
THE T (b) THEOREM AND ITS VARIANTS

T. TAO

Abstract. We survey the various local and global variants of
T (1) and T (b) theorems which have appeared in their literature,
and outline their proofs based on a local wavelet coefficient per-
spective. This survey is based on recent work in [4] with Pascal
Auscher, Steve Hofmann, Camil Muscalu, and Christoph Thiele.

1. Introduction

The purpose of this expository article is to survey the various types
of T (1) and T (b) theorems which have been used to prove boundedness
of Calderón-Zygmund kernels. These theorems have many applications
to Cauchy integrals and analytic capacity, and also to elliptic and ac-
cretive systems; see e.g. [1], [6], [9], [13]. However we will not concern
ourselves with applications here, and focus instead on the mechanics
of proof of these theorems. In particular we present a slightly non-
standard method of proof, based on pointwise estimates of wavelet
coefficients.

For simplicity we shall work just on the real line IR, with the stan-
dard Lebesgue measure dx. For applications one must consider much
more complicated settings, for instance one-dimensional sets endowed
with Hausdorff measure, but we will not discuss these important gener-
alizations in this article1, and instead concentrate our attention on the
distinction between T (1) and T (b) theorems, and between local and
global variants of these theorems.

To avoid technicalities (in particular, in justifying whether integrals
actually converge) we shall restrict all functions and operators to be
real-valued, and only consider Calderón-Zygmund operators T of the
form

Tf(x) :=

∫
K(x, y)f(y) dy

1In particular we will not discuss the important recent extensions of the T (1)
and T (b) theory to non-doubling measures, see e.g. [24], [23].
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where K(x, y) is a smooth, compactly supported kernel obeying the
estimates

|K(x, y)| . 1/|x− y| (1)

|K(x, y)−K(x′, y)|+ |K(y, x)−K(y, x′)| . |x− x′|/|x− y|2 (2)

for all distinct x, x′, y. Here we use A . B or A = O(B) to denote
the estimate A ≤ CB for some constant C. An example of such an
operator would be the Hilbert transform Hf(x) := p.v.

∫
1

x−y
f(y) dy,

after first truncating the kernel p.v. 1
x−y

to be smooth and compactly

supported.
Of course, since we have declared K to be smooth and compactly

supported, the operator T is a priori bounded on Lp(IR) for 1 < p <∞.
However, the basic problem is to find useful conditions under which
one can obtain more quantitative bounds on the Lp operator norm of
T (e.g. depending only on p and the implicit constants in (1), (2) and
some additional data, but not on the smoothness and compact support
assumptions on K).

The remarkable T (1) theorem of David and Journé [12] gives a com-
plete characterization of this problem:

Theorem 1.1 (Global T (1) theorem). [12] If T is a Calderón-Zygmund
operator such that

• (Weak boundedness property) One has 〈TχI , χI〉 = O(|I|) for
all intervals I. Here |I| denotes the length of I.

• We have ‖T (1)‖BMO . 1.
• We have ‖T ∗(1)‖BMO . 1.

Then T is bounded on Lp, 1 < p <∞
‖Tf‖p . ‖f‖p

(the implicit constants depend on p) and we have the L∞ to BMO
bounds

‖Tf‖BMO . ‖f‖∞
‖T ∗f‖BMO . ‖f‖∞.

The remarkable thing about this theorem is that while the conclu-
sion asserts that T and T ∗ obey certain bounds for all Lp functions f
(including when p = ∞), whereas the hypotheses only require these
type of bounds for very specific Lp functions f . The point is that the
kernel bounds (1), (2) impose severe constraints on the behavior of T .
Informally, these bounds assert that the bilinear form 〈Tf, g〉 is small
when f and g have widely separated supports, and is especially small
when one also assumes that f or g has mean zero. This allows us
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in many cases to estimate 〈Tf, g〉 by replacing f with its mean on a
certain interval (i.e. by replacing f with its projection onto constant
functions), or by performing a similar replacement for g. By doing this
at all scales simultaneously (by use of such tools as the wavelet de-
composition), we can eventually control 〈Tf, g〉 by quantities involving
T (1), T ∗(1), or quantities such as 〈TχI , χI〉. In more precise terms,
the standard proof of Theorem 1.1 proceeds by decomposing T into an
easily estimated “diagonal” component (controlled by 〈TχI , χI〉, and
two paraproducts, one related to T (1) and one related to T ∗(1), which
can then be estimated with the aid of the Carleson embedding theo-
rem. In this note we give an alternate proof (in a model case) based
on pointwise estimates of wavelet coefficients.

Despite giving a complete answer to our problem, Theorem 1.1 is
not completely satisfactory for two reasons. Firstly, the conditions
‖T (1)‖BMO . 1 and ‖T ∗(1)‖BMO . 1 are global rather than local, in
that the constant function 1 and the nature of the BMO norm are both
spread out over all intervals of space simultaneously, in a way that the
weak boundedness property is not. Thus if one were only interested
in whether T is bounded on acertain subset Ω of IR, the hypotheses of
this theorem would be inappropriate. Secondly, the theorem is rather
inflexible in that one must test T and T ∗ against the function 1, rather
than some other functions which might be more convenient to apply T
and T ∗ to.

The first objection is easily addressed. Indeed, it is quite straightfor-
ward (and well-known) to see that the global T (1) theorem is equivalent
to the following local version:

Theorem 1.2 (Local T (1) theorem). If T is a Calderón-Zygmund op-
erator such that

•
∫

I
|TχI(x)|2 dx . |I| for all intervals I.

•
∫

I
|T ∗χI(x)|2 dx . |I| for all intervals I.

Then the conclusions of Theorem 1.1 hold.

We sketch the derivation of the global T (1) theorem from the local
T (1) theorem as follows. Suppose that T (1) ∈ BMO, then for any
interval I we would have

‖T (1)− [T (1)]I‖L2(I) . |I|1/2,

where [f ]I := 1
|I|

∫
I
f denotes the mean of f on I. On the other hand,

from (1), (2) and a direct calculation one can show that

‖T (1− χI)− [T (1− χI)]I‖L2(I) . |I|1/2,
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and hence that

‖T (χI)− [T (χI)]I‖L2(I) . |I|1/2.

On the other hand, from the weak boundedness property we have
[T (χI)]I = O(1), and thus we have verified the first property of Theo-
rem 1.2. The second property is verified similarly and we are done. The
reverse implication (that the global theorem implies the local version)
is similar and we do not detail it here.

As the name suggests, the local T (1) theorem can be localized. Here
is one sample localization result:

Theorem 1.3 (Localized T (1) theorem). Let Ω ⊂ IR be an open set.
If T is a Calderón-Zygmund operator such that

•
∫

I
|TχI(x)|2 dx . |I| for all intervals I such that I ∩ Ω 6= ∅.

•
∫

I
|T ∗χI(x)|2 dx . |I| for all intervals I such that I ∩ Ω 6= ∅.

Then T is bounded on Lp(Ω) for 1 < p <∞, in the sense that

‖Tf |Ω‖Lp(Ω) . ‖f‖Lp(Ω)

for all f ∈ Lp(Ω).

Corresponding Lp and L∞ → BMO estimates can also be made, but
are a little technical due to the need to define BMO on domains.

We prove this theorem in a model case in Section 3. Unfortunately,
this localization is imperfect, since the intervals I in the hypotheses are
allowed to partially extend outside Ω; we do not know how to resolve
this issue to make the localization more satisfactory.

Now we discuss the second objection to the T (1) theorem, that the
choice of function 1 is fixed. Certainly we cannot replace 1 by an
arbitrary L∞ function, since if one replaces 1 by (for instance) the zero
function 0 then the hypotheses become trivial, and the theorem absurd.
Or if one replaces 1 by a function which vanishes on a large set, then
the hypothesis yields us very little information about T on that set,
and so one would not expect to conclude boundedness on T inside that
set. However, if one replaces 1 by functions which in some sense “never
vanish”, then one can generalize the T (1) theorem:

Theorem 1.4 (Global T (b) theorem). [13] Let b, b′ be bounded in
L∞(IR) and such that we have the pseudo-accretivity condition

|[b]I |, |[b′]I | & 1

for all intervals I. If T is a Calderón-Zygmund operator such that

• (Modified weak boundedness property) One has 〈T (bχI), (b
′χI)〉 =

O(|I|) for all intervals I.
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• We have ‖T (b)‖BMO . 1.
• We have ‖T ∗(b′)‖BMO . 1.

Then T is bounded on L2

‖Tf‖2 . ‖f‖2

and we have the L∞ to BMO bounds

‖Tf‖BMO . ‖f‖∞
‖T ∗f‖BMO . ‖f‖∞.

The conditions b, b′ be bounded in L∞(IR) can be relaxed slightly to
requiring b, b′ to just be bounded in BMO; see [4]. This theorem can be
proven by using wavelet systems adapted to b, b′ respectively [5]. In the
special “one-sided” case when b′ = 1 then there is an alternate proof
going through the global T (1) theorem and the heuristic that when
T ∗(1) ∈ BMO, we have the approximation 〈T (b), φI〉 ≈ [b]I〈T (1), φI〉
for all intervals I and all bump functions φI of mean zero adapted to
I; see [25] (and also [4]).

This T (b) theorem can also be localized, so that instead of having a
single function b supported globally, we only need a localized function
bI for each I. Also, each bI only has to satisfy a single accretivity
condition:

Theorem 1.5 (Local T (b) theorem). [4] If T is a Calderón-Zygmund
operator such that

• For every interval I, there exists a function bI ∈ L2(I) with∫
I

|bI |2 + |TbI |2 . |I|

which obeys the accretivity condition

|[bI ]I | & 1.

• For every interval I, there exists a function b′I ∈ L2(I) with∫
I

|b′I |2 + |T ∗b′I |2 . |I|

which obeys the accretivity condition

|[b′I ]I | & 1.

Then T is bounded on L2

‖Tf‖2 . ‖f‖2

and we have the L∞ to BMO bounds

‖Tf‖BMO . ‖f‖∞
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‖T ∗f‖BMO . ‖f‖∞.

Strictly speaking, the theorem in [4] was only proven in a model case
in which “perfect” kernel cancellation conditions were assumed, but the
argument extends without significant difficulty to general Calderón-
Zygmund kernels. This theorem is a variant of an earlier local T (b)
theorem of [9], which was in a much more general setting but required
L∞ conditions on bI , TbI , b

′
I , T

∗b′I rather than L2 conditions. One can
also replace the L2 conditions with Lp and Lp′

conditions, see [4].
In the “one-sided case”, when T ∗1 ∈ BMO, then one does not

need the second hypothesis (involving the b′I), and the proof can again
proceed via the T (1) theorem, again using the heuristic that when
T ∗1 ∈ BMO, we have the approximation 〈TbI , φI〉 ≈ [bI ]I〈T (1), φI〉
when φI has mean zero and is adapted to I. (cf. the local T (b) theo-
rems in [6], [1], [2]). However in the general case it appears that one is
forced to use tools such as adapted wavelet systems.

2. A dyadic model

In order to simplify the exposition, we shall replace our “contin-
uous” Calderón-Zygmund operators with a “discrete” dyadic model;
this model will be much cleaner to manipulate because of the absence
of several minor error terms, but will already capture the essence of
the arguments.

We define a dyadic interval to be any interval of the form [2jk, 2j(k+
1)] where j, k are integers. We will always ignore sets of measure zero,
and so will not distinguish between open, closed, or half-open dyadic
intervals. If I is an interval, we use |I| to denote its length and I left

and Iright to denote left and right halves of I respectively, and refer to
I left and Iright as siblings. We define the Haar wavelet φI to be the
L2-normalized function

φI := |I|−1/2(χIleft − χIright).

As is well-known, these wavelets form an orthonormal basis of L2(IR).
For any locally integrable f , we define the wavelet transform Wf , de-
fined on the space of dyadic intervals, by Wf(I) := 〈f, φI〉. Thus W is
an isometry from L2 to l2.

Observe that if T obeys (1), (2), and I and J are disjoint dyadic
intervals, then the quantity 〈TφI , φJ〉 decays quickly in the separation
of I and J (for instance, we have the estimates

〈TφI , φJ〉 .
|I|
|J |

(
1 +

dist(I, J)

|J |

)−2
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when |J | ≥ |I|). We now introduce a simplified model operator in which
the quantity 〈TφI , φJ〉 not only decays, but in fact vanishes when I, J
are disjoint.

Definition 2.1. A perfect dyadic Calderón-Zygmund operator T is an
operator of the form

Tf(x) :=

∫
K(x, y)f(y) dy

where K(x, y) is a bounded, compactly supported function which obeys
the kernel condition

|K(x, y)| . 1

|x− y|
(3)

and the perfect dyadic Calderón-Zygmund conditions

|K(x, y)−K(x′, y)|+ |K(y, x)−K(y, x′)| = 0 (4)

whenever x, x′ ∈ I and y ∈ J for some disjoint dyadic intervals I and J .
Equivalently, K is constant on all rectangles {I×J : I, J are siblings}.

As a consequence of (4) we see that TfI is supported on I whenever
fI is supported on I with mean zero, and similarly with T replaced by
T ∗. In particular we have 〈TφI , φJ〉 = 0 whenever I, J are disjoint.

We define the dyadic BMO norm by

‖f‖BMO∆
:= sup

I

(
1

|I|

∫
I

|f − [f ]I |2
)1/2

= sup
I

( ∑
J⊆I

Wf(J)2

)1/2

where I ranges over all dyadic intervals. This norm is very close to the
usual BMO norm, see [18].

3. Pointwise wavelet coefficient estimates

The purpose of this section is to give a somewhat non-standard proof
of the T (1) theorem in the model case of perfect dyadic Calderón-
Zygmund operators. This differs from the usual proof (involving para-
product decomposition and Carleson embedding) in that it relies on
pointwise estimates for wavelet coefficients, and also tackles the end-
point L∞ → BMO estimates first (instead of the usual procedure of
first establishing L2 bounds.

Let T be a perfect dyadic Calderón-Zygmund operator, and let f ∈
L2(IR) be a function. In order to study the L2 or BMO norm of Tf , it
makes sense to study the wavelet coefficients W (Tf)(J). It turns out
that one can write the coefficients of Tf rather explicitly in terms of
the corresponding coefficients of f , TχJ , T ∗χJ and fT ∗χJ :
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Lemma 3.1. [4] We have

W (Tf)(J) = [f ]JW (TχJ)(J)− [f ]JW (T ∗χJ)(J) +W (fT ∗χJ)(J)

− 2

|J |
(〈TχJleft

, χJright
〉+ 〈TχJright

, χJleft
〉)Wf(J). (5)

From (3) we thus have the useful pointwise estimate

|W (Tf)(J)| . |[f ]J ||W (TχJ)(J)|+ |[f ]J ||W (T ∗χJ)(J)|
+ |W (fT ∗χJ)(J)|+ |Wf(J)|

(6)

on the wavelet coefficient of Tf . The pointwise estimates (6) are remi-
niscent of the standard pointwise sharp function estimates (Tf)#(x) .
Mf(x) for Calderón-Zygmund kernels bounded on Lp; see [26].
Proof First observe that if f is vanishes on J then both sides of (5)
vanish (since W (Tf)(J) = 〈f, T ∗φJ〉 and T ∗φJ is supported on J).
Thus by linearity we may assume that f is supported on J .

Now suppose that f is equal to χJ , then Wf(J) = 0, and (5) col-
lapses to

W (TχJ)(J) = W (TχJ)(J)−W (T ∗χJ)(J) +W (χJT
∗χJ)(J)

which is clearly true. By linearity we may thus assume that f is or-
thogonal to χJ .

Now suppose that f is equal to φJ . Then (5) simplifies to

〈TφJ , φJ〉 =
1

|J |
〈TχJ , χJ〉 −

2

|J |
(〈TχJleft

, χJright
〉+ 〈TχJright

, χJleft
〉),

which is easily verified by expanding out T . By linearity we may thus
assume that f is also orthogonal to φJ . In particular, we can now
assume that f has mean zero on both Jleft and Jright. After some
re-arranging, the claim now collapses to

〈Tf, φJ〉 = 〈T (fφJ), χJ〉.
If f is supported on Jleft, then the claim follows since φJ is constant
on the support of f and on Tf . Similarly if f is supported on Jright.
The claim now follows by linearity.

Of course, this identity took full advantage of the perfect cancellation
(4). However in the continuous case there are still analogues of (6), but
with some additional error terms which are easily treated. (Basically,
the right-hand side will not just contain terms related to J , but also
terms related to intervals J ′ which are “close” in size and location
to J , but with an additional weight which decays fairly quickly as J ′

moves further away from J). One can also replace the Haar wavelet
with smoother wavelets in order to avoid certain (harmless) logarithmic
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divergences which can come up in this procedure. We will not pursue
the details.

With (6) in hand it is a fairly easy matter to prove the dyadic ana-
logue of Theorem 1.2:

Theorem 3.2 (Local dyadic T (1) theorem). If T is a perfect dyadic
Calderón-Zygmund operator such that

•
∫

I
|TχI(x)|2 dx . |I| for all dyadic intervals I.

•
∫

I
|T ∗χI(x)|2 dx . |I| for all dyadic intervals I.

Then T is bounded on L2

‖Tf‖2 . ‖f‖2

and we have the L∞ to dyadic BMO bounds

‖Tf‖BMO∆
. ‖f‖∞

‖T ∗f‖BMO∆
. ‖f‖∞.

Of course, this local theorem is equivalent to its global counterpart
by the argument sketched in the introduction.
Proof First we show that T maps L∞ into dyadic BMO. Fix f ∈ L∞;
we may normalize ‖f‖∞ = 1. We need to show the Carleson measure
condition ∑

J⊆I

|W (Tf)(J)|2 . |J | (7)

for all dyadic intervals I.
By a standard iteration procedure (extremely common in the study

of Carleson measures or BMO; we will use it again in the next section)
we may restrict the summation to those intervals J for which

|[T ∗χI ]J | ≤ C (8)

for some large constant C. We sketch the reason for this is as follows.
By Cauchy-Schwartz, we see that

∫
J
|T ∗χI |2 ≥ C2|J | whenever (8)

fails. Since we are assuming the bound
∫

I
|T ∗χI |2 . |I|, the intervals

J for which (8) fails can therefore only cover a set of measure at most
1

100
|I|, if C is chosen sufficiently large. One can then iterate away those

contributions in the usual manner (e.g. by assuming inductively that
(7) already holds for all sub-intervals of I).

Fix I; we will implicitly assume that (8) holds. Now we use (6) to
decompose the wavelet coefficients W (Tf)(J).

We write

W (fT ∗χJ)(J) = W (fT ∗χI)(J)−W (fT ∗χI\J)(J).
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From (4) we see that T ∗χI\J is constant on J , thus

W (fT ∗χI\J)(J) = ([T ∗χI ]J − [T ∗χJ ]J)Wf(J).

From the hypotheses and Cauchy-Schwarz we have [T ∗χJ ]J = O(1).
From this and (8) we thus have

|W (fT ∗χJ)(J)| . |W (fT ∗χI)(J)|+ |Wf(J)|.

Also, since T ∗φJ is supported on J , we have

W (TχJ)(J) = W (TχI)(J),

and similarly for T ∗. Since [f ]J = O(‖f‖∞) = O(1), we thus see from
(6) that we have the pointwise estimate

|W (Tf)(J)| . |W (TχI)(J)|+ |W (T ∗χI)(J)|
+ |W (fT ∗χI)(J)|+ |W (f)(J)|.

By hypothesis, the functions TχI , T
∗χI , (T ∗χI)f , and f all have an

L2(I) norm of O(|I|1/2). The claim (7) follows since the φJ are or-
thonormal in L2(I). This shows that T maps L∞ into BMO∆.

A similar argument shows that T ∗ maps L∞ to BMO∆. One then
concludes Lp boundedness by Fefferman-Stein interpolation (see e.g.
[26]) and a standard reiteration argument (starting, for instance, with
the apriori L2 boundedness and then improving this by repeated inter-
polation; cf. [29]). Alternatively, one could use Lp Calderón-Zygmund
techniques as in [16] to first establish weak Lp bounds and then inter-
polate. We omit the details

We now sketch how the above theorem localizes to a domain Ω ⊂ IR.
Specifically, we prove

Corollary 3.3 (Dyadic localized T (1) theorem). Let Ω ⊂ IR be an
open set. Let I be the set of dyadic intervals I such that I ∩ Ω 6= ∅. If
T is a Calderón-Zygmund operator such that

•
∫

I
|TχI(x)|2 dx . |I| for all I ∈ I.

•
∫

I
|T ∗χI(x)|2 dx . |I| for all I ∈ I.

Then T is bounded on Lp(Ω) for 1 < p <∞, in the sense that

‖Tf |Ω‖Lp(Ω) . ‖f‖Lp(Ω)

for all f ∈ Lp(Ω).

Proof Let Π be the projection

Πf :=
∑
I∈I

Wf(I)φI .
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Equivalently, we have Πf(x) = f(x) if x ∈ Ω, and Πf(x) = [f ]I
when x 6∈ Ω, where I is the smallest dyadic interval containing x and
intersecting Ω.

We consider the operator ΠTΠ. It is easy to verify that this operator
is also a perfect dyadic Calderón-Zygmund operator. We claim that
ΠTΠ verifies the hypotheses of Theorem 3.3. The claim then follows
since ΠTΠf(x) = TΠf(x) = Tf(x) for all x ∈ Ω and f ∈ Lp(Ω).

Let I be a dyadic interval. We shall verify that∫
I

|ΠTΠχI(x)|2 dx . |I|.

First suppose that I ∈ I. Then ΠχI = χI . Also, on I one can esti-
mate Π by the Hardy-Littlewood maximal function on I. The claim
then follows from the hypotheses and the Hardy-Littlewood maximal
inequality.

Now suppose that I 6∈ I. Let J be the smallest dyadic interval in I

which contains J . Then ΠχI = |I|
|J |χJ , and Πf = [f ]J on I. Thus it will

suffice to show that

1

|J |

∫
J

∣∣∣ |I||J |TχJ

∣∣∣2 . |I|.

But this follows from hypothesis since |I| ≤ |J |.

It is also possible to establish the above corollary directly by us-
ing variants of the pointwise estimate (6), combined with the square-
function wavelet characterization of Lp and some Calderón-Zygmund
theory, but we will not detail this here.

The operator Π is an example of a phase space projection, to a re-
gion of phase space known as a “tree”. Such localized estimates for
Calderón-Zygmund operators are very useful in the study of multilin-
ear objects such as the bilinear Hilbert transform and the Carleson
maximal operator: see e.g. [15], [28], [19], [20], [22], etc. (For a fur-
ther discussion of the connection between Carleson measures, Calderón-
Zygmund theory, and phase space analysis, see [4]).

3.1. Adapted Haar bases, and T (b) theorems. We now turn to
T (b) theorems, starting with the global T (b) theorem in Theorem 1.4.
We shall consider the dyadic model case when T is a perfect dyadic
Calderón-Zygmund operator, and assume that b, b′ are bounded and
obey the pseudo-accretivity conditions

|[b]I |, |[b′]I | & 1

for all dyadic intervals I.
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Ideally, one would like to have an estimate like (6), but with T (χJ)
and T ∗(χJ) replaced by T (bχJ) and T ∗(b′χJ):

|W (Tf)(J)| . |[f ]J ||W (T (bχJ))(J)|+ |[f ]J ||W (T ∗(b′χJ))(J)|
+ |W (fT ∗(b′χJ))(J)|+ |Wf(J)|. (9)

This is because one can then approximate T (bχJ) and T ∗(b′χJ) by T (b)
and T ∗(b′) by arguments similar to that used to prove Theorem 3.2.

Unfortunately, such an estimate does not seem to hold in general.
However, if one replaces the Haar wavelet system by modified Haar
wavelet systems adapted to b and b′, then one can recover a formula
similar to (9), as follows.

For each interval I, we define the adapted Haar wavelet φb
I (intro-

duced in [10]; see also [5]) by

φb
I := φI −

Wb(I)

[b]I

χI

|I|
. (10)

The wavelet φb
I no longer has mean zero, but still obeys the weighted

mean zero condition ∫
bφb

I = 0. (11)

As a consequence we see that∫
φb

Ibφ
b
J = 0 for all I 6= J. (12)

A calculation gives the identity∫
φb

Ibφ
b
I =

2

[b]−1
Ileft

+ [b]−1
Iright

.

From the pseudo-accretivity and boundedness properties, we thus see
that φb

P has the non-degeneracy property∣∣∣ ∫
φb

P bφ
b
P

∣∣∣ ∼ 1. (13)

Define the dual adapted Haar wavelet ψb
I by

ψb
I :=

φb
Ib∫

φb
Ibφ

b
I

.

By (12), (13) we thus have that 〈ψb
I , φ

b
J〉 = δIJ where δ is the Kronecker

delta. In particular we have the representation formula

f =
∑

I

Wbf(I)ψb
I (14)
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(formally, at least), where the adapted wavelet coefficients Wbf(I) are
defined by

Wbf(I) := 〈f, φb
I〉.

From some computation and the Carleson embedding theorem one
can eventually verify the orthogonality property( ∑

I

|Wbf(I)|2
)1/2

∼ ‖f‖2 (15)

(see e.g. [26], or [4]). Thus the adapted wavelet transform Wb has most
of the important properties that W has.

The analogue of (9) is

Lemma 3.4. [4] If f is bounded in L∞, then

|Wb(bT
∗f)(I)| . |Wb(bT

∗(b′χI))(I)|+ |Wb(b
′T (bχI))(I)|

+ |Wb(fT (bχI))(I)|+ |Wf(I)|+ |W (b′)(I)|.

Proof We can write

Wb(bT ∗f)(I) = 〈f, T (bφb
I)〉 = 〈f, Tψb

I〉.
Since ψb

I has mean zero, Tψb
I is supported on I. Thus the left-hand

side does not depend on the values of f outside I. Similarly for the
right-hand side. Thus we may assume that f is supported on I.

The claim is clearly true when f is equal to a bounded multiple
of b′χI (since the left-hand side is then bounded by the first term on
the right-hand side). Since |[b′]I | ∼ 1, every bounded function f on I
can be split as the sum of a bounded multiple of b′χI and a bounded
function on I with mean zero. Thus it will suffice to prove the estimate

|Wb(bT
∗f)(I)| . |Wb(fT (bχI))(I)|+ |Wf(I)|

for functions f of mean zero on I.
We can write

Wb(bT
∗f)(I) = 〈φb

IT
∗(f), bχI〉.

Since

〈T ∗(φb
If), bχI〉 = 〈fT (bχI), φ

b
I〉 = Wb(fT (bχI))(I)

it will suffice to prove the commutator estimate

〈φb
IT

∗(f), bχI〉 − 〈T ∗(φb
If), bχI〉 = O(|Wf(I)|).

Recall that φb
I is constant on Ileft and Iright. Thus if f is supported on

Ileft with mean zero, then the commutator vanishes (since T ∗(φb
If) =

φb
I(Ileft)T

∗(f) is supported on Ileft). Similarly if f is supported on Iright

with mean zero. Since we are already assuming that f is supported on
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I with mean zero, it thus suffices to verify the estimate when f is the
standard Haar wavelet φI :

〈φb
IT

∗(φI), bχI〉 − 〈T ∗(φb
IφI), bχI〉 = O(1).

Throwing the T ∗ on the other side, we see the claim will follow from
Cauchy-Schwarz and the estimates∫

I

|T (bχIleft
)|2,

∫
I

|T (bχIright
)|2,

∫
I

|T (bχI)|2 . |I|.

We just show the last estimate, as the first two are proven similarly.
From weak boundedness we have∣∣∣ ∫

I

T (bχI)b
′
∣∣∣ . |I|1/2.

Since b′ is in L∞ with |[b′]I | ∼ 1, it thus suffices to prove the BMO
estimate ∫

I

|T (bχI)− [T (bχI)]I |2 . |I|.

On the other hand, since T (b) is in BMO by hypothesis, we have∫
I

|T (b)− [T (b)]I |2 . |I|.

The claim follows since T (b(1− χI)) is constant on I by (4).

From Lemma 3.4 one can show (as in the proof of Theorem 1.2)
that the wavelet coefficients Wb(bT

∗f)(I) obeys the Carleson measure
estimate ∑

J⊆I

|Wb(bT
∗f)(J)|2 . |I|.

(As in the proof of Theorem 1.2, it will be convenient to first remove
the intervals where the mean of T (bχI) is large, in order to estimate
T (bχJ) by T (bχI) effectively.)

From this Carleson measure estimate, (15) and the mean-zero prop-
erty of the wavelets ψb

J = bφb
J , we can show that T ∗f ∈ BMO. Thus

T ∗ maps L∞ to BMO. Similar arguments give the bound for T , and
the Lp bounds then follow from interpolation as before. This allows
one to prove the global T (b) theorem, Theorem 1.4.

We now briefly indicate how the above proof of the global T (b) theo-
rem can be localized to yield Theorem 1.5; the details though are rather
complicated and can be found in [4]. In the above argument we gave
pointwise estimates on wavelet coefficients Wb(bT

∗f)(J), which were in
turn used to prove Carleson measure estimates. Now, however, we do
not have a single b to work with, instead having a localized bI assigned



THE T (b) THEOREM AND ITS VARIANTS 157

to each interval I. We would now like to have a Carleson measure
estimate of the form ∑

J⊆I

|WbI
(bIT

∗f)(J)|2 . |I|. (16)

Suppose for the moment that we could attain (16). If bI obeyed the
pseudo-accretivity condition |[bI ]J | & 1 for all J ⊆ I, and the bound-
edness condition

∫
J
|bI |2 . |J | for all J ⊆ I, then one could use (15) to

then show the BMO estimate∫
I

|T ∗f − [T ∗f ]I |2 . |I| (17)

which would show that T ∗ mapped L∞ to BMO as desired.
Unfortunately, our assumptions only give us that bI has large mean

on all of I:
|[bI ]I | & 1.

This does not preclude the possibility of bI having small mean on some
sub-interval J of I (for instance, bI could vanish on some sub-interval).
However, because we have the L2 bound

∫
I
|bI |2 . I, it does mean

that [bI ]J cannot vanish for a large proportion of intervals J . To make
this more rigorous, fix 0 < ε � 1, and let ΩI ⊆ I be the union of all
the intervals J ⊆ I for which |[bI ]J | . ε. Then by a simple covering
argument (splitting ΩI as the disjoint union of the maximal dyadic
intervals J in ΩI) we have∣∣∣ ∫

ΩI

bI

∣∣∣ . ε|ΩI | . ε|I|

and thus (if ε is sufficiently small)∣∣∣ ∫
I\ΩI

bI

∣∣∣ & |I|.

From Cauchy-Schwarz and the L2 bound on bI we thus have

|I\ΩI | & |I|.
Thus there is a significant percentage of I for which one does not

have the problem of bI having small mean. Furthermore, by a similar
argument one can also show that on a slightly smaller significant per-
centage of I, one also does not have the problem of

∫
J
|bI |2 being much

larger than J . Thus there is a non-zero “good” portion of I where the
function bI behaves as if itwere pseudo-accretive, and on which Carleson
estimates such as (16) would yield BMO bounds. The proof of (17)
then proceeds by first estimating the integral on this “good” portion of
I, and using a standard iteration argument to deal with the remaining
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“bad” portion of I, which has measure at most c|I| for some c < 1;
the point being that the geometric series 1 + c + c2 + . . . converges.
Details can be found in [4]; similar arguments can also be found in [1],
[6] (and indeed a vector-valued, higher-dimensional version of this trick
of removing the small-mean intervals is crucial to the resolution of the
Kato square root problem in higher dimensions [1], [2]).

It remains to prove (16), at least when J is restricted to the set where
bI behaves like a pseudo-accretive function. Obviously one would like
to have Lemma 3.4 holding (but with b, b′ replaced by bI , b

′
I of course).

However, an inspection of the proof shows that to do this one needs
bounds of the form

∫
J
|bI |2 . |J |,

∫
J
|b′I |2 . |J |, and |[b′I ]J | & 1; in

other words bI and b′I have to behave like pseudo-accretive functions2

on J . Fortunately, by arguments similar to the ones given above, one
can show that the bad intervals J , for which the above bounds fail, do
not cover all of I, and there is a fixed proportion of I which is “good”,
in the sense that (16) holds when localized to this good set. One then
performs yet another iteration argument on the “bad” portion of I to
conclude (16).

This concludes the sketch of the proof of Theorem 1.5 in the case
of perfect dyadic Calderón-Zygmund operators; further details can be
found in [4]. It is an interesting question as to whether this proof tech-
nique can also produce localized estimates, perhaps similar to Theo-
rem 1.3. One model instance of such a theorem is Theorem 29 of [9],
which says informally that if E is a compact subset of an Ahlfors-David
regular set with positive analytic capacity, then E has large intersec-
tion with another Ahlfors-David regular set for which the Cauchy inte-
gral is bounded. (This is somewhat analogous with a hypothesis that
T (b), T ∗(b) ∈ BMO for some b which is sometimes, but not always,
pseudo-accretive, and a conclusion that T is bounded when restricted
to a reasonably large set Ω).
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2Actually, one also needs lower bounds for the magnitude of of [b′
I ]Jleft

and
[b′

I ]Jright
. This introduces some technicalities involving “buffer” intervals - intervals

J for which bI has large mean, but such that bI has small mean on one of the sub-
intervals Jleft, Jright. These intervals are rather annoying to deal with but are
fortunately not too numerous; see [4].
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