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INEQUALITffiS FOR THE JOINT SPECTRUM 

OF SIMULTANEOUSLY TRIANGULARIZABLE MATRICES 

AJ. Pryde 

1. INTRODUCTION 

Let A= (Al' ... , A~ be an m-tuple of n by n matrices. We say that A is 

triangularizable if there is an invertible matrix Q such that Q-1 A.Q is (upper) 
J 

triangular for each j = 1, ... , m. In this case, for 1 ~ k ~ n, let 

a~k) = (Q-1 A.Q)kk the (k, k) 
J J 

element of Q-1A.Q, and set 
J 

a(k) = (a~k), ... , a~k)) e ICm. The set 

(1.1) o{A) = {a(k) : 1 ~ k ~ n} 

is called the joint spectrum of A. For a discussion of this spectrum see Pryde [16]. 

In particular o(A) has an important subset opt(A), the joint point spectrum, 

whose elements A. = (A.1, ... , A.m) satisfy Al = A.l for all j and some non-zero 

x e ICn. We say that A. is a joint eigenvalue of A with corresponding joint 

eigenvector x. If the Aj commute then o(A) = opt(A), though this is not the case in 

general. However, by a theorem of Lie, if A is triangularizable then opt(A) is 

non-empty. 

Our aim in this paper is to investigate perturbation inequalities for the joint 

spectra of triangularizable m-tuples. For this purpose we defme the function S(K, L) 
. m 

on compact subsets K and L of IC by 
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(1.2) S(K, L) =max minja- pj. 
<XEK f3EL 

As an example of a perturbation inequality it follows from theorem 3.1 below that 

(1.3) S(cr(A), cr(B)) :5: jA- Bl 

for all m-tuples A and B of commuting self-adjoint matrices. The norm here is 

defined by !TI = jjCliff(T)jj, where Cliff(T) is the Clifford operator associated with 

an m-tuple T. These are delmed in section 2 below using Clifford algebras. 

It may be noted that (1.3) is an analogue for m-tuples of the well-known 

Bauer-Pike theorem for single matrices. Generalizations of theorems of Henrici appear 

in section 4 and of Bhatia-Friedland in section 5. We conclude with some inequalities 

for normal matrices in section 6. 

The use of Clifford algebras as a tool for studying joint spectra began with 

Mcintosh and Pryde [10], [11]. It was further developed by Pryde [14], [15], [16] and 

by Bhatia and Bhattacharyya [3], [4]. 

It is often convenient to have m-tuples (or 2m-tuples) of matrices with real 

spectra. For this purpose we use the following construction, initiated in Mcintosh and 

Pryde [11]. If A = (A1, ... , Am) is an m-tuple of n by n matrices then we can 

always decompose the Aj in the form Aj = A1j + iA2j where the Akj all have real 

spectra. We write n(A) = (A11, ... , Alm' ~1 , ... , ~m) and call n(A) a partition of 

A. If the Akj all commute we say that n(A) is a commuting partition, and if the 

Akj are simultaneously triangularizable n(A) is a triangularizable partition. If the 

Akj are all semisimple (diagonalizable) then n(A) is called a semisimple partition. 

It is proved in [11] that if the Aj commute then A has a commuting partition. 

It is obvious that if the A. are simultaneously triangularizable, then A has a 
J 
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triangularizable partition 1t(A). Moreover, then 

(1.1) o(A) = p(o(rt(A))) 

where p : IR2m -7 a::m is defmed by p(~. 11) = ~ + ill for ~.11 E IRm. Finally, it is 

proved in [14] that if the Aj are commuting semisimple matrices then A has a unique 

commuting semisimple partition. 

2. CLIFFORD ALGEBRAS 

Let IR(m) denote the Clifford algebra over IR with generators e1, ... , em and 

2 relations e.e. = -e.e. for i ¢ j and e. = -1. Then IR(m) is an associative 
1 J J 1 1 

algebra of dimension 2m. Let S(m) denote the set of subsets of ( 1, ... , m ). Then 

the elements es for s E S(m) form a basis of IR(m) if we define e0 = 1 and 

e8 = e81 ... e~ when S = {s1, ... , ~~ and 1 s;; s1 < s2 < ... < sk s;; m. Elements of 

IR(m) where AS e IR. Under the inner product 

<A, j.!> = ~ Asl-.ls, IR(m) becomes a Hilbert space with orthonormal basis 1 e8 ). 

Let Mn denote the space of n by n complex mat.."ices equipped with the operator 

bound norm and L(X) the space of linear operators on a vector space X. The Clifford 

operator of an m-tuple A = (Al' ... , Am) E M~ is the operator Cliff(A) E Mn ® IR(m) 

defmed by 

m 
(2.1) Cliff(A) = i I: A. ® e .. 

j= 1 J J 

Each element T = ~ T s ® es E Mn ® IR(m) acts on elements 

n 
x = ~ xS ® eS E !C ® IR(m) by T(x) = S: S'T S(x5,) ® e5e8,. 

So Cliff(A) E Mn ® IR(m) ~ L(a::n ® IR(m)). 
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The space is a Hilbert space with inner product given by 

<x, y> = .t <x8, Ys> where <x8, Ys> is the standard inner product on ICn. By 
s 

II Cliff( A) II we will mean the operator bound norm of Cliff( A) as an element of 

L(ICn ® IR(m)). Its spectrum is denoted cr(Cliff(A)). 

As an indication of the close relationship between A and Cliff(A) we state the 

following result, which appeared in [16]. 

PROPOSITION 2.2. If A is a triangularizable m-tuple of matrices with real spectra 

then 

(a) cr(Oiff(A)) = (±I a. I : a. e cr(A) }; 

(b) an element a. of IRm belongs to cr(A) if and only if Cliff(A- a.I) is 

not invertible. 

3. GENERALIZATIONS OF THE BAUER-FIKE THEOREM 

The following theorem and an analogue for matrices with arbitrary complex spectra 

appear in Pryde [14]. 

THEOREM 3.1. Let A = (Al' ... , Am> and B = (Bl' ... , Bm> be m-tuples of commuting 

n by n matrices with real spectra. Suppose there is an invertible matrix Q such that 

Q"1B.Q is diagonal for each j = 1, ... , m. Then 
J 

S(cr(A), cr(B)) s; IIQII IIQ-111 IICliff(A- B)ll· 

The corresponding conclusion for single matrices A and B, proved by Bauer and 

Pike [1], is 

(3.2) S(cr(A), cr(B)) s; IIQII IIQ-111 IIA- Bll· 
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As observed in Stewart and Sun [18], and in Bhatia and Bhattacharyya [3], Bauer and 

Pike actually proved a stronger result. The following theorem, with the extra 

assumption that the matrices commute, is the corresponding strengthening of theorem 3.1. 

The commuting case of theorem 3.2 was proved by Bhatia and Bhattacharyya [3]. Their 

proof uses the fact that each a. e o{A) is a joint eigenvalue if the A. commute. So 
J 

that proof fails under the weaker assumption that A is triangularizable. 

THEOREM 3.2. Let A= (A1, ... , Am) and B = (Bl' ... , Bm) be triangularizable 

m-tuples of n by n matrices with real spectra. Let a. e cr(A) \ cr(B). Then for each 

invertible n by n matrix Q, 

Proof. Note firstly that by proposition 2.2 Qiff(B - a.I) is invertible since 

a. e IRm \ cr(B). Hence 

Oiff(A - a.I) 

= Qiff(B - a.I) + Qiff(A- B) 

= Qiff(B - a.I)(I + Qiff(B - a.If10iff(A - B)) 

= Oiff(B- a.I)Q(I + Q-1Cliff(B- a.If1QQ-1Cliff(A- B)Q)Q-1. 

Since a. e cr(A), Qiff(A - a.I) is not invertible. Hence 

1 ~ IIQ-1Cliff(B - a.If1QQ-1Cliff(A - B)QII 

~ IIQ-10iff(B - a.If 1Qil IIQ-1Cliff(A- B)QII 

from which comes the result. • 

4. GENERALIZATIONS OF THE HENRICI THEOREM 

In [3] Bhatia and Bhattacharyya defmed a measure of non-normality of an m-tuple 

A = (A1, ... , ArJ of commuting matrices. The same construction is valid for 
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triangularizable m-tuples. Firstly, if A = (Al' ... , Am) is triangularizable then 

there is a unitary matrix U such that U* A. U = T. for all j, where the T. are 
J J J 

triangular. As is also stated in [14], the simplest proof of this fact is perhaps by 

induction on n, using the fact that the Aj have a common unit eigenvector, and a 

result of Radjavi [17] that a semigroup I: of matrices is triangularizable if and only 

Now write T. = A. + N. where A. is diagonal and N. is nilpotent triangular. 
J J J J J 

Let N = (N 1, ... , Nm). The measure of non-normality of A is given by 

(4.1) .d.(A) = infiiCliff(N)II 

where the infimum is taken over all choices of unitary U for which each U* Aj U is 

triangular. 

THEOREM 4.2. Let A= (A1, ... , AnJ and B = (B 1, ... , Bm) be triangularizable 

m-tuples of matrices with real spectra. Let a e cr(A) \ cr(B) and set 

8 =min{ Ia- 131 : f3 e cr(B)). Then 

s ~ L (~(B)/8)k II Cliff( A - B) II· [ n-1 l 
k=O J 

This theorem is due to Henrici [8] for the case m = 1. It is due to Bhatia and 

Bhattacharyya [3] for the case of commuting m-tuples. Their proof uses the commuting 

case of theorem 3.2 with Q = U, a unitary matrix for which the infimum 

~(B) = infiiCliff(N)II is achieved. Using theorem 3.2 for triangularizable m-tuples, 

their proof remains valid and we do not repeat it. 

5. GENERALIZATIONS OF THE BHATIA-FRIEDLAND INEQUALITY 

Let A and B be n by n matrices and set M = max(IIAII· IIBII). Bhatia and 
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Friedland [5] proved that 

Their proof used characteristic polynomials and Grassman powers. Elsner [7] gave 

another proof using Henrici's theorem. Bhatia and Bhattacharyya [4], having extended 

Henrici's theorem to commuting m-tuples, used it to obtain: 

THEOREM 5.2. Let A and B be m-tuples of commuting n by n matrices with commuting 

partitions n(A) and n:(B) respectively. If 

M = max(JJCliff(n:(A))jj, JJCliff(n:(B))jj) then 

S(cr(A), cr(B)) ::;; nl/n(2M)l-l/n!ICliff(n:(A) - n:(B))jjl/n. 

Recently, Pryde [16] has constructed joint characteristic polynomials (j> A(/;) for 

triangularizable m-tuples. In fact, $A(~) = det(Cliff(A - 'I)) for ~ E tCm. Using 

these polynomials and Grassman products, he obtained the following: 

THEOREM 5.3. Let A and B be triangularizable m-tuples of n by n matrices with 

partitions 1t(A) and :n:(B) respectively. If 

M = max(JJCliff(n:(A))jj, JJCliff(:n:(B))jj) and N = 4mn then 

S(o{A), cr(B))::;; N1/N(2M)l-l/NJJCliff(n:(A)- n:(B))jj 1/N. 

As remarked in [16], the Bhatia-Bhattacharyya proof of theorem 5.2 also shows that 

for triangularizable m-tuples 

(5.4) S(crpt(A), cr(B)) ::;; nl/n(2M)l-l/niJCliff(:n:(A)- n:(B))jjl/n. 

As a fmal contribution, we can now use the Bhatia-Bhattacharyya proof, noting that 

the Henrici theorem 4.2 is valid for triangularizable m-tuples, not just commuting 

ones, to obtain 
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THEOREM 5.5. [..et A and B be triangularizable m-tuples of n by n matrices with 

partitions :n:(A) and 1t(B) respectively. If 

M = max(IICliff(:n:(A))II· !!Cliff( (B))il) then 

S(cr(A), cr(B)) ::;; n 1111(2M)l-l/niiCliff(:n:(A) - :rt(B))IIl/n. 

We remark that neither of theorems 5.3 and 5.5 follows from the other. · 

6. INEQUALITIES FOR NORMAL MATRICES 

In this section we consider m-tuples of normal matrices. In view of the following 

proposition, we assume the matrices commute. 

PROPOSITION 6.1. If A= (A1, ... , Am) is a triangularizable m-tuple of normal 

matrices A. then the A. commute. 
J J 

Proof. As commented at the beginning of section 4, there is a unitary matrix U such 

that, for all j, U* A. U = T. a triangular matrix. Since A. is normal, so is TJ .. 
J J J 

A triangular normal matrix is diagonaL So the T. are diagonal and hence commute. So 
J 

the A. also commute. 
J 

We will be concerned with norms 1·1 
condition: 

(6.2) 

on Mm which satisfy the following 
n 

The following theorem was proved in Mcintosh, Pryde and Ricker [12]. 

THEOREM 6.3. Let A and B be m-tuples of commuting n by n normal matrices with 

joint spectra cr(A) = I a.(k) : 1 :S: k :S: n l and cr(B) = I f3(k) : 1 :S: k :S: n 1. There exists 

a permutation 't of the index set {1, .,, n) such that 
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(6.4) I a(k) - 13('t(k)) ~ s; em I A - B I 

for all k and all norms 1·1 satisfying (6.2). 

In this theorem, em is a constant depending only on m. In fact, em= em,O an 

explicit constant defmed in [12, (2.4)]. 

It should be mentioned that somewhat weaker results are stated in [10, corollary 

2.2], where the theorem was initially announced, and in [12, remark 7]. In fact, in 

these references A and B are m-tuples of self-adjoint matrices and the norm 1·1 

is given by 

(6.5) 
m 2 1/2 · JTI = sup((EIIT.xll ) : x e ICn, lxl < 1 }. 
1 J . 

Moreover, c = c 0 a constant defmed in [12, remark 1]. The stronger result for m m, 

normal matrices and more general norms is mentioned in [12, remarks 1 and 9]. 

In addition to the norm defmed by (6.5) we consider two other norms satisfying 

(6.2). Firstly we have: 

PROPOSffiON 6.6. The norm 1·1 on MC:: defined by IT I = II Cliff(T) II satisfies 

(6.2). 

Proof. Let a e ICm and T e Mr::. Choose a unit vector x e ICn such that 

m m m 
IIE.a.T.JI = IIE.a.T.xll and set y = E.a.x ®e. e ICn ® IR( )" Then IIYII = lal and 
1JJ 1JJ tl J m 

Cliff(T)y = i E. (T. ® e.)(~x ® '\:) = -i E.a.T.x + i E. (~T.x - a.Tkx) ® e.'\· 
j , k J J j J J j<k J J J 

Recalling that the eS form an orthonormal basis of IR(m) we obtain 

m m 
llialjll = lliallll S IICliff(T)yll S IICliff(T)II IIYII = lal JTI as required. • 
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Secondly, let IISIIp denote the Frobenius norm (or Schatten 2-norm, or 

Hilbert-Schmidt norm, or Schur norm, or Euclidean norm) of a matrix S e M . So n 
m 2m . IISIIp =(trace S*S) = (I: ISkll ) where S = (Skl). WedefrnetheFrobenzusnorm 

k,/ 

IITIIp of an m-tuple T = (T 1, ... , Tm) e Mr;: by 

(6.7) 

For a e em, III:a?jll ~ I<XI(I:I1Tj11 2)112 ~ I<XI(I:I1Tj11~) 112 = I<XI IITIIp- So ITI = IITIIp 

defmes a norm satisfying (6.2). 

Recall that the norm II Oiff(A - B) II appeared in sections 3 and 4 and the norm 

IICliff(1t(A) - 1t(B))II in section 5. The Frobenius norm IIA- Blip appears in the 

following theorem of Bhatia and Bhattacharyya [4]. When m = 1 this is the well-known 

theorem of Hoffman and Wielandt [9]. 

THEOREM 6.8. Let A and B be m-tuples of commuting n by n normal matrices with 

joint spectra a(A) = ( <X(k) : 1 ~ k ~ n) and a(B) = ( J3(k) : 1 ~ k ~ n). There exists 

a permutation 't of the index set (1, ... , n) such that I:la(k)- J3('t(k))l 2 ~ IIA- Bll~· 
k 

Again let A and B be m-tuples of commuting normal matrices. Let 1t(A) and 

1t(B) be their commuting semisimple partitions. From theorem 6.3 and the comments 

following it, and from proposition 6.6 we obtain 

(6.9) S(a(A), a(B)) ~ e oiiCliff(A - B)ll m, 

and 

(6.10) S(a(A), a(B)) ~ em,oiiA - Blip· 

We can also apply theorem 6.3 to the 2m-tuples of commuting self-adjoint matrices 

1t(A) and 1t(B) to obtain 
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(6.11) S(cs(A), cs(B)) s; c2m,o11Cllff(1t(A) - 1t(Bm 

and 

(6.12) S(cs(A), cs(B)) s; c2m,oll1t(A) - n(B>Ip· 

From theorem 3.1 we obtain inequality (6.11) with the constant c2m,O. replaced 

by 1. Similarly, from theorem 6.8 we obtain inequalities (6.10) and (6.12) with em,O 

and c2m,O replaced by 1. 
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