fact was later given by Holmes and Kripke [91, and a
comparison of the two constructions was made by Bouldin [4]. An

abstract proof has also been given by Alfsen and Effros [1, Corollary 5.61].

More recently, various authors [2,3,11,12, 13, 16] have considered
this problem for operators between general Banach spaces E and F .
For which E and F is X(E,F) a proximinal subspace of B(E,F)?
In this expository talk, we will summarize what is known when E and
T are classical function spaces - that is, C(X) , where X is compact
and Hausdorff, Lp(u) where 1 =< p < © , or the sequence space cy -
There is no need to consider L _(U) since every such space is isometric
to some C(X) . It will, of course, be necessary to distinguish the
cases p =1 and p > 1 . Our first result establishes proximinality

in the case F = ¢ We remark that this is nontrivial, since

0 °
K(E,co) is always a proper subspace of B(E,co) , when E is infinite

dimensional, by [10] or [1u].
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THEOREM 1. [2] PFor any Banach space E , K(E,co) is proximinal in B(E,co) .

PROOF. Given T € B(E,co) we have T*en + 0 (weak®) where

T% Kl - E* and (en) is the usual basis for Kl . Let

d = limsup ”T*en” and, for n € N , let r = max {0,1 - d/”T*en”} .
If C is any compact operator, then HC*enH -0 and so [T -C||=4d.

Let D ¢ B(co) be the diagonal operator determined by the sequence

(rn) . Since ro> 0 , D is compact and so is C = DT . Finally
IT - ¢|| = sup ”T*en - C*en” <=d. So C is a compact approximant
to T .

Establishing proximinality of the compact operators in the
remaining cases is more difficult. The most general condition
sufficient for proximinality was defined by Lau [11]. He calls
K(E,F) a U-proximinal subspace if for all € > 0 , there exists a
§ > 0 (depending only on €) such that, for all T ¢ B(E,F) and
C ¢ K(E,F) with [T <1 and [T+ <1 + 8 , there exist T ¢ B(E,F)
and C € K(E,F) with T+C = T+C , [T <=1 and [[c| =& . This
generalizes several sufficient conditions considered by other authors.
In most cases, proximinality of the compact operators is established
by first proving U-proximinality. The proof of Theorem 1 can easily

be modified to show that K(E,co) is U-proximinal in B(E,c.) . The

0

other positive results are summarized as follows.

THEOREM 2. K(E,F) <s proximinal in B(E,Fj in each of the following
cases.

(14) E=c¢, , F=C(X)

0



(1B)

(1c)

(24)

(34)

(3B)

(3¢)

(4A)

(uc)

PROOF .
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Lp(u) , Where 1 < p < @

E=C(X) , F=0C(Y), where X <s dispersed and Y 1is

Stonean or X = Y 1g the ome-point compactification of a

discrete set, and the scalars are real

E=Ll(1—|) s F

c(x)

E = Ll(u) , F = Zl(P) , Where T 1is discrete

E = Ll(u) , F = Lp(v) , Where 1l < p < ®

E = Lp(u) , Where 1< p< o, F = C(X)

E = KP(P) , F = Kq(A) where 1< p,q<® and T , A are

discrete.

(1A). See Mach [121.

(1B)  All operators are compact, by [15].

(1c) Since F is reflexive, an application of Schur's
lemma shows that all operators are compact.

(28 see [16].

(3A) This follows from the representation theorem for operators
taking values in C(X) [5, Theorem ii.7.l] and the well
known fact every subalgebra of a C(X) space is proximinal.

(8B) U-proximinality was established first in [11], then by a
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different method in [16].
(3C) This follows by duality from case (U4A)-.
(4A)  This is a special case of [13, Corollary 6].
(4C) TFor p =< q , this follows from the methods of [8]. For

P > q , every operator is compact [15].

The first negative result was due to Feder [6] who showed, amongst
other things, that K(£_ ) 1is not proximinal in B(£) . His results
depend on the observation that K(Kl,B) is proximinal in B(Zl,E) if
and only if {compact subsets of E} is a proximinal subset of {closed,
bounded subsets of E} , with respect to the Hausdorff metric. He then
constructs, with some difficulty, a subset of Ll(O,l) with no best
compact approximant. Further negative results follow by duality. We

summarize them.

THEOREM 3. In each of the following cases, K(E,F) <s not proximinal

in B(E,F)

(28) E = C(X) , F = C(Y) where X contains a perfect subset and
Y <s Stonean or X and Y both contain copies of the Cantor

set or X contains the Cantor set and Y contains w2 .

(3B) E = Ll(u) , F = Ll(v) where VvV 1is not a discrete measure.

PROOF. (2A) See [3], [6] or [16].

(3B) This follows from [6, Theorem 3].

Looking over these results, we see that nothing at all is known
about the cases which would be numbered (2B), (2C) and (4B), and that the

classification
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is incomplete in several other cases. Of the various questions left

open, the following seem to be the most interesting.
PROBLEM 1. Is x(cC(X) , Lp(u)) proximinal in B(C(X) , Lp(u)) ?

PROBLEM 2. Is K(Lr(v) . Lp(u)) proximinal in B(Lr(v) s Lp(u))

when v >1 and U , V are not necessarily discrete?
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