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DESCRIBING SPACETIMES BY THEIR CURVATURE 

Alan Do Rendall 

:Lint:ro d uction 
In general relativity the geometry of spacetime is usually described by a Lorentz 

metric on a four-dimensional manifold M. In this paper we discuss the extent to which 
one can describe the geometry purely in terms of curvature. In Riemannian geometry 
this question is as old as the subject itself since it is mentioned in Riemann's inaugural 
lecture ([1], p.280). The word 'curvature' can be interpreted in different ways and these 
are not equivalent in the absence of further information concerning a metric. It could for 
instance mean the Riemann tensor in the form Rbcd' the same tensor in the form Rabcd 
or the sectional curvature. A more exotic possibility is to interpret it as the lasso form 
defined by Gross in [2]. This last interpretation is in some ways very satisfactory but has 
the disadvantage that one has to work with an object defined not on .M itself but on its 
loop space. It will not be discussed further here. We will concentrate on one possibility: 
the Riemann tensor in the form Rbcd' (Another possibility, that of sectional curvature, 
was discussed in [3] and [4].) 

The definition of the curvature in terms of the metric can be of as an inhomo-
geneous second order partial differential equation for the metric. The basic questions one 
would like to answer concerning this differential equation are the usual ones of existence, 
uniqueness, continuous dependence of the solution on the c11rvature and differentiability 
of the solution. By far the most difficult of these four questions is that of existence; a 
survey of what is known about this question for curvature quantities containing in general 
less information than those considered here (e.g. the Ricci tensor) can be found in the 
book of Kazdan[5]. The uniqueness question is equivalent to the question of whether all 
the information about the metric of a spacetime is contained in its curvature. This is in 
fact true in the generic case. Now the curvature has a physical interpretation in terms 
of geodesic deviation. Thus one would like to conclude from the uniqueness result that 
measurements of geodesic deviation provide the same information as measurements of di­
stances and time intervals. Since, however, physical measurements are all subject to error 
a minimal requirement for obtaining a statement of physical significance is that a small 
error in the curvature produces a small error in the metric determined" In other words it 
is necessary to know that the determination of the metric by the curvature is continuous. 

The question of differentiability is connected with the difficult issue of what degree 
of differentiability one should demand of physical fields. That this is not merely a matter 
of personal taste can be seen in the analysis of the initial value problem for Einstein's 
equation or, in another context, in the way that quantum theory in many cases requires 
the use of distributional fields since more regular ones are of measure zero. Actually the 
analysis which we carry out here is rather insensitive to the type of differentiability used. 
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2. Topological considerations 

In order to discuss continuity of the determination of the metric by the curvature it 
is first necessary to define a topology on the set of metrics on M and one on the set of 
curvatures. This is also necessary in order to define the notion of a property of metrics being 
generic. To say that a property holds generically means intuitively that it holds almost 
always. There are two possibilities of making such an idea precise: using measure theory 
or using topology. In the first case one can define a property to be generic if it holds except 
on a set of measure zero; in the second case a property is defined to be generic if the set of 
points for which it is true is open and dense. In fact the 'open an4 dense' condition is often 
replaced by the requirement that the set under consideration is a countable intersection 
of open dense sets. If this holds its complement is said to be of first category. There are 
two reasons for requiring in the present context that a set should be open and dense in 
order to be considered generic. Firstly this definition fits naturally with the interpretation 
in terms of physics (cf. Hawking[6]). Secondly the notion that a set of first category is in 
some sense 'small' must be used with care. Even in the simple case of the real line with 
the usual topology and Lebesgue measure it turns out that the whole space can be written 
as a union of a set of measure zero and a set of first category (Oxtoby[7]). Actually in 
the present case the option of a definition based on measure theory is not available since 
the spaces being considered are infinite-dimensional and it is extremely difficult to define 
measures with reasonable properties in infinite dimensions. Indeed defining appropriate 
measures on .spaces of physical fields is an outstanding problem in constructive quantum 
field theory. Thus we adopt the topological definition of genericity. 

Before considering the specific topologies of interest in the present context we recall 
some definitions from general topology. A base for a topology on a set X is a collection 
of subsets Uo: such that whenever Uo: and Ur; belong to this collection and x E Uo: n Ur; 
there is a u"Y belonging to the collection with X E u"Y c Uo: n Up. The topology generated 
by this base consists of all unions of sets belonging t9 the ba.Se. A sub-base for a topology 
can be any collection of subsets of X. The collection of finite intersections of elements of 
the sub-base is a base and the topology it generates is also said to be generated by the 
sub-base. Let {Xi} be a: sequence of topological spaces and denote by 1ri the projection of 
the Cartesian product fii X, onto X,. The product topology on fii Xi is generated by the 
sub-base of sets of the form 1r;1 (U) for some open subset U of Xi. The box topology on rr. x, is generated by the base consisting of the all sets of the form rr. ui where ui is an 
open subset of Xi for each i. The box topology is in general strictly 'finer than the product 
topology although the two coincide for finite products of spaces. Now let {Xi} and {Yi} 
be two sequences of topological spaces and suppose a map fi : X, -+ Y, is given for each 
i. Then there is a natural product map f = fi1 /i : fi 1 X, -+ fi1 Y,. If the product sets 
are both given the product topology or both given the box topology then f is continuous 
if and only if all the fi are continuous. 

Given a manifold M choose a locally finite (and hence countable) open cover {U1} of 
M such that for each i the closure Vi is compact and CC'ntained in a chart domain. These 
sets can be thought of as regions over which individual observers can make measurements. 
(The word 'observer' is used here in a non-technical sense.) It is not the aim here to discuss 
what exactly an observer can measure; we will assume merely that a measurement of a 
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physical field determines a bound on some norm defined for fields on Ui. If for instance we 
assume, following Lerner[8], that it is possible to estimate the field and its first k partial 
derivatives pointwise by a measurement then a measurement will give a bound on the 
uniform ck norm of the field on Ui. For suitable regularity assumptions on the fields it is 
possible to regard the space of fields on the whole manifold as a subset of the product of 
the spaces of fields on the Vi. Consider for example a ck scalar field. Then there is an 
embedding i: ck(M) ~ ft ck(Vi) given by i(f) = UiU1> !IU2, ... ). If the product space 
is given the product topology then the topology induced on ck by the embedding is the 
compact open ck topology. If the product is given the box topology then the resulting 
topology on Ck(M) is called the Whitney ck topology. It fs·easy to show that these 
topologies depend only on the manifold M and not on the cover {Ui} chosen. Note that 
from the point of view of the physical interpretation an open set of fields in the compact 
open topology is determined by a finite set of measurements; to determine a Whitney open 
set on the other hand requires in general an infinite set of measurements. Since a single 
observer can only carry out a finite number of measurements in his lifetim~. this re.quires 
an infinite set of communicating observers. In practice this means that one is considering 
the theory not only in relation to all observations available directly or indirectly to a given 
observer but rather in relation to all observations which are in principle possible. 

The Whitney C 0 topology has another description; it is identical with the so-called 
graph topology on C0 (M). A base for this topology consists of the sets {! E C0 (M) : 
graph f C U} where U runs over all open subsets of M X JR. So far we have only defined 
the ck topologies for functions but in general the physical fields will be sections of some 
fibre bundle. The definition can be extended to that case by assuming that for each of 
the open sets Ui making up the cover of M the closure Vi is contained in a contractible 
subset of M. It then follows that any fibre bundle has a trivialisation over each Vi and 
after choosing charts on the typical fibre the case of sections of a bundle has been reduced 
to the case of functions. Alternatively a description anal<igous to the graph topology 
can be used but this requires the use of jet butidles. For the details see e.g. Lerner[8]. 
The definition using an open cover has the advantage that it generalises easily to norms 
other than the ck norms. Consider for instance the Sobolev Hk norms. The construction 
above gives rise to two topologies on the space Hfoc of functions (or sections of a bundle) 
locally in Hk. These could be referred to as the compact open and Whitney Hk topologies 
respectively. More generally the procedure defines two topological spaces of sections of 
any vector bundle corresponding to any Banach space valued section functor in the sense 
of Palais[9]. Topological spaces of sections of any fibre bundle are defined provided in 
addition Palais' axiom 5 is satisfied. For Sobolev spaces this is fulfilled provided k > n/2 
where n is the dimension of the manifold M. It is also fulfilled for the Holder spaces of 
functions of class ck+a. If one wishes to talk about the Whitney C 00 topology then some 
care is necessary since there are two inequivalent ways one might think of defining it. On 
the one hand one could take as a base the collection of all Whitney Ck open sets for all 
k. This is the standard definition. Alternatively one could define a topology on C00 (Vi) 
having as base the ck open sets for all k and apply the general construction given above 
to obtain a topology on C00 (M). This last topology is strictly finer than the Whitney 
topology unless M is compact. Its restriction to the space Cg>(M) of smooth functions 
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of comp-act support is the topology used in distribution theory, with respect to which the 
dual of that space is the space of distributions. No analogous ambiguity arises in the case 
of the compact open coo topology. 

It should be remarked that the Whitney topologies are by usual standards rather 
badly behaved, being in general neither first countable nor locally connected. This means 
that sequences are not sufficient for dicussing convergence and continuity in such spaces 
and that they cannot easily be considered as some sort of infinite-dimensional manifold 
(but see Michor[lO]). The connected component of Ck(M) with Whitney Ck topology 
containing the zero function is cg(M), the Ck functions of cpmpact support. This can 
be proved by the kind of technique used to investigate connectedness in the box topology 
by Bourbaki[ll], p.l56. Note that c~< with Whitney topology is not a topological vector 
space although C~ is. (A topological vector space is always connected.) 

The intuitive meaning of the statement that two functions are close in the compact 
open topology is that they are locally close together; this topology gives no control over 
the behaviour of the function 'at infinity'" The Whitney topology, on the other hand gives 
very strong control at infinity. Consider for instance the case where M is an open subset of 
Rn. Then the zero function on M has an open neighbourhood V in C 0 (M) with Whitney 
topology such that every function in V extends continuously to a function on M which is 
zero on the boundary of M. 

3.Uniqueness, stability and differentiability 

This section summarises the results on uniqueness, stability and differentiability for 
prescribing Riemann tensors in the generic case obtained in [12,13] together with some 
generalisations. Results of a similar nature concerning prescribed curvature in gauge theo­
ries have been obtained by Mostow and Shnider[l4,15]. Not~ first that the maps sending 
a metric to its Levi-Civita connection or Riemann tensor are continuous if we use one of 
the topologies construcied in the last section mi all relevant spaces. This was proved in 
detail for the c~< topologies in [4]; for the Sobolev Hk topologies it follows from results of 
Palais[9] provided that k is large enough so that the Levi-Civita connection and Riemann 
tensor are well-defined. 

Sufficient conditions for a Riemann tensor to determine the metric it arises from up 
to a constant factor in the case of various signatures and dimensions have been derived 
&y several authors; for a review see Hall[16]. Intuitively it Seems that these conditions are 
fulfilled in the generic case. This can be made precise as follows, 

Theorem 1 Let M be a manifold of dimension n 2:: 3. Let G be the set of C 2 metrics of 
a given signature which are determined up to a constant factor by their Riemann tensors. 
Then if rk denotes the set of c~< metrics of that signature with Whitney ck topology there 
is a subset V of G such that the set V n rk is open and dense for each k ;=:: 3. 
Proof( sketch) The result was proved for Lorentz metrics in dimension 4 in [12] and gene­
ralised to any dimension greater than or equal to 4 and to positive definite metrics in [13]. 
In general there are two parts to the proof. The first is to show that for a generic set of 
metrics the Riemann tensor has maximal rank (when considered as a map pcd r-+ Rf:cdpcd) 
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t' 
on an open dense subset of M. The second step is to show that such a Riemann tensor 
determines the metric it comes from up to a constant factor. For the second step the 
arguments in [12,13] extend without difficulty to the other dimensions and signatures. (It 
is necessary to exercise a little care since the arguments fail in dimension 2). The extension 
of the first step is not so straightforward. The set of Riemann tensors at one point of lvf 
which have less than maximal rank is an algebraic subset of the vector space of all Rie~ 
mann tensors at that point. Such a set can be stratified i.e. written as a union of smooth 
submanifolds. In order to carry through step 2 of the proof one needs to know that these 
manifolds can be chosen so that they 'fit together nicely' in order that a transversality 
theorem can be applied. In particular it suffices that they should form a 'submanifold 
complex'as defined in [12]. By a result of Whitney[l7] the stratification can be 
chosen to be (a)-regular and Trotman[l8] has shown that an (a)-regular stratification is 

a submanifold complex. Thus step 2 of the proof can be carried out in generaL The 
rather long and complicated argument given in [12] to establish the existence of a suitable 
stratification is therefore not necessary for the proof of this theorem" That argument 
however, provide other useful information. 

Remark Using the Sobolev embedding theorem one can show that the result of Theorem 
1 implies the corresponding result with c.~< replaced by H"' provided k > n/2 + 3. It is not 
easy to see how one could prove the result for Sobolev spaces directly. It is remarkable 
that the theory of partial differential equations which generally uses spaces similar to the 
Sobolev spaces and transversality or singularity theory which prefers c~< spaces seem to 
have made so little contact with each other. 

In the proof of Theorem 1 the metric is determined directly on the open dense subset 
of ]\.{ where the rank of the Riemann tensor is maximal and then determined on the rest 
of 111 by continuity. This rather indirect procedure suffices for proving uniqueness but 
when it comes to proving continuous determination and differentiability it leads to serious 
difficulties. (For a detailed discussion of analogous difficulties which arise in gauge theories 
and a way of overcoming them see the work of Mostow and Shnider[l4,15].) Fortunately it 
turns out that these problems can be evaded in a relatively straightforward way provided 
the dimension of M is at least 4 and the signature Lorentz or definite. The idea is to prove 
something concerning the rank of the map L : pcd ~--+ Rl;cdpcd at every point of M and not 
just on an open dense set. Note that tensors of the form Tb' have a Lie algebra structure 
given by the commutator. If Rf:cd is the Riemann tensor of a Lorentz metric then the Lie 
algebra generated by the tensors in the range of L at each point of M is isomorphic to a 
Lie subalgebra of so(l, n- 1) and hence is at most of dimension ln(n- 1). Similarly for 
the Riemann tensor of a positive definite metric the range of L at each point generates 
an algebra isomorphic to a Lie subalgebra of so(n). In [13] the following definition was 
introduced. 
Definition A Riemann tensor on a manifold 111 of dimension n is called regular if: 
(i) at each point of M its rank is at least t(n- 1) - 2} + 1 _ 
(ii)at each point of M its range generates a Lie algebra whose dimension is maximal i.e. 
tn(n- 1). 

This is a convenient class of Riemann tensors for the discussion of continuous de-
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termin~tion and as the following result shows the condition that a metric have a regular 
Riemann tensor is generic. 

Theorem 2 Let M be a manifold of dimension greater than or equal to 4 and let r~< be 
the space of c~< Lorentz or positive definite metrics with Whitney c~t topology. The set 
of metrics with regular Riemann tensors is open and dense in r~< fo:r each k ?: 2. 

This result was stated in [13] in the case k = oo. The proof given there yields the 
above result for k ?: 3 directly. This implies density for k = 2. Openness for k = 2 follows 
from the fact that the condition that a Riemann tensor be regular defines a Whitney C 0 

open set and the continuity of the map from metric to Riemann tensor with respect to 
the C 2 topology on metrics and the C 0 topology on Riemann tensors. As in the case of 
Theorem 1 this theorem implies corresponding results with replaced by H"' or ck+oe. 

The condition of regularity is sufficient for obtaining results on differentiability. 

Theorem 3 If a C 2 metric has a Riemann tensor which is regular and c~< then it is itself 
ck. 
Proof Firstly, it follows immediately from the determination process for the conformal 
class in [13] that the conformal class of the metric is . Let Uab denote the metric and 
Rb'cd its Riemann tensor. Then there exists a c~< metric gab conformal to §a.b· This means 
that fiab = e2u Yah for some C 2 function U. It remains to show that U is in fact Ck. Define: 

Yab = U;ab- U,aU,b + ~1JabgcdU,cU,d 

where a semi-colon denotes the covariant derivative associated to the metric gab· Then by 
a standard formula for conforma!ly related metrks: 

Rab = Ra.b - 2Yab - Y f/Olb 

The tensor Rab is ck-'2 while Rab is ck. It follo"ws that Yab is ck-7.. Now: 

U,ab = Yab + f~bU,c + U,aU,b- ~YabgcdU,oU,d 

A simple bootstrapping argument using this last formula shows that U,ab is ck-'1. and 
hence that u is c~<. 

The same proof shows that if R'tcd is of Sobolev class Hk or of Holder class ck+Oi 
then !lab is of the same class. Because the Riemann tensor of a c~<+z metric is in general 
only c~< one might hope to prove more differentiability for the metric than is done in 
Theorem it Unfortunately this does not work for the following rea.son[5]. Let !lab be a 
c~<+2 metric on M and let¢ :M-e M be a diffeomorphism which is c~<:-l but not c~<. 
Then¢., the derivative of¢, will be ck-'l but not ck-l. Thus while the tensor obtained 
by transforming the Riemann tensor of gab with¢ is c~<- 2 the transformed metric will not 
in general be C k-l. If one only demands that the metric is more differentiable than the 
Riemann tensor after possibly carrying out some diffeomorphism then stronger results can 
be obtained, at least in the positive definite case[19]. 
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We next discuss the continuous determination of the metric by the Riemann tensor. 
As in the discussion of differentiability it is convenient to split the determination process 
into two steps. The first is to determine the conformal class of the metric. Then one can 
choose se.me test metric in the conformal class and attempt to determine the conformal 
factor relating this test metric to the metric being sought. This process was discussed in 
the C 00 case in [13]. The approach used there in fact shows withoqt further work that the 
determination of conformal classes by regular Riemann tensors is continuous when both 
conformal classes and Riemann tensors ~e given the Whitney Ck topology. It also shows 
that if test metrics in the conformal classes are .chosen in a con\inuous way then the form 
dU corresponding to the conformal factor e2 u is determined continuously, albeit with a. 
certain loss of differentiability of the topology in the following sense. In order to obtain 
continuity when the Riemann tensors are given the Ck topology the 1-forms must be given 
the ck-a topology. This result relies only on the principle that smooth maps of bundles 
give rise to continuous maps of the corresponding spaces of sections. Thus a similar result 
h .. olds with Ck replaced by Hk or ck+a or other spaces and it is equally valid for the 
Whitney type of topologies and the compact open type. Since the Levi-Civita connection 
of the desired metric can be calculated directly from the test metric and dU it follows 
that a regular Riemann tensor determines continuously the Levi-Civita. connection of any 
metric it arises from with the loss of three derivatives in the topology as above. 

The situation is rather more complicated when it comes to determination of the metric 
itself since as already pointed out it is at best determined up to a. constant factor. Thus 
the question of whether this determination is continuous must be formulated with some 
care. In [13] this was done as follows. Is it possible to choose a constant scaling for the 
metric giving rise to each regular Riemann tensor so that the resulting map from Riemann 
tensors to metrics is continuous? This is a. trickier question than those considered so far 
and we will only discuss it for the C 00 topologies. In [13] it was shown that constant 
factors can be chosen so as to make the map continuous in the compact open topology 
and an example was given to show that this mar_ be fmpossible in the case of the Whitney 
topology. We will now discuss more generally those manifolds M for which the map can 
be made continuous in the Whitney coo topology. 

In order to prove the theorem which follows it is necessary to consider carefully the 
topology of M 'at infinity'. It is well known that any manifold can be written as the union 
of a sequence {K,.} of compact subsets with K,. C Int K,.+l for each n. We require a 
refinement of this result. A compact subset K of a manifold M is called full if the closure of 
each component of M\K is non-compact. Each compact se't is contained in a full compact 
set and the sequence {K,.} just mentioned can be chosen in such a way that each K,. is 
full ([11], chapter 1,§1l,Ex. 14). If U,. is an open cover of Mas used in the definition of 
the Whitney topology a function or form is said to vanish at infinity if the sequence { e,.} 
of C0 norms of its restrictions to the sets U,. tends to zero as n -+ oo. A function f is 
constant at infinity iff- a is zero at infinity for some a. The (necessarily unique) value 
of a for which this holds will be denoted by f(oo). 

Lemma Let M be a manifold which can be written as U,. K,. where {K,.} is a sequence of 
compact subsets of M such that K,. C Int K,.+l and Int K,.+2 \K,. is connected for each n. 
Let 0 1 (M) denote the space of smooth 1-forms on M and let d: C00 (M, R) -+ 0 1 (M) be 
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t' 
the exterior derivative. H Cis the range of d then there exists a map i: C -l- C 00 (M,lR), 
continuous in the Whitney C 00 topology, such that do i is equal to the identity. 
Proof Let nA(M) denote the space of smooth 1-forms vanishing at infinity and let Co 
be its intersection with c. It is elementary to show that nA is an open and closed linear 
subspace of 0 1 (M). Thus in order to prove the lemma it suffices to define a map i with 
the desired properties on C0 • It can then straightforwardly be defined on all other cosets 
of Co in C. 

Choose a Riemannian metric on M. Instead of using the maximum of the components 
of a form on each U n in the definition of the Whitney C 0 topology it is possible to use 
the maximum of its pointwise norm with respect to the given ·metric. This defines the 
same topology. We can assume without loss of generality that the cover Un chosen is such 
that Un C Kn. Let Dn be the diameter of the set An= IntKn+2\Kn with the induced 
Riemannian metric. Thus each pair of points in An can be joined by a smooth path of 
length less than 2Dn. Choose a decreasing sequence of positive constants Cn such that 
en < 2!2 Dn. Let Xn be a sequence of points of M such that Xn E Ann An-1 for each 
n. Then if df belongs to the Whitney open neighbourhood of zero determined by this 
sequence (using the cover U n and the given Riemannian metric): 

It follows that f(xn) is a Cauchy sequence and hence converges to some number a. We 
will now show that f is constant at infinity with f( oo) = a. Without loss of generality 
we may assume that a = 0. Given f > 0 it must be shown that there exists N such that 
llfJUnll < f for n 2: N. Choose N so large that J2 < ~ and lf(xn)l < ~for n 2: N. Then 
if x E An and n 2: N then lf(x)l < if(xn)l + J2 <f. It follows that if wE Co then w = df 
for some f vanishing at infinity. Define i(w) for wE Co to be the unique function vanishing 
at infinity with exterior derivative w. It remains to show that this map i is continuous. 

Let {fn} be a decreasing sequence of pos!tiviconstants defining a Whitney open 
neighbourhood W of the zero function. We seek a sequence Cn so that the image under 
i of the Whitney open neighbourhood of 0 defined by this sequence is contained in W. 
Let kn be the smallest integer such that Akn has non-empty intersection with Uk for some 
k 2: n. Let Cn be chosen so that, for each n, Ckn < ~Cnfn· This is possible since kn tends 
to infinity as n -l- oo. IT x E Un then x E Ak for some k 2: kn. Thus: 

and the proof is complete. 

This lemma is what we need to prove the desired result on continuous determination 
in the Whitney topology. 

Theorem 4 Let M be a simply connected manifold of dimension n. Then the map 
from regular curvature tensors to the metrics they arise from cannot be made continuous by 
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a suitaf>ie choice of constant conformal factors if the de Rham cohomology group H"- 1 (M) 
is non-trivial. If, on the other hand, M can be written as a union of compact subsets Kn 
satifying the hypotheses of the preceding lemma then it can be made continuous. 
Proof Suppose first that Hn- 1(M) is non-trivial. Choose a non-zero cohomology class 
belonging to it. By Poincare duality there exists a corresponding class in Hb(M), the 
first cohomology group of M with compact supports (see Bott and Tu[20]). This class 
can be represented by a 1-form w with compact support. Since M is simply connected 
H 1 (M) = {0} and so there is a function f such that df = w. On the other hand the fact 
that w has a non-trivial equivalence in Hb(M) implies that f cannot itself have compact 
support. Moreover f + a is not of compact support for any ·o: E R. It follows that 
M\(suppw) must have at least two components where f has different values. In fact a 
similar statement is true if suppw is replaced by a full compact set K containing suppw. 
But each component of M\K has non-compact closure and so the argument used in [13] 
to show that determination is not always continuous can be used to show that in this case 
constant factors cannot be chosen so as to make the map from regular Riemann tensors to 
the metrics they arise from continuous. 

Suppose now that M can be written as a union of compact subsets satisfying the hypo­
theses of the lemma. It has already been shown that a regular Riemann tensor determines 
the conformal class continuously and that when we choose test metrics in each conformal 
class continuously it determines the gradient ot the conformal factor continuously. The 
lemma shows that if constant scalings are chosen correctly the conformal factor itself is 
determined continuously. Hence the metric is determined continuously in the Whitney C 00 

topology. 

Remark It is likely that if Hn- 1 (M) is trivial then there will exist a sequence of 
compact sets satisfying the hypotheses of the lemma but this is not entirely straightforward 
to prove. In any case such a sequence exists for M = R n and so the second part of the 
theorem shows that there exist examples of manifolds where regular Riemann tensors 
continuously determine the metric in the Whitney topology. 

4.Existence 
There are some obvious algebraic conditions which a tensor Kbcd must satisfy in order 

to be a Riemann tensor. The symmetries Kbcd = - KCdc C!fd K~cd] = 0 must be fulfilled 

and there must exist a Lorentz metric Yab such that YabK~de - YcbK~de = 0. From now 
on a tensor which satisfies these algebraic conditions will be referred to as a curvature 
candidate. 

There are other restrictions satisfied by Riemann tensors which are not so easy to 
understand. Consider for instance the Bianchi identity Kb[cd;e] = 0. This involves not only 
the tensor Kbcd itself but also a metric (or at least a connection) because of the covariant 
derivatives which occur. It seems that the only reasonable way to express the restriction 
on Kbcd resulting from the Bianchi identity is: there exists some metric such that, with 
the covariant derivative associated to that metric, Kb[cd;e] = 0. It is not immediately 
clear that this represents any restriction. Note however that it implies the contracted 
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Bianchi identity Kt.a = 0 (where Kab = K~cb) and DeTurck[21] has shown that there 
exist symmetric ten~ors Kab which do not satisfy the contracted Bianchi identity for any 
metric. The other condition which comes to mind is the Ricci identity for the Riemann 
tensor itself. This can be written schematically as DR = R * R where D is the skewed 
second covariant derivative and * is a certain bilinear map. We will say that a curvature 
candidate K satisfies the Ricci identity with respect to a given metric if DK = K * K with 
the operator D built from the covariant derivative associated to that metric. It seems to 
be a common belief that if a tensor K satisfies both the Ricci and Bianchi identities then 
it must be a curvature tensor. This statement 'does :not :make se;n,;>e .as it .stands since these 
identities cannot be expressed in terms .of K aloneL c.an ;pose tihe ±following 
question: if a curvature candidate K satifies the R:icci .and Biandii w:i:trh r.ce;:;:p;~oc;t 
to some metric is it necessarily the Riemann 'tensor of some metric? 

In fact it turns out that the ans·wer to this question is no; were cfln-
structed in [22]. A curvature candidate .K was constructed with the following properties. 
(i) K satisfies the Ricci and Bianchi identities with respect to some metric 
(ii) K is not the Riemann tensor of any metric 
(iii)given any point p there exists a metric defiaed on a .neighbourhood of p whose Rie-
mann tensor Rp agrees with K to infinite at p. 
The .c.onstruction of the examples will not be reJpe<l.te:a 
of 'these wihkh will be important in what follows is that are, '"""'"'"'"u"'''• 
sp·,eaJ.k:tr!g, very 'Thus the question arises if these are pathological exam-
ples a-nd if perha,ps for .a g;e:Eteric curvature candidate such a phenomenon cannot occur. 
The answer to .this ,question is unfortunately as yet unknown. A way of attacking 
the algebraic problem will now be described. 

Let K be a curvature candidate the Ricci identity DK = ]( *K with, respect 
to some metric with Riemann tensor R.. The usuaJ Ricci which ali tensors 
is DK = R * K. Subtracting these t"vo gives - R) * K = 0. If we could show 
that for generic K the equation P * K = 0 has. no 'non-trivial solutions then this would 
imply J( = R so that K would be a Riemann tensor. Let LK be the map sending P to 
P * K. The maps LK can be thought of as sections of an appropriate vector bundle E. The 
con:di!~ion that P * K = ,LJ has a non~t:rivial solution P can be expressed the vanishing 
of •:::erta'in determinants. Thns there is an algebraic subset A of E such that P * K = 0 has 
a non-trivl:a.:l solution i'f 'lillil'd if the image of the section K is contained in A. Suppose 
now that the following is t:rtH~~ , 
There exists a curvature candidate K such that at some ,·, 
point p the equation P * K = 0 implies P = 0 at p. ( *) 
Condition is to the statement that the algebraic set A is not the whole of 
E. If this is true then by the applying results of Whitney[17] as in the of Theorem 
1 it can be shown that A can be written as a union of smooth submanifolds of E of 
codimension at least L Moreover these submanifolds fit together in a nice enough way so 
that the transversa!ity theorem can be applied. The c::mdusion from the application of 
the transversality theorem is that there is an open dense subset of curvature candidates in 
the Whitney C 00 topology for which the only solution of P * K = 0 is the zero solution. 
Thus under the assumption that ( *) is true we have proved that in the generic case if a 
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curvattire candidate K satisfies the Ricci identity with respect to some metric then K is 
the Riemann tensor of that metric. It remains to examine the validity of the condition 

The condition is a purely algebraic one; it concerns relations between tensors at 
a single point. The map P ~-+ P * K can be represented by a matrix( depending on K). 
The condition ( *) says that for some K this matrix has maximal rank. In order to verify 
the condition it is only necessary to find some such K explicitly. Unfortunately it is in the 
nature of the problem that even if almost all K give rise to matrices of maximal rank, those 
which one can write down explicitly and which are simple enough so that the matrix can 
be calculated by hand do not. (It should be borne in mind that the matrix is 96 X 576 in 
4 dimensions.) A way of getting round this problem has been ~riggested by Chris Clarke. 
This uses a computer programme as follows. First the components of K are obtained 
from a random number generator. Whether or not the rank of the matrL--;;: is maximal is 
checked by a numerical procedure. By estimating errors one then proves that when this 
procedure gives the answer that the rank is maximal and a certain quantity calculated by 
the programme is small enough then the rank really is maximal. This idea has not yet 
been carried out in practice. 
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