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Introducing polar coordinates around a point in Euclidian space re-
duces the Euclidian metric to the degenerate form

dr2 + r2 d!2(1)

where r is the distance from the point and d!2 is the round metric on
the sphere. If X is an arbitrary manifold with boundary, the class of
conic metrics on X is modeled on this special case. Namely, a conic
metric is a Riemannian metric on the interior of X such that for some
choice of the de�ning function x of the boundary (x 2 C1(X) with
@X = fx = 0g, x � 0, dx 6= 0 on @X), the metric takes the form

g = dx2 + x2h on X� = Xn@X; near @X:
Here h is a smooth symmetric 2-cotensor on X such that h0 = hj@X is
a metric on @X:
In fact a general conic metric can be reduced to a form even closer

to (1) in terms of an appropriately chosen product decomposition of X
near @X; that is, by choice of a smooth di�eomorphism

[0; �)x � @X
F�! O � X; O an open neighborhood of @X :(2)

The normal variable in x 2 [0; �) is then a boundary de�ning function,
at least locally near @X; and the slices F �x=x0 have given di�eomor-
phisms to @X: Now such a product decomposition can be chosen so
that

F �g = dx2 + x2hx; in x < �;(3)

where hx is a family of metrics on @X.
This reduced form is closely related to the behavior of geodesics near

the boundary. Up to orientation and parameterization there is a unique
geodesic reaching the boundary at a given point p: In particular the
normal �bration of X near @X given by the segments F ([0; �)� fpg),
p 2 @X, consists of geodesics which hit the boundary, each at the
corresponding point p:
We shall discuss here the behavior of solutions to the wave equation

(D2

t ��)u = 0 on R �X�(4)
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when X is endowed with a conic metric, � is the associated (positive)
Laplacian on functions, and Dt = �i@=@t. For simplicity we take X to
be compact. It is only really important that @X be compact.
Our primary concern is to describe the phenomenon of the propa-

gation of singularities for solutions to (4). To do so it is necessary
to understand the behavior of solutions in a way related to the func-
tional analytic domain of �: For the moment we simply say that we are
dealing with `admissible' solutions. This condition is explained further
below.
In the interior of X the propagation of singularities, described pre-

cisely in terms of the notion of wavefront set, was treated in detail by
H�ormander ([4]). We paraphrase H�ormander's result here as

\Singularities travel along null bicharacteristics, which in
the case of the wave equation project to time-parameter-
ized geodesics."

Thus, in the microlocal sense of singularities described by the wave
front set, a bicharacteristic segment, which covers a light ray, either
consists completely of singularities for a given solution or the solution
has no singularity along it.
This quite adequately describes the propagation of singularities ex-

cept where a light ray hits the boundary at some point and at some
time. Here a `splitting' of singularities will usually take place. This
is generally called a di�ractive e�ect. The contrapositive of this e�ect
can be succinctly stated as follows:

\If no singularity reaches the boundary at time �t then no
singularity leaves at time �t:"

The point here is that the regularity along any one of the `radial'
rays leaving the boundary at a given time is related, in general, to the
singularities on all the incoming rays (although there are two separate
components, as described below) arriving at the boundary at that time.
Thus, even if singularities arrive at the boundary at time �t along just
one ray, they will in general depart along all rays leaving the boundary
at time �t:
There are, however, some important exceptions to this general spread-

ing of singularities. For instance, if X is a conic manifold with `trivial'
conic metric de�ned by the blowup of a point in a smooth Riemann-
ian manifold. In this case, admissible solutions are just the lifts of
solutions in the usual sense and, because of H�ormander's theorem on
interior singularities, the singularities are carried outward only on the
one ray continuing the incoming ray in the original manifold.
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For a general conic metric there is a similar notion of the `geometric
continuation' of an incoming geodesic which hits the boundary. For a
trivial conic metric obtained from a blowup, the boundary metric h0 is
the standard metric on the sphere. The geometrically related incoming
and outgoing rays hit this sphere at antipodal points; these can also
be thought of as the points separated by geodesics of length � on the
unit sphere. In the case of a general conic metric we may mimic this
by de�ning the relation

(5) G(p) =

fq 2 @X; 9 a geodesic in @X for h0 of length � with end points p; qg:
In general of course, G(p) is not smooth. Generically it is a hyper-
surface with Lagrangian singularities; it is always the projection of a
smooth Lagrangian relation.
A geometric re�nement of the di�raction result is obtained by con-

sidering the order of singularities with respect to Sobolev spaces and
an additional `second microlocal' regularity condition. For simplicity
suppose that the (admissible) solution u is singular only near @X and
only near a single incoming ray hitting the boundary at time �t and at
the point p: In the past (for t < �t) we may suppose that the solution is
locally in some Sobolev space Hs: Suppose further that the singularities
of the solution are not too strongly focused on @X insofar as tangential
smoothing raises the overall regularity, that is, for some k; ` > 0,

(�@X + 1)�ku 2 Hs+`
loc

in t < �t near @X;(6)

where �@X is the Laplacian on @X with respect to the metric h0, ex-
tended to act on a neighborhood of X using the product decomposition
(2). Under these two assumptions and the additional requirement that

0 < ` <
n

2
;(7)

we obtain the following `geometric theorem'.

\If an admissible solution is singular only near an incom-
ing ray arriving at @X at time �t and (6) and (7) hold,
then on outgoing rays with initial point in the comple-
ment of G(p),

u 2 H
s+`� 1

2
��

loc
8 � > 0 in t > �t near @X:"(8)

When slightly generalized and re�ned, as described below, this result
applies to the fundamental solution

sin t
p
�p

�
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p incoming singularity

outgoing regularity
G(p)

{

Figure 1. Given the tangential smoothing property,
there is greater regularity on outgoing rays from points
not �-related to incoming rays carrying singularities.

with pole close to @X and with ` < n�1
2
. The di�ractive theorem

merely tells us that if the pole is speci�ed at (�x; p) at t = 0, then
singularities cannot emanate from @X except at time t = �x. On the
other hand, while `strong' singularities can emanate from all points in
G(p); this geometric theorem tells us that the solution is microlocally
more regular on rays starting from @X at t = �x but with initial point
outside G(p): We can in fact use the conormality of the fundamental
solution to obtain a sharper result than (8): the analogue of (8) for the
fundamental solution yields Hs+l�� regularity, i.e. we obtain one-half
derivative of improvement over the general case.
In the special case in which the metric g takes precisely the `product'

form

g = dx2 + x2h(y; dy);(9)

near the boundary, Cheeger and Taylor [1, 2] have given an explicit
analysis of the fundamental solution constructed by separation of vari-
ables. (See also the discussion by Kalka-Meniko� [6].) They Sobolev
regularity they obtain is the same, and is therefore optimal in general.
They also show that the outgoing solution is conormal and compute
the precise order. A version of the results of Cheeger-Taylor has been
established in the analytic category by Rouleux [14]. Lebeau [7, 8]
has also obtained a di�ractive theorem in the setting of manifolds with
corners in the analytic category.
Detailed proofs of the results in this paper will appear in [11].
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1. Friedrichs extension

To describe the admissibility condition, near the boundary, for solu-
tions to (4) we �rst describe the domain of the Laplacian for a conic
metric. We take the Friedrichs extension of �. By de�nition, � is
associated to the Dirichlet form

F (u; v) =

Z
X

hdu; dvig dg ; u; v 2 C1c (X�)(10)

Hence, dg is the metric volume form; in this case

dg = 'xn�1 dx dh0 near @X; n = dimX ; ' 2 C1; ' > 0 :

The inner product in (10) is that induced, by duality, by the metric on
T �X�: Following Friedrichs we de�ne,

D(�1=2) = clos
n
C1
c
(X�) w.r.t. F (u; u) + kuk2L2

g

o
;

whenever X is a compact conic manifold with boundary of dimension
n � 2:
This is a Hilbert space with dense injection D(�1=2) ,! L2

g(X) so

there is a dual injection L2

g(x) ,! (D(�1=2))0: The natural operator

� : D(�1=2)! (D(�1=2))0 is determined by

(�u; ')L2
g
= F (u; ') 8 u; ' 2 D(�1=2):

Then the Friedrichs extension of � is the unbounded operator with
domain

D(�) =
�
u 2 D(�1=2); �u 2 L2

g(x)
	
:

It is a self-adjoint, non-negative operator and in this case has discrete
spectrum of �nite multiplicity. This allows its complex powers to be
de�ned by reference to an eigenbasis. The real powers are isomorphisms
o� the null space, which consists precisely of the constants. Each of
the powers is therefore a Fredholm map

�s : D(�s)! L2

g(X) 8 s 2 R:

with null space the constants and range the orthocomplement of the
constants. The domains form a scale of Hilbert spaces, and

D(�s) ,! D(�t) is dense 8 s � t

with D(�0) = L2

g(X).
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For our purposes it is also important to note when the domains

consist of extendible distributions, i.e. those dual to _C1(X). This is
the case only for s > �n

4
and more precisely

_C1(X) ,! D(�s) ,! C�1(X)(11)

are dense inclusions for�n
4
< s < n

4
: The limits of this range correspond

to the occurrence of formal solutions of �u = 0:

2. Wave group

The Cauchy problem for the wave equation

(D2

t ��)u = 0; on R �X�

ujt=0 = u0; Dtujt=0 = u1
(12)

has a unique solution

u 2 C0(R;D(�1=2)) \ C1(R;L2

g (x))

8 (u0; u1) 2 E = E1 = D(�1=2)� L2

g(X) :

These `�nite energy solutions' are the main object of study here. More
generally, with the equation interpreted in C�1(R;D(�

s
2
�1)) the Cauchy

problem has a unique solution

u 2 C0(R;D(�
s
2 )) \ C1(R;D(�

s
2
�

1

2 ))

8 (u0; u1) 2 Es = D(�
s
2 )�D(�

s
2
�

1

2 ) :
(13)

The regularity hypothesis on the solution can be weakened to

u 2 L2

loc
(R;D(�

s
2 )) \H1

loc
(R;D(�

s
2
�

1

2 ))

without changing the unique solvability.
Notice that these calculations are consistent under decrease of s:

Furthermore, partial hypoellipticity in t shows that the solution to
(12) satis�es

u 2 H�k
loc
(R;D(�

s
2
+

k
2 )) 8 k 2 R :(14)

An admissible solution to the wave equation is one that satis�es

u 2 Hp
loc
(R;D(�

q

2 )) for some q; p 2 R(15)

with (4) holding in H�p�2
loc

(R;D(�
q
2
�1)). Such a solution automatically

satis�es (14) for some s:
These statements can be reinterpreted in terms of the wave group

U(t) :

�
u0
u1

�
7!
�

u(t)

Dtu(t)

�
; U(t) : Es ! Es 8 s:(16)
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3. H�ormander's theorem

Let M be a manifold without boundary. The wave front set of a
distribution u 2 C�1(M) is a closed subset of the cosphere bundle

WF(u) � S�M:

It may be de�ned by decay properties of the localized Fourier transform,
or the FBI (Fourier{Bros{Iagonitzer) transform, or by testing with
pseudodi�erential operators. The projection �(WF(u)) �M is exactly
the C1 singular support, the complement of the largest open subset of
M to which u restricts to be C1.
A re�ned notion of wavefront set is the Sobolev-based wavefront set,

denoted WFs; this is a closed subset of S�M , where now the projection
is the complement of the largest open subset of M to which u restricts
to be Hs.
If u satis�es a linear di�erential equation, Pu = 0; then

WF(u) � �(P ) � S�M

when �(P ) is the characteristic variety of P , the set on which its (ho-
mogeneous) principal symbol, p; vanishes.
If p is real then the symplectic structure on T �M , or the contact

structure on S�M; de�nes a `bicharacteristic' direction �eld VP on S�M ,
tangent to �(P ): The integral curves of VP are called bicharacteristics;
those lying in �(P ) are called null bicharacteristics.

Theorem 1 (H�ormander). Let P be a (pseudo)-di�erential operator

with real principal symbol. If Pu = 0 then WF (u) � �(P ) is a union
of maximally extended null bicharacteristics. The same result also holds
with WF replaced by WFs for any s:

In our case, M = R � X� so T �M = T �
R � T �X�. The principal

symbol of the d'Alembertian is � 2 � j � j2g, where � is the dual variable

to t and j � jg is the (dual) metric on T �X�. Then

�(P ) = �+(P ) [ ��(P ) � S�M

when �I(P ) �= R � S�X� are the disjoint parts of �(P ) in � > 0 and
� < 0. In this representation of �(P ) the null bicharacteristics are
geodesics on X�, lifted canonically to S�X�, with t as a�ne parameter.
Thus, for the wave equation overX�, H�ormander's theorem does indeed
reduce to the informal propagation statement described above.
Combined with standard results relating the singularities of the solu-

tion to singularities of the initial data, H�ormander's theorem applied to
the wave equation on a conic manifold yields complete information on
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the behavior of singularities except along bicharacteristics lying above
geodesics which hit the boundary.

4. Diffractive theorem

On parametrized geodesic segments with an end point on the bound-
ary, the de�ning function x is either strictly increasing or strictly de-
creasing near the boundary. For each sign of � and for each �t 2 R

the bicharacteristics covering such geodesics which hit the boundary at
t = �t and along which t is increasing (resp. decreasing) as x decreases,
form a smooth submanifold of T �(ft < �tg�X) (resp. T �(ft > �tg�X)).
We denote these `radial' surfaces (near @X) by

R�;I(�t) and R�;O(�t) � �(P )

where � is the sign of � and I; O refers to whether these are `incoming'
or `outgoing' and hence, equivalently, whether they lie in t < �t or t > �t:

Theorem 2 (Di�ractive theorem). If u is an admissible solution to
(4) then for any �t 2 R, s 2 R, � = �,

R�;I(�t) \WFs(u) = ; ) R�;O(�t) \WFs(u) = ;:
Here, WFs(u) is the wave front set computed relative to the Sobolev

space Hs; locally in the interior.
This is a precise form of the di�ractive result described informally

above. Notice that the singularities for di�erent signs of � are com-
pletely decoupled. This does not, however, represent any re�nement
in terms of propagation along the underlying geometric rays, since all
geodesics are covered by bicharacteristics with � �xed and of either
sign.
The proof of this result is discussed brie
y below in x7.

5. Geometric theorem

Consider a geodesic onX which hits the boundary at a point p 2 @X:
An open set of perturbations of the geodesic, meaning geodesics start-
ing near some interior point on the geodesic and with initial tangent
close to the tangent to the geodesic, will miss the boundary. A limit
of such curves as the perturbation vanishes consists of three segments.
The �rst is the incoming geodesic segment. The second is a geodesic
segment in the boundary, of length �. The third is the outgoing geo-
desic from the end point of the boundary segment, which is therefore
a point in G(p) as de�ned in (5) (see Figure 2). Thus it is reason-
able to suppose that, amongst the outgoing bicharacteristics leaving
the boundary at time �t; those with initial points in G(p) will be more
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Figure 2. A sequence of geodesics nearly missing the
boundary, and the three segments which they approach.

closely related to an incoming bicharacteristic with end point p arriving
at time �t: We call these the geometrically-related bicharacteristics (or
geodesics).
For instance, if there are incoming singularities on a single ray the

singularities on the `non-geometrically-related' outgoing bicharacteris-
tics might be expected to be weaker than the incoming singularity.
However, this is not in general the case. To obtain such a geometric
re�nement of the di�raction result we need to impose an extra `nonfo-
cusing' assumption.

Theorem 3 (Geometric theorem). Let u be an admissible solution to
(4) and let � = �. Suppose that R�;I(�t)\WFs u = ; near @X. Suppose
additionally that for some k and 0 < ` < n

2

WFs+`(1 +�@X)
�k u \ R�;I(�t) = ;:(17)

For any 0 < r < ` � 1=2; if no incoming bicharacteristic hitting the

boundary at time �t at a point in G(p) with sgn � = � is in WFs+r u, then
the outgoing bicharacteristic with initial point p 2 @X and sgn � = �
is not in WFs+r�� u for any � > 0.

If in addition to (17) we have

WFs+`(xDx + (t� �t)Dt)(1 +�@X)
�k u \R�;I(�t) = ;:(18)

then the same conclusion follows for all 0 < r < l.

Thus the additional assumption (17) allows regularity on outgoing
rays to be deduced from regularity in the incoming geometrically-
related rays up to the corresponding level above `background' regu-
larity.
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As already noted, this result may be applied to the fundamental
solution with initial point near the boundary. If the initial pole of the
fundamental solution is su�ciently close to the boundary then there is
a unique short geodesic segment from it to the boundary, arriving at
a point p: If �t is the length of the segment then, provided �t is small
enough, (17) and (18) hold with s < �n

2
+ 1 for any ` < n�1

2
. It

follows that on R�;O(�t); the outgoing set, the fundamental solution is

in H1=2��, for all � > 0, microlocally near the non-geometrically related
rays, those with end point not in G(p), whereas the general regularity
is H�

n
2
+1�� for all � > 0. This is a gain of `nearly' n�1

2
derivatives over

the background regularity.
In this way we extend part of the result of Cheeger and Taylor [1,

2] in the product case (9) to the general conic case. Inspection of
the fundamental solution constructed in [1] reveals the `nearly' n�1

2

di�erence in smoothness between geometric and non-geometric rays to
be sharp.

6. Spherical conormal waves

Around a given point q in a compact Riemann manifold there are
`spherical' conormal waves which are singular only on the spherical
surfaces r = �t, for small t of both signs. These just correspond to
conormal data at t = 0 at the (�ctive) cone point q. An important ex-
ample is the fundamental solution, in which case the result follows from
Hadamard's construction. In the more general case of a conic mani-
fold with boundary there are similar contracting, and then expanding,
conormal waves.

Theorem 4. If u is an admissible solution near @X and t = 0 which
is conormal to t = �x for t < 0 then it is conormal to t = x, near the

boundary, for small t > 0.

These conormal solutions to the wave equation in the general conic
case are at the opposite extreme to those considered in the Geometric
Theorem above. Namely, they are already smooth in the tangential
variables, so no tangential smoothing in the sense of (6) is possible.
Further analysis of the structure of these waves shows that the principal
symbols undergo a transition at x = 0, the boundary, given by the
scattering matrix for the model cone with the same boundary metric.
Since this scattering matrix should have full support in general, this
provides counterexamples to any extension of the geometric theorem
in which the tangential smoothing condition is dropped.
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7. Methods

The basic method we use is microlocal, but non-constructive. It is
a direct extension of one of the proofs by H�ormander of the interior
propagation theorem. This `positive' commutator method is itself a
microlocalization of the energy method for hyperbolic equations. In it
a `test' pseudodi�erential operator, A, is applied to the equation and
the essential positivity of the symbol of the commutator 1

i
[P;A] gives

a local regularity estimate on the solution.
To extend this method to cover behavior of solutions near the bound-

ary we replace the ordinary notions of wavefront set, pseudodi�erential
operators and microlocalization with versions appropriately adapted to
the geometry. When considering the Laplacian itself on the manifold
with boundary with conic metric, the appropriate notion is that of a
weighted b-pseudodi�erential operator (see [13]). This for instance al-
lows the precise description of the domains of the powers of � which
is used at various points in the argument.
However, for the wave operators for the conic Laplacian the appro-

priate notion corresponds to the `edge' calculus of pseudodi�erential
operators discussed originally by Mazzeo [9], arising from a �ltration
of the boundary (see also Schulze [15]). In this case, the manifold with
boundary is X � R and the �bers of the boundary are the surfaces
t = const. Thus t is the base variable of the �bration.
To the edge calculus of pseudodi�erential operators, given by mi-

crolocalization from the di�erential operators generated by xDx, Dy

(where the y's are tangential variables) and xDt, we associate a notion
of wavefront set. We can prove the propagation theorem analogous
to that of H�ormander for this `edge' wavefront set. However, in this
new sense, D2

t �� is not globally of principal type but rather has two
radial surfaces. These correspond to the end points of bicharacteristics
arriving at, and leaving from, the boundary. At these surfaces there
are restrictions on the propagation results, very closely related to those
for scattering Laplacians in [10]. The construction of the test operator
A; which away from the radial surfaces is essentially given by 
owout
along the geodesic spray on @X; becomes more delicate at the radial
surfaces. Positivity relies on the precise form of the singularity of the
Hamilton vector �eld there.
These propagation estimates form the basis of both the di�ractive

and geometric theorems. In the former we combine the estimates with
a variant of the one-dimensional FBI transform, scaled with respect to
the normal variable x. This reduces the di�ractive result to an iterative
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application of a uniqueness theorem for the Laplacian on the model,
non-compact cone.
To obtain the geometric theorem, showing that the outgoing singu-

larities on non-geometrically related rays are weaker than the incoming
ones, we use a division theorem. The additional hypothesis of microlo-
cal tangential smoothing is shown to imply that the solution actually
lies in a weighted Sobolev space with a higher x weight (hence more
`divisible' by x) than is given, a priori, by energy conservation. This
allows the microlocal propagation results indicated above to be pushed
further at the outgoing radial surface and so yields the extra regularity.

8. Applications and extension

The propagation of singularities results of the type discussed above
should allow estimates of the spectral counting function as shown orig-
inally by Ivrii ([5], see also [12] and [3]).
We expect these methods to extend to more complicated geometries,

including manifolds with corners and iterated conic spaces.
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