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HOMOGENEOUS BANACH SPACES OF 

TYPEC 

J.A.. Ward 

Let G denote a compact abelian group and B a Banach algebra of 

continuous functions defined on G with pointwise multiplication. 

G.E. Silov called B of type C if its norm is equivalent to that defined 

by 

sup inf{ llciiB 
xEG 

c E B , c(x) b(x)} , 

and gave a complete classification of those algebras which are homogeneous 

and of type C In this paper, we first replace pointwise multiplication 

by convolution, before generalizing the notion of type C to homogeneous 

Banach spaces. Again a complete classification is obtained. 

1. INTRODUCTION 

We begin by reviewing a problem which was solved by G.E. Silov in a 

rather lengthy paper [3] in the early 1950's. The basic theory of 

commutative Banach algebras can be found in many texts available on the 

subject; see for example [1], from which all unexplained notation is taken. 

A commutative unital Banach algebra B , without radical, has a maximal 

ideal space H which is both Hausdorff and compact. By the Gelfand Repre-

sentation Theorem there is an isomorphism b ~ ~ of B onto a subalgebra 

ft of C(H) , where H carrys the usual Gelfand topology. It is often con-

venient to identify elements of B with continuous functions on H . 

An ideal I of B belongs to a non-empty subset M of H if f(m) = 0 for 

all m E M , f E I , while for each m E H\M there exists an f E I such that 

f(m) ~ 0 . If B is regular then for each m E H there exists a smallest 

non-zero closed primary ideal, J(m) say, belonging to {m} 

algebras B/J(m) then each have a unique maximal ideal. 

The quotient 

In [3] Silov introduces the notion of the norm of an element at a 

point. For a regular commutative unital Banach algebra B , without 

radical, the norm lib II of b E B at m E H is m 
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ll'bll B/ J (m) (1) 

where b is the coset containing b . Clearly, if II liB is the original 

norm on B then for each m E M , 

and so 

;:: sup 
mE/'1 

(2) 

Silov calls B of t:ype c if its norm is equivalent to II r defined by 

II lie sup II lim · 
mEM 

In view of inequality (2), B is of type C if and only if there exists 

a positive constant K for which llbiiB ::5 Kljbjjc for all b E B . 

For any compact set S , the Banach algebra C(S) of 

continuous functions defined on S , with the usual pointwise 

operations, is of type C . 

For each integer n;:: 1 , the pointwise algebra C(n)(T) , of 

all functions defined on the circle which have n continuous 

derivatives, with norm defined by 

11£11 (n) 

is also of type C . 

In particular, Silov considered the case where the maximal ideal 

space N could be endowed with the structure of a compact abelian group, 

in such a way that ~ is homogeneous; that is, ~ is translation 

invariant, each translation operator and each shift is continuous. (See 

[4] for a more detailed discussion of homogeneous Banach algebras.) Note 

that Silov actually used a different definition of homogeneity, but then 

required the functions in ~ to be continuous under translation, that is, 

to have continuous shift, which means that ~ is homogeneous in the 
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commonly used sense. 

Starting with a compact group G (which will play the role of H), a 

Banach algebra K with unique maximal ideal Q (to play the role of 

R/J(O) and a homomorphism w of X - e into the multiplicative group of 

elements of K which lies in the coset of the unit element in K/Q , 

Silov constructs a new Banach algebra Kw(G) which has maximal ideal 

space G , no radical and is homogeneous in the wide sense mentioned above. 

Kw(G) is called the continuous sum of the primary ring K over the group 

G . While it need not always be regular, when it is it is of type C . 

Further, a homogeneous commutative regular unital Banach algebra, without 

radical, is of type C only if it can be constructed in this way. 

2. A NEV PROBLEK 

Suppose that the set S considered in Example 1 is a compact abelian 

group. Then, since each of C(S) and C(n)(T) is homogeneous, each must 

be a continuous sum. 

However, each space has another multiplicative structure, namely 

that provided by :convolution .• With respect to this operation, neither 

algebra has an identity, although the maximal ideal spaces are easily 

id~ntified as the discrete spaces ~ and Z respectively. Since neither 

of these is compact, Silov's clasification cannot be applied. We can, 

however, still consider the question of whether or not each algebra is of 

type C . (As we shall see in section 3, the answer on both cases is no!) 

We can, in fact, discuss the problem in a more general context. Let 

G denote a compact abelian group with dual group X Then PM(G) and 

PF(G) denote the usual spaces of pseudomeasures and pseudofunctions 

defined on G (see [5]). If (B, II liB) is a Banach space of pseudo­

measures on G , then for each b E B and x E X define 

c e B, ~(x) = ~(x)} 

Then II llx :S II liB . We say that B is of convolution type C if its 

norm is equivalent to that defined by 

(3) 
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sup 
xEX 

Trivially, both PM(G) and PF(G) are of convolution type C . 

If B is a convolut:i.on algebra with maximal ideal space X , as for 

example when B is one of the usual algebras C(G) or Lp(G) 1 ~ p < oo 

then this essentially coincides with Silov's notion of type C 

In the next section we give a classification of those Banach spaces 

111hich are of type C , under the one additional assumption that the 

Fourier transformation on B is continuous, that is, there exists a 

positive constant K with xzJJbiiPM ~ JlbJJ 8 for all b E B . 

3. A CLASSIFICATION OF CONVOLDIION TYPE C BANACH SPACES 

Let F = (X E X : ~(x) ~ 0 for some b E B} ; F is usually called 

the .§12_ectrum of B 

Now, for x E F and b E B , we have 

lnf(~c~ 8 : c E 8, = ~(x)} 

lnf(~~(X)X + c~B : c E 8, Q(x) = 0) 

I inf(~x + c~B : c E B, acx> = 0} 

Define, for each x E F , ~8 (x) by 

We know that 

and so is bounded below by K on F . Hence we have the following 

proposition. 

PROPOSITION 1 

and 

There exists a function 

Jlbllc = sup ""B(x) l~<:x) I for each b e B 
xeF 

It follows from Proposition 1 that 

wit11 K 
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PHF(G) 

and ~·J 

is the set of pseudomeasures whose transforms are supported 

by F 
F 

is the restriction of to F . Since ~ is zero off 

F it is convenient to identify the restriction ·with ~ , and to 

write as , the pointcilise product of ~JB and on F . We 

use this convention throughout the paper 0 The inclusion vJill usually be 

proper - for example, if B = P:F'(G) , then wB (x) = 1 for all x E X F 

hence, the se·t on the is PJvi(G) , T•lhich properly contains PF(G) if 

G is infini·te. 

On ·the other hand, we can start with a positive func·tion w , defined 

on some subset F of X , satisfying inf tu(x) ?: K for some positive 
xEF 

constant K . Then ·;ve can construct the normed space r,vhere 

p {S E PHF(G) : lUgE l"(F)} 
'W 

and 

II slip !lsi! !Jw~JI for each s E p 
_("(F) 'VJ 

w 

Clearly 

an isometry. 

p 
(u 

is translation invariant, wi·th each translation operator 

(It is certainly not: the case that each convolution type C 

Banach space is transla·tion invar:i.ant - for instance, take the closed sub­

space of PM(G) spanned by x + fJ where x and 'fJ are distinct elements 

of X . ) \·le prove in Lemma l that P w is complete with respect to II llw 
and so is a Banach space, and in Proposition 2 that it is of convolution 

type C 0 

I..EM:m. 1 (Pw' II II) is complete. 

Proof For each X E F and S E P,~ ' l!sllw ?: w(x) l~<x) I and 

lft<x)l lis II -1 ~s~w(inf w(x))-l 1 IJsiJw :::;; (w(x)) :$ ::::.; 
K w 

xEF 

Hence, KilsllpJvi :::;; !Is II~, for each s 
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The lerr~a now follows from a standard argument. Let (Sn) be a 

Cauchy sequence in Pw . Then it is also Cauchy in PM(G) and so 

converges to some pseudomeasure S Clearly ~ must be supported by 

F as each ~ is supported 
n 

F Now there exists a subsequence 

(S ) with 
nj 

for j ~ 2 . Since 

we have 

which ensures that S E 

N 
S S + ~ (S - S ) 
~ nl j=2 nj nj-1 

N 

lis II + L: 
nl w j=2 

lis n. - s II 
nj -1 w J 

PROPOSITION 2 P w is of convolut.ion type C . 

Proof As a consequence of leiiLma 1, i·t is sufficient to verify that P w 

satisfies the required norm. condition. Without loss of generality take 

X E F since II S II = 0 for each S E P and each x E IF . Then for 
X w 

each S E P 
?,) 

inf{ II Til : T E 
'W 

inf{ llw1jj 00 

11 (F) 
T E 

inf(~w(ft(x)~ + 1)~ 
JI'"(F) 

IA<x>l inf(~w(~ + t)~ 
"' i (F) 

T E P ~(X) = 0} 
'W 

T E P , 1(x) 
'W 

0} . 
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However, if T E P with ~(x) = 0 
'W 

then 

~we~+~>~ oo ~ w<x>l~<x> + 1cx>l 
12 (F) 

w(x) , 

llsr ~ llsll . 
'W 

Since the reverse inequality 

is obviously true, the norms II c and II llw are equal and p 
w 

is of 

type C 

We have already noted that a convolution type C Banach space need 

not be translation invariant; further, even if it is translation invariant, 

it need not be homogeneous in the usual sense - for example, PM(G) is 

translation invariant and of convolution type C but is not homogeneous. 

The next proposition gives a necessary condition for homogeneity of p 
w 

PROPOSITION 3 If Pw is homogeneous then w~ E c 0 (F) for each S E P 
w 

l'roo:f The trigonometric polynomials contained in a homogeneous Banach 

space form a dense subspace. (See Theorem 2.17 of [4] .) Hence Pw n T(G) 

is dense in P Let 

Then H 

H = p 
w 

As 

if p 
w 

that we 

w 

H (S E Pw : wfr E c0 (F)) 

is a closed subspace of 

w is bounded away from 

is homogeneous then it is 

consider the subspace pw 

p 
w 

which contains Pw n T(G) , and so 

0 ' 
it follows from Proposition 3 that 

a subspace of PF(G) This suggests 

of p which contains those elements 
w 

PROPOSITION 4 (Pw, II II) is a homogeneous Banach space. 

Proo:f It is easy to see that Pw is a translation invariant Banach 

subspace of Pw 

S E Pw , the shift 

Hence, it is sufficient to prove that for each 

x -> S is continuous from G to Pw . In fact, since 
X 

G is compact, it is sufficien·t to prove continuity at the identity. Now, 
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II s - s II X tu 

sup w(x) lx(x) - 11 l~<x) I . (4) 
xEF 

For each £ > 0 ' 
there exists a finite subset E of F with 

sup tu(x)lft<x)l < ~ (5) 
2 

Also, for each 

xEF\E 

X E E ' there is a zero 

x E u => lx(x) - 11 
X 

< 

neighbourhood u satisfying 
X 

llsll Max('W(X) : X E E} 
w 

Put U = n {U X E E} 
X 

Then combining 4,5 and 6 we see that for 

X E U , 

II s - sll X 'W 
:5 max(max w(x)lx(x) - 11 l~<x)l ' 

xEE 

sup w(x)lx(x) - ll lfr(;l()ll 
XEF\E 

< € 

Hence, the shift is continuous at the identity of G . 

All closed subspaces of convolution type C spaces are also of 

convolution type C • Hence p'~<' is also of convolution type C . The 

classification theorem can now be proved. 

THEOREM 1 Let B be a homogeneous Banach space and 

F = (X E X : B(x) ¢ 0 for some b E B} 

positive function ,of Proposition 1. Then B is of type C if and 

only if B = Ptu. 

Proof (<=) This is a consequence of Proposition 4 and the remark 

following it, 

(=>) We have already observed, following Proposition 1, that 

An argument similar to that used in the proof of Proposition 3 

(6) 
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proves that "'~ e c0 (F) for each s E B . That B = pw is a consequence 

of the facts that p"' n T(G) -= TF(G) (see [6])' that (TF(G))A is dense 

in c0 (F) and that tu is bounded away from 0 The equivalence of 

II liB and II II"' on B is a consequence of the Closed Graph Theorem. 

are of type c We have already noted that PF(G) and PM(G) 

however, of these only PF(G) is homogeneous. On the other hand, taking 

nor C(n)(T) for n ~ 1 G equal to the circle group T , neither C(T) 

is of type C . To see this, we recall that each of these is a homogeneous 

space and so can only be of type C if of the form P"' for some w 

defined on Z . However, it is well-known that it is impossible to 

classify functions in C(T) , and so also those in C(n)(T) , by looking 

at the rate of decay of their Fourier transforms. The same will also 

apply to other familiar homogeneous spaces such as A(G) 

with absolutely summable Fourier transforms, and Lp(G) 

An alternative straightforward proof that none of A(G), 

1 ~ p < oo , nor in fact any of their spectral subspaces 

, of functions 

for 1 ~ p < oo 

C(G) or Lp(G) 

A(G)F , C(G)F , 

etc., for F infinite, is of convolution type C follows from the next 

corollary. 

Having decided that none of the usual Banach spaces is of type C , 

it is natural to ask are there many Banach spaces of type C ? We consider 

this question in the next section. For the moment, note that, taking G = T, 

i = o(n-m) for all f E C(m)(T) and so if w(n) = O(nm) then 

C(m)(T) k P"' . On the other hand, as we shall see in section 4, Pw is 

not the whole of PF(G) ; in fact, for n ~ 2 p"' k L2 (T) . 

4. BEHAVIOUR OF FOURIER TRANSFORMS 

The closed subspaces PFF(G) of PM(G) are the simplest examples of 

homogeneous Banach spaces of type C . It is easy to see that if 

The converse is also true. 

PROPOSITION 5 
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Proof We only prove the necessary statement. Suppose that Pw = PFF(G) 

and define the linear operator T : Pw ~ c0 (F) by T{S) Then T 

is a surjection since (Otherwise, 

given any finite subset E of F and any e > 0 there exists 

~ E F\E for which 
-1 

[w(ry)] -y(f/) > E Then 7(1'/) > e inf w(x) , which 
XEF 

contradicts the choice of 1 from c 0 (F) .) 

It is a consequence of the Closed Graph Theorem that T is con­

tinuous. To see this, let (Sn) be a sequence which converges to 0 in 

Pw , and assume that converges to in If 1/1 .. 0 then 

there exists 1'/ E F with ~(!'/) = e > 0 There also exists n E N such 

that for n > N 

€ 
2 < 

Then for any n > N , 

llftnll "' <!: 
Jl (F) 

which means that the sequence (Sn) cannot converge to 0 

contradiction. 

It now follows from the continuity of T that there exists a positive 

constant, C say, with 

for all S E pw PFp(G) . In particular, taking S x , we see that 

"" w E 11 (F) 

COROI.IARY Let B Banach space of convolution type c ' 

and put 

F = {X E X : ~(x) ~ 0 for some b E B} 

(which necessarily can be identified with X n B) 

If supllxJJB < oo then B = PFF(G) . 
XEF 
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Proof By Theorem 1, B = Pw for some w Hence, by the Closed 

Graph Theorem there is a positive constant C such that for all b E B 

that is, 

sup w(x) lli<x) I ::S cllbiiB . 
xeF 

In particular, putting b = ~ for ~ E F , we obtain 

w(~) ::S c11~11B ::S C supllxiiB <.., . Thus wE ..e..,(F) and B = PFF(G) 
xeF 

By putting various growth conditions on w we can deduce facts about 

the rate of decay of the Fourier transform of elements of Ptr.J . The most 

obvious of these is that if w-l E ..er(F) then ft E ..er(F) for each S E Ptr.J. 

In particular, if 

then Pw ~ L~(G) In neither case can inclusion be replaced by equality. 

Theorem 2 (i) If 
w CX) 

P ~ LF(G) then pw ~ AF(G) 

(ii) If L;(G) ~ Pw and fr<x) = o for all X elF then 

pw = PFF(G) 

Proof (i) 

and so the pseudomeasure T , with ~ = ~ft on F and ~ = 0 otherwise, 

is in Pw . For a given S E Pw , take 

~(x) = sgn(ft(x)) , 

which is 1 if ft(x) > 0 

~(x) 

0 if ft(x) = 0 and -1 if ft(x) < 0 . Then 

[sgn(ft(x)) ]ft(x) lfr<x) I , 
and so T is positive definite. 

CX) 

Thus, as T E L (G) , it is a 

consequence of Bochner's Theorem that 

~ ~(x) = ~ ~(x) = ~ lfr<x)l <..,. 
xex xex xex 
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(ii) It follows from the Closed Graph Theorem that, since 

L;(G) ~ Pw there exists a positive constant C with 

llw~ll 
l.o(F) 

~ cllsll co for all In particular, taking S - x , 

w(x) ~ cllxll = c co for all x E F . Thus w E lco(F) , and the conclusion 

follows from Proposition 5. 

Note that (ii) remains true if L;(G) is replaced by any Banach space 

B which has the following two properties: 

(a) if F - {X EX : ~(x) ~ 0 for some bE B} , then x E F =>·x E B , 

and 

(fJ) sup{ llxiiB : X E B n F} < co . 

So, in particular, we can replace L;(G) by any one of AF(G) , CF(G) , 

or Lp(G) where 1 ~ p < co . 

On the other hand, as the next example illustrates there do exist 

homogeneous Banach spaces of convolution type C which are neither 

contained in some AF(G) nor equal to PFF(G) 

EXAMPLE Let w-l E lr(F) \ £ 1 (F) for some r > 1 , and let e E (O,r-1). 

Define the pseudomeasure Se by 

= { wo(x)- (l+e) 
~e<x> 

for X E F 

otherwise 

Then w~e E c0 (F) so that w se e P . Further, ~e belongs 

r 

to 

ll+e<F> \ £1 (F) Hence se eiAF(G) If, however, we assume 

say, then Pw ~ ~(G) . 

r ~ 2 
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