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APPROXIMATION BY COMPACT OPERATORS 

BETWEEN CLASSICAL FUNCTION SPACES 

David Yost 

Interest in approximating a bounded linear operator T on a 

Hilbert space H originated with Gohberg and Krein [7, Section II.7], 

They showed, constructively, that -there is always a compact operator 

C which minimizes. fiT - Cll . In contemporary terminology, the compact 

operators K(H) form a proximinal subspace of B(H). Another constructive 

proof of this fact lPJas later given by Holmes and Kripke [9], and a 

comparison of the two constructions was made by Bouldin [4]. An 

abstract proof has also been given by Alfsen and Effros [1, Corollary 5.6]. 

More recently, various authors [2,3,11,12, 13, 16] have considered 

this problem for operators between general Banach spaces E and F 

For which E and F is K(E,F) a proximinal subspace of B(E,F)? 

In this expository talk, we will summarize what is known when E and 

F are classical function spaces - that is, C(X) , where X is compact 

and Hausdorff, Lp (ll) where 1 ::= p < 00 , o1n the <!;equence space c0 . 

There is no need to consider L00 (ll) since every such space is isometric 

to some C(X) It >"lill, of course, be necessary to distinguish the 

cases p = 1 and p > 1 . Our first result establishes proximinality 

in the case F = c0 . We l"emark that this is nontrivial, since 

K(E,c0 ) is always a proper subspace of B(E,c0 ) , when E is infinite 

dimensional, by [10] or [14]. 
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THEOREM 1. [2] For a:ny Banach $pace E ~ K(E,c0 ) if;J proximinal in B(E,c0 ) · 

PROOF. Given T E B(E,c0 ) we have (weak''') where 

T'~ : !1 -+ E1< and (e 
n 

) is the usual basis for !1 Let 

d = limsup //T'"enll and, for l1 E JN ' 
let r max {0,1 - d//]T''<e II} 

l1 n 

If c is any compac·t operator, then IIC'''e II -+ 0 and so liT - Cli ::: d 
n 

Let D E B( c0 ) be the diagonal operator determined by the sequence 

(r ) Since r -+ 0 , D is compact and so is c = DT Finally 
n n 

liT C/1 = sup 1/T'''e C'''e II s d So c is a compact approximant 
n n 

to T 

Establishing proximinality of the compact operators in the 

remaining cases is more difficult. The most general condition 

sufficient for proximinality was defined by Lau [11]. He calls 

K(E,F) a U-proximinal subspace if for all E > 0 there exists a 

o > 0 (depending only on E) such that, for all T E B(E,F) and 

C E K(E,F) with liT// S l and 1/T+C/1 S l + o , there exist T E B(E,F) 

and C E K(E,F) with T+C = T+C , IITII S l and 1/CII S E • This 

generalizes several sufficient conditions considered by other authors. 

In most cases, proximinality of the compact operators is established 

by first proving U-proximinality. The proof of Theorem 1 can easily 

be modified to show that K(E,c0 ) is U-proximinal in B(E,c0 ) . The 

other positive results are summarized as follows. 

THEOREM 2. K(E,F) is proximinal in B(E,F) in each of the following 

cases. 

(lA) E F C(X) 



(lC) = L ( ).l) , 1vhere ·p 
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l<P<"" 

(2A) E = C(l{) , F = C(Y) , where X is dispe.rsed and Y is 

Stonean or X = Y is the one-point aompaatifiaation of a 

discrete set, and the saaZars are real 

(3A) E :: Ll(1J) ' F = C(X) 

( 3B) E Ll ().l) ' F ::: .e.l(f) , uihere r is disarete 

( 3C) E ::: Ll ().l) ' F 1 (v) 
p , whe1•e l<P<"" 

(4A) E L ( Jl) p , where l<P< 00 ,F :: C(X) 

( 4C) E "' .e. (f) ' F " .e. (b.) uJheJ'e l<p,q<oo and r ' ;:., 
a:re p q 

disa:rete. 

PROOF. (lA). See Mach [12]. 

(lB) All operators are compact, by [15]. 

( lC) Since F is reflexive, an application of S.chur' s 

lemma shows that all operators are compact. 

(2 A) See [16]. 

(3A) 'I'his follows from the representation theorem for operators 

taking values in C(X) [5, Theorem IV.7.1] and the well 

known fact every subalgebra of a C(X) space is proximinal. 

(3B) U-proximinality was established first in [11], then by a 
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different method in [16]. 

C 3C) This follows by duality from case ( 4A) . 

(4A) This is a special case of [13, Corollary 6]. 

(4C) For p ~ q , this follows from the methods of [8]. For 

p > q , every operator is compact [15]. 

The first negative result was due to Feder [6] who showed, amongst 

other things, that KCt,,) is not proximinal in B(l,,) His results 

depend on the observation that K(l1 ,E) is proximinal in B(.t1 ,E) if 

and only if {compact subsets of E} is a proximinal subset of {closed, 

bounded subsets of E} , with respect to the Hausdorff metric. He then 

constructs, with some difficulty, a subset of L1(0,l) with no best 

compact approximant. Further negative results follow by duality. We 

summarize them. 

THEOREM 3. In each of the following cases, K(E,F) is not p~ximinal 

in B(E,F) 

(2A) E C( X) , F = C( Y) where X contains a perfect subset and 

Y is Stonean or X and Y both contain copies of the Cantor 

set or X contains the Cantor set and Y contains w2 

(3B) E = L1(~) , F = L1(v) where v is not a discrete measure. 

PROOF. (2A) See [3], [6] or [16]. 

(3B) This follows from [6, Theorem 3]. 

Looking over these results, we see that nothing at all is known 

about the cases which would be numbered ( 2B) , ( 2C) and (4B); and that the 

classification 
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is incomplete in several other cases. Of the various questions left 

open, the following seem to be the most interesting. 

PROBLEM 1. Is K(C(X) , L (tl)) proximinal in B(C(X) , L (f.!)) ? 
p p 

PROBLEM 2. Is K( L ( \l) , L ( ll ) ) 
r P 

proximinaZ in B(L (v) , L (!1)) 
r P 

when r > 1 and lJ , v are not necessarily disc.rete? 
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