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RANDOM WALKS ON A DISCRETE SEMIGROUP 

AND CHEBYSHEV POLYNOMIALS 

P.M. Soardi 

L Suppose that Fg = Z * ... '" Z (q times) is the free product of q copies of Z (the 

relative integers). Let E .. = {X E Fq : IXI = n} for all n = 0,1,2, ... , where 1·1 is 

the geodesic distance. Let moreover X n denote the characteristic function of E... It 

is well known (see e.g. [5]) that 

(1) Xn = (2q _1)n/2{ P" (2Ai=-r) - 2q ~ 1 Pn-2 (2Ai=-r) } 
where PIt is the n-th Chebyshev polynomial of the second kind. Equation (1) turns 

out to be important in the study of representation theory as well as in the study of 

random walks on Fq (see e.g. [5], [4]). 

We will now produce a discrete semigroup such that X,.. is exactly equal (up to 

dilations) to ~o Chebyshev polynomial This will reduce the study of random walks 

on N (the nonnegative integers), endowed with. the hypergroup structure induced by 

Chebyshev polynomials, to the study of random walks on a discrete semigroup. 

2. Let 51 denote the discrete semigroup generated 

unique relation: ab = e. In other words 

S1 = (a, blab = e) 

(here e is the identity). 

two symbols a, b with the 

It is easily seen that every x E SI can be uniquely represented as a reduced word 

of the fonn 

x = braS r 2: 0,8 2: 0 . 
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If x is as in (2), we will set 

Ixl = r +8 

A(x) = s, B(x) = r 

so that Ixl = B(x) + A(x). We could also define semigroups Sf< = Sl * ... * Sl (K 

times), but let us, for simplicity, study only the case of Sl' 

Some remarks are in order: 

a) There are idempotents: e.g. (ba)2 = ba, so that the counting measure on Sl is 

not translation invariant 

b) for the same reason Sl is not left nor right cancellative 

c) the action of Sl on its Cayley graph is not simple nor transitive 

d) it can be proved that Sl is amenable (while S .. is not for K > 1). 

The convolution on Sl (or on any discrete semigroup) is defined via the formula: 

f * g(x) = L f(u)g(v) . 
'Uv=x 

It has the familiar properties of the convolution on groups. 

Let now En and Xn have the same meaning as in section L Then it is easy to 

see that 

(3) X, * Xn = X,,+l - X .. -l n = 1,2, ... 

so that Xn = (¥). An [I-function f on Sl is called radial if f = 2::'0 C"X". By 

(3) radial functions form a Banach subalgebra of II generated by X, and XO = 

There is another interesting subalgebra of [1. Fix positive number u, v and set 

for all n ~ 0: 

n 

(4) "" I< n-I<" Xn = ~ U V (lb~Q.n-k 

,,=0 

(throughout this paper b", means the Dirac measure at x). If it = v = 1, then ~n = Xn. 

We get from (4) 

(5) 6 '" en = en+l - UVen-l n = 1,2, .... 
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An [1-function f on 81 is called pseudoradial if f = 2:::'=0 cnen. By (5) pseudoradial 

functions form a Banach subalgebra of 11. We also get by (5): 

(6) en = (uv)n/2Pn(2~) . 

3. Let now p, denote a probability measure on 81 . Let XloX2""'X""", denote 

independent, identically distributed random variables with values in 81 and common 

distribution p,. The process 

(7) Yn= X 1X 2 •· ,Xn 

will be called (right) random walk on 81, Left random walks can be defined as well, 

but it is not hard to see that the study of left random walks can be reduced to the 

study of right random walks. We will be interested in three processes associated with 

the process (7): 

IYnl , A(Y,..) , B(Yn ) . 

These processes "arise" from the subadditive processes 

I , A(Xr ··· Xa) , B(X,.." 

which are stationary subadditive in the sense of Kingman [3], provided that f(IX11) < 

00 (here and in the following f denotes the expectation). 

It is possible to show that if p, is pseudoradial, then is a Markov process. 

LEMMA. For every n 2:: 1 

n 

B(Y .. ) - A(Yn) = 2: {B(Xj) - A(Xj)} . 
;=1 

As a consequence of this lemma we obtain that 

n 

IY"I = L {B(Xj) - A(Xj)} + perturbation, 
j=l 

In several cases it is possible to control the perturbation. Here are two theorems 

which give the idea of what can be proved for IY"I, 
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THEOREM 1. If £(IX11) < 00 then 

IYnl -+ 1£(B(Xd - A(Xd) I almost surely. 
n 

THEOREM 2. IfE'(IXlI2) < 00, I>; = 1£(B(X1 )-A(X1 »)1 i- 0 and cr = U(B(Xl)­

A(Xd) i- 0, then 

IY"I-nl>; 
'---'--=-- -+ N(O, 1) vaguely, 

uyn 

where N(O, 1) is the normal density with. mean 0 and variance 1. 

Remark. If I>; = 0, theorem 2 is no longer true. The limit density can in fact be 

different from the normal one. This happens e.g. if f-! is radial (see [1 D. 

4. We will outline now the relation of the processes IYn I with the random walks on 

hypergroups. 

Let us define a hypergroup structure on N in the following way. Fix u, v > 0 

and set 
u+v 

z= 2fo' 
Qn(X) = Pn(~) 

Pn(z) . 

Then from the multiplication theorem for Chebyshev polynomials we get: 

(8) 
m+n P,,(z) Qr.. 

QmQn = L Pm(z)PnCz) 
I<=lm-nl 

when K, ranges over the integers such that I>; - 1m - nl is even (compare with (6)). 

Making the formal substitution hj = Qj (j = m, n, 1'\:) in (8) we define a generalized 

convolution for Dirac measures: 

(9) m+n PK(Z) 0". 
8m X 5" = :L Pm(z)P,.,(z) 

K=Jm-nl 

Now we extend X to ll(N) via (9). If f-! = E aKo" and v = E bno", then 

(10) f-! x v = 2:al<bn8", x On. 

N endowed with the hypergToup structure defined by (9) and (10) will be denoted 

by Nu,v' 
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Random walks on Nl,l were studied in great detail in [1] and in [2J, where, among 

other things, the central limit theorem and the law of large numbers were proved. A 

random walk Z,. on Nu,v is defined by assigning the initial measure Po = 

L: c" = 1, C,,;::: 0, and the transition probabilities 

Pr(Zn+l = K, I Zn= h) = 6h X PO(K,). 

The connection with the processes IY" I is given by the following theorem. 

C"fj,., 

THEOREM 3. Let u, v> O. Let Po as above and define a pseudoisotropic proba­

bility measure jJ on S1 by 

00 0" 
jJ = L, \-,,,,,... / \ en . 

K=O 

Then the processes IYnl and Z" are equivalent Markov processes on the nonnegative 

integers. 
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