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SOME REGULARITY THEORY FOR 
CURV_~t\.'TURE V ARIFOLDS 

,John E. Hutchinson 

Suppose M i!; a smooth n-dimensional manifold in RN and for each 

x E M let P(x) be the matrix of the orthogonal projection of RN onto T xM. 

Then the second fund1:1mental form is given by the following 

(1) 

where 1 :5 iJ,k :S N (the usual version of the second fundamental form is 

easily computable from A, and conversely, see [2]). 

More generally, suppose V is an n-dimensional varifokl in RN. In other 

words, V is a Radon measure on RN X G(n,N), where Gi{n,N) is the set of aH 

orthogonal projections of RN onto some n-dimensional subspace and is 

naturally imbedded in RN2. Then we say A = [Aijkh :5 i,j,k:::; N is the weak 

second fundamental form of V if 

{b)!{ Pij _!!_ .:f>(x,P) + Aijk(x,P) ~ .j>(x,P) an. ap.k 
j J 

+ Ajij .:f>(x,P)} dV(x,P) = 0 

for all ~ E C1 (x 1) ... ,xN,P11 , ... ,PNN) which are compactly supported m 
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A calculation using the divergence theorem (see [2]) shows that if M and 

A are as in (1), then A is the weak second fundamental form of the varifold 

v(M,l) in the sense of (2). 

We have the foliowing results. 

(3) Theorem. A is V a.e. unique (if it exists). D 

The proof is an easy test function argument ([2]). 

(4) Theorem. Suppose {Vk}bl is a sequence of integer multiplicity 

varifolds in a bounded open U C RN, and suppose 

M(Vk) ~ M, 

for some p > 1 and constants M,K. 

Then there exists an integer multiplicity varifold V m U with weak 

second fundamental form A(V) such that 

(a) Vk-+ V (in the sense of measures). 

(b) I {A(Vk),vY) dVk - I {A(V),vY} dV (for an smooth vector-valued 
3 

test functions '1./J: U x G(n,N) --~> RN ). 

D 

The proof uses elementary techniques involving vector-valued measures. 

There are more general results but the proofs are then more involved (see [2]). 

(5) Theorem,. There exists an integer multiplicity (oriented) n-dimensional 

varifold V with prescribed boundary which minimises: 

(a) f jA(V)IP dV if 1 :::; p < n; 
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J !A(V) prn provided there exists rome V with the same 

boundary >Satisfying f rn dV" < 7 = 1(n) {herl'l 1 = 1(n) is 

an absolute positive constant computable from the Isoperimet:ric 

constallllt). D 

The p:roof uses a compactness theorem for oriented integer multi.plidty 

varifolds together with the previous theorem. 

We also have the following regularity theorem. 

(6) Theorem. If V is an integer-multiplicity varifokl in an open set U C R~ 

V has weak second fundamental form A, and for some p > n J IAIP dV < oo, 

then v is locally a cl,l-n/p (in the sense of multiple valued functions) 

"branched" manifold. In particular, tangent cones exist everywhere, and each 

such cone is a finite set of n-planes with integer multiplicities. D 

For a precise statement of the above theorem and the proof, see [3]. 

We next consider regularity properties of local minimisers of 

f IA(V)III dV. Details of the following results wm be published elsewhere. 

First observe that n i.s a "limit" exponent for Theorems (5) and (6). 

Moreover, the expression J 
dilations. 

rn dV is easily seen to be invariant under 

Possible regularity of such local minimisers is limited by the following 

example. Let M be a compleY <~.nalytic variety in <e 2. By identifying {: 2 with 

R 4 we can regard Mas a 2-dirnensmnal varifold in R 4 . Using the well-known 

fact that M has zero mean cunature together with an appropriate form of the 

Gauss-Bonnet formula, onE> ':an show that M is a local minimiser of J 
However, due to the possible pr~Psence of branch points, M is no better than a 

<Cl,f (in the sense of multiple valued functions) "branched" manifold, for some 
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E > 0. 

We next need a result for varifolds V with J !A(V)ID· dV smalL 

In the following a flat vari fold F is a finite sum of variJolds 

corresponding to n-dimensional affine spaces Ai with integer multiplicities ni. 

Thus 

Q 

F = L v(Ai,ni) . (7) 
i=l 

We also define the varifold distance d = d0 R between varifolds V 1,V 2 , 
in BR(O). 

d0,R(V1,V2) =sup {I/ q)dV1 - J <f>dV21: ,P = <f>(x,P) is 

C00 ,l</>l ~ 1, R I:~ 10 ~ 1, I ;:10 ~ 1} . 

It is straightforward to check that the topology induced by d is the usual 

topology of varifold convergence (in the sense of Radon measures). 

(8) Lemma. Suppose V is an integer multiplicity varifold in B1 = B1 (0) with 

weak second fundamental form A, J lAin d(VlB1) ::; E, and M(VlB1) ~ M. 

Then for each 6 > 0 there exists Eo =Eo(M,o) > 0 such that f < Eo 

implies d0,9 ; 10(V,F) < li for some flat varifold F. 0 

The proof uses the compactness theorem (4) together with an easy 

version of the regularity theorem (6). 

(9) Remarks. If f jAin d(V l B1) < oo and II VII has a finite upper n-

* dimensional density bound (} (IIV!i,O) < A at 0, then a simple scaling 

argument shows that for sufficiently small p the va.rifold 'p# V (dilate V 
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about 0 by the factor p·1) satisfies the hypotheses of the lemma with 

M = wnA and f: ~ £0. 

It is not difficult to show (using the monotonicity formula) that such a 

density bound holds in case n = 2. Moreover, the density bound holds at 0 for 

arbitrary n if J IHin d{VlBp) ~ cpf. for some f: > 0 and all 0 < p < 1, where 

H is the mean curvature (note that IHI ~ IAI). This follows from the 

monotonicity formula. A simple covering argument then shows that if 

J lAin dV is finite then IIVII has a finite upper n-dimensional density bound 

except for a zero dimensional set. Although I believe that' II VII then has a 

finite upper density bound everywhere, I do not yet have a complete proof of 

this fact. 

Finally, we remark that o*(IIVII,O) < oo and J lAin dVlB1 < oo implies 

V has varifold tangent cones at 0 and these tangent cones are flat varifolds. 

However, they need not be unique (see [4] for a counter-example which also 

applies here). 

The following lemma is used to construct the comparison surface needed 

in the proof of Theorem (ll). 

(10) Lemma. Suppose V is an integer multiplicity varifold in B1 = B1(o) 

with weak second fundamental form A, J lAin d(VlB1) ~ £, and 

M(VlB1) ~ M. 

Then for each 15 > 0 there exists £o = £0(M,I5) > 0 such that if f ~ f:o 

then for some r E [1/4, 3/4] the following are true: 

(i) TeV exists for IIVII a.e. e satisfying l€1 = r, e E spt IIVII, 

(ii) for all such €, the affine space T e V satisfies d(T e V ,A) < 15, where A 

is one of the affine spaces associated with F as in {8) and (7), 
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(iii) if V r = V n JBr is the varifold obtained slicing V at radius r, 

then J IA(VJ:Jil1 dVr :::; <f and vr is a cl,l/n "branched" manifold. 

D 

The proof of is stan&a:rd. To establish (i.i) we first observe that a 

covering argument shows that for some < r < 3/4 if I El = r then 

J lAin ~ c(N}Ep for aU 0 < p < 1/4. A monotonicity formula for 

tangent plane oscillation as in [3] then gives the result. 

The result follows from and an ;u·gument as in [3]. 

Finally we have the following theorem. 

(11) Thll'Jorem. Suppose V is an integer multiplicity varifold which locally 

minimises J lAin. Suppose M(VlB1) :::; M. 

Then there exists = .:0 (M) > 0 and a > 0 such that if 

J lAin d(VlB1) :::; t 0 then Vi_B1; 4 is a cl,a (in the sense of multiple-valued 

functions, see [2]) "branched manifold". 0 

The theorem is proved by first. sewing in a comparison surface in Br, 

where r is as in (10). The surface construction uses a Whitney partition of 

unity and is quite involved. 

The Widman "hole-filling" technique [1; pp.l63, 164] now shows that 

This argument can be iterated to establish that 
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for all 0 < p < 1/4. (In particular, the normalised mass in B4P is contwHed by 

an appropriate version of the monotonidty formula.) 

FinaHy, onro uses the arguments of to <establish the theorem. 
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