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From this relation it follows (see the proof below) that

(2) H? < EV,

so that the sets V,EV, EEV, .... will possess decreasing cardinal numbers.
The existence of such a decreasing sequence of cardinals shows that these
cardinals cannot be alephs, whence it follows that not all sets can be well-
ordered. Therefore, the axiom of choice cannot be added to the other axioms
of Quine's theory without contradictions. We may express this fact by saying
that the principle of choice can be proved false in Quine's theory. This was
pointed out by Specker.

Proof that (2) follows from (1): Because of (1) there exists a mapping of
the set of all unit sets {m} on a subset of V. Indeed the identical mapping is
of that kind. However, the identical mapping maps the set of all {{m}} on
just this subset of all sets {m}. Let us on the other hand assume that EV
could be mapped onto EEV. The mapping would then consist of mutually dis-
joint pairs ({m}, {{n}}). However, the certainly existing set of pairs (m, {n})
would then furnish a mapping of V on EV contrary to (1). Hence (2) follows
from (1).

The theory of Quine's does not seem to have many adherents among
mathematicians. The reason for this is presumably the existence of such
sets in it as V which are elements of themselves, pathological sets as they
are called. I don't think, however, that this circumstance ought to worry
mathematicians, because it is not necessary to take these abnormal sets into
account in the development of the ordinary mathematical theories.

14. The ramified theory of types. Predicative set theory

I have already mentioned Poincare's objection to Cantor's set theory,
that one makes use of the so-called non-predicative definitions. These defi-
nitions collect objects in such a way that the totality of these objects, or
objects logically dependent upon that totality, are considered as belonging to
the same totality, so that the definition has a circular character. It might
perhaps be better to say that a non-predicative definition is the definition of
an entity by a logical expression containing a bound variable such that the
defined entity is one of the possible values of this variable. However, instead
of trying to explain this generally, I think it is better to take a characteristic
example.

Let us consider mankind, the domain of all human beings. We have the
binary relation "x is a child of y" which I write Ch(x,y). Let us try to de-
fine descendant of P, P any given person. If we make use of the notion of
finite number we may proceed thus: We define the relation Chn(x,y) re-
cursively by letting

Ch'foy) stand for Ch(x,y)
y) stand for (Ez)(Chn(x,z) & Ch(z,y)).
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Then the proposition "x is a descendant of P" may be written

(En)(Chn(x,P)).

All this is quite clear and simple, but notice that we have to use quantifiers
that are logically very different in nature, namely, on the one hand, quantifiers
with mankind as range of variation, and, on the other hand, a quantifier ex-
tended over natural numbers. What appears most unsatifactory, however, is
the circumstance that the notion natural number itself is of the same kind as
the notion descendant of P. Indeed we can say that the numbers are the des-
cendants of O by the successor relation + 1; therefore the above definition
only refers one descendant relation to another. We may therefore ask if we
can give a definition of a purely logical character that is independent of the
notion of natural number. Following Frege and Dedekind we may do that by
letting "z is a descendant of P" stand for

& (x)(y) (X(y) & Ch

where X runs through all classes of human beings. In ordinary language the
wording of this is: That z is a descendant of P means that z belongs to every
class X with the two properties, 1) P belongs to X, 2) whenever y belongs
to X and x is a child of y, then x belongs to X. This is a typical example of
a non -predicative definition because the defined class "descendant of P" is
itself one of the values which the variable X is assumed to run through. Of
course this definition is quite in order in the axiomatic set theory of Zermelo,
also in Quine's theory, and in the simple theory of types as well. But in the
case of such theories we have the question of consistency. The older and
more natural point of view was that we should be able to set up a kind of
reasoning which could be considered reliable so that we were assured a priori
that contradiction would never arise. If we should try to set up such a logic,
then the ramified theory of types, a theory where non-predicative definitions
are excluded, might be assumed to be the correct one. It could be reasonable
to assume that this theory is really a perfectly reliable one. Then, if we
could believe this, a proof of consistency of this theory would be something
out of the way, namely unnecessary and without point, because the reasoning
yielding this proof could not be considered more reliable than the theory
itself.

In the ramified theory of types we have, just as in the simple theory, a
distinction of type such that a e b only has a meaning when the type of b is a
unit more than that of a. However we have also a distinction of order between
objects of the same type. Thus if a class of objects of type zero is defined in
such a way that only quantifiers extended over objects of type zero are used,
then this class is of first order. If a class, still of objects of type 0, is
defined so that beside eventual quantifiers extended over objects of type 0,
there are also quantifiers extended over the just mentioned classes of order
1, then this class is said to be of order 2, and so on. A similar distinction
of order must take place for the objects of type 1,2,.... But there are even
further distinctions, because a class of objects of type 0, say, can also be
defined by a logical expression containing quantifiers extended over objects
of type 2 or even higher types. I shall, however, not try to go into further
detail in this rather complicated affair, but rather give some examples of the
kind of reasoning that is possible when we proceed in a predicative manner.
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As a first example we may look at the proof of the Bernstein theorem of
equivalence. We had sets M, Mf, MI such that

M ~ M f , Mf CMi CM

and we proved the existence of a 1 - 1 - correspondence between M and Mi.
In the proof of this which I gave earlier I used, however, at one point a non-
predicative definition, namely, reckoning DT as a subset of M in the same
meaning as the diverse elements of T. If we assume that the correspondence
between M and Mf is of 1s* order, M, Mf and Mi sets of 1s* order and
we let T be the set—which of course is of type one unit higher than the type
of M, Mf, Mi —of all subsets of 1st order A such that for Q = MI - Mf

Q E A , AT EA,

then DT is a subset of 2nc* order and the earlier conclusion that A0 = DT is
eT is no longer valid. Nevertheless we may prove the identity

Ao = Q + Afo

which we obtained in the earlier proof, but it must now be shown in a different
way. Let us here write D instead of A0. Then I shall first show that we have

D = Q + Df.

Let us assume that a d existed such that

deD, but de~Q& de~Df.

The assumption deD1 means that an XeT exists such that deX1, because DT

is just the intersection of all Xf, where XeT. On the other hand we have
deX and deQ. Now the set

Y = X - {d}

is of order 1 just as X and still Q is EY. Let y be eY. Then yeX, whence
y f e X because Xf ex. Hence y f eY, because yf cannot be = d, since deYT

and yf e Y1. Thus we have proved that

Q EY and Y' EY

so that YeT. Now we had deY, whence deD which is a contradiction.
Therefore I have shown that if deD, then deQ • v • deD1, that is

(1) D EQ UD' .

Since QEA for every AeT we have Q ED, and since Af E A for every
AeT we get DT E D. Thus

(2) Q U D' E D

(1) and (2) then yield as before

D = Q + Df

and the remaining part of the proof can be carried out just as before.
There are however also theorems in the usual set theory which are no

longer provable in predicative set theory. As an example I shall mention
Cantor's theorem that UM always possesses higher cardinality than M. We
must replace M by EM of course, so that we would have to try to prove the
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nonexistence of a 1-1 -correspondence between UM and EM. Our earlier
proof was essentially due to the possibility of deriving a contradiction by
considering the set N of all meM such that, if F was the assumed correspond-
ence, meX where X was the subset of M corresponding to {m} by F, that is,
(X, {m})eF. Translating the last phrase into logical symbols we have

m e N — (X){XeUM-*((X, {m})eF ~

Since this expression contains the quantifier X extended over all sets X of
order 1 say, the defined set N of elements m is of order 2. But then we
cannot substitute N instead of X and the derived contradiction disappears.
Then Cantor's theorem is not longer provable as before. One might perhaps
think that it could be proved in a quite different way, but that does not seem
to be the case. In my opinion one has little reason to be worried because of
the necessity to drop this theorem. Indeed the distinction of order compen-
sates for the fact that we don't have the usual distinction of cardinality.

As a further example of predicative reasoning I shall develop elementary
arithmetic basing it as before on a definition of the simple infinite sequence,
now, however, taking into account the order distinction. I prefer now to talk
about classes, relations, etc., instead of sets. Also I think the considerations
will be easier, if I use suffixes to denote the different orders. To begin with
I assume that we have a class M and a binary relation fi (x,y) both of order 1.
The relation fi is supposed to be a 1-1 -correspondence. The identity rela-
tion x = y is assumed to be a relation of order 1; but for simplicity I assume
the axiom

valid for 0 of arbitrary orders. Then we assume

fi (x, y) & f ! (z, y) — (x = z)

f ! (x, y) & f ! (x, u) -» (y = u)

For simplicity I denote y, whenever fi(x,y) takes place, by xf. The class of
1-st order consisting of all xf, x running through Xi , I denote by Xi f . Then
I assume that Mf c M and O may denote an element of M not in Mf. I de-
note by N2 the class defined thus:

neN2—(Xi)(O6Xi & (x) (xeXi ->x f eXi ) ->(neXi))

or, as I now prefer to write it,

Na(n)— (Xi) (XitO) & (x) (K^x) ^X^x')) ->X1(n)).

The class of type 2 whose elements are all Xi for which Xi (O) & (x)
(Xi(x) -*Xi(xt)) may be denoted by T. Similarly N3 is defined thus:

N3(n)— (X2) (X2(0) & (x) (X2(x) -X2(x')) ^X2(n)),

etc. Corresponding to these definitions we have the following principles of
induction. If a class Xr of order r contains O and besides x always con-
tains XT, then Xr contains the whole class Nr+i . We may regard N2, N3,...
as successively sharpened determinations of the natural number series.

Now I shall show how we can define a ternary relation of second order,
S2(x,y,z), such that, conceiving S2(x,y,z) as x + y = z, we obtain the ordinary
theorems of addition.
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Let us consider the ternary relations of first order X! (x,y,z) with the
two properties

1) (x) Xi(x, 0,*) , 2) (x)(y)(z) (Xi(x,y,z) -

They constitute a class Tr of type 2.
These have an intersection S2 (x,y,z) and trivially we have

(x)S2(x,0,x) and (x)(y)(z) (S2(x,y,z) -S2(x,y',z')).

I shall prove such statements as

(x)(N2(x) -»(x = 0 • v • Nf
2(x)) or in other words

(x)(N2(x) -(x = 0 - v • (Ey)(N2(y) & (x = y'))).

Further

(x)(y)S2 (x,y',0)) (x)(z)S2 (x,0,z) - (x = z) and (x)(y)(S2 (x,y,0) -*x = 0 & y = 0

Proof of

(x)(N2(x) -x = 0 • v • (Ey(N2(y) & (x = y')).

Let us assume the existence of an individual a such that N2 (a) & (a =1= 0) & N2
(a). Because of N2(a) we have for every XieT that Xi(a). Now let X? be
Xi - {a}. Then I shall show that for at least_one Xi , Xi* would still have the
properties 1) and 2) so that "Xi*eT, whence N2(a), a contradiction. Indeed we
have X? (0) since X^O) and a =1= 0. Further, if X?(a), then X^a), whence
Xi(a'), Xi being eT, whence again Xi* (d1) unless a = af. Now there must be
at least one Xi e T for which this is not the case, because otherwise we should
have Na(a) contrary to the assumption concerning a. Since there is an X^eT
such that Xi*(a), we should have N2(a), which is a contradiction.

Proof of S2 (a,bT,0) for arbitrary a and b. Let us assume S2 (a,bf ,0). Then
we have Xi (a,bf,0) for every Xie Tr. Let Xf be Xi -{(a,b',0) }. Then X?
still has the property 1), because (x,0,x) can never be = (a,bf ,0), 0 being =t=
every yf. However, X* also possesses the property 2). Indeed if Xt (a,3,y),
thenX!(a,/3,y), whence Xi (a, j3f,yf), whence Xt (a, 0T,r'), unless (a,j3 f,y f)
were = (a,bT,0) which is impossible because yf I 0. But X*e Tr and
xT(a,b',0) yields S2(a,bf,0).

Proof of S2(a,0,c) -»(a = c). Let us assume S2(a,0,c) & (a =)= c). Then for
every Xi€ Tr we have Xi (a,0,c). Let X* be X! - {(a,0,c)}. Then it is seen
again that X* will still possess the two properties, so that X*e Tr. Since
X3} (a,0,c), it follows that S2(a,0,c) which is contrary to supposition.

Then the truth of S2 (a,b,0) -»a = 0&b = 0 follows from the last three
statements.

Proof of jS^ajb'jC*) -^S2(a,b,c). Let us assume for some a,b,c that
S2 (a,bf,cf) & S2 (a,b,c). Then for an arbitrary element Xi of Tr we have
Xi (a,bf ,cf), whereas for a certain Xi we have Xi (a,b,c). Let Xf be Xi -
{(a,bf,cf) } for such an Xi . Then it is seen immediately that Xt has the
property 1). It has the property 2) as well. Indeed, let 3Ci(a,fty) be true.
Then Xi(o,fty) is true, whence Xi (a,f?,y*), whence X*(a,j3t,yt), unless
(a,P,f) = (a,bf,cf) which however would mean (a,/3,y) = (a,b,c) but that is im-
possible because we have Xi (a,b,c) but Xi(ff,0,y). Hence X*eTr so that X*
(a,b f ,c f) leads to S2(a,bf,cf) contrary to supposition.
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Proof of S2(0,b,c) —»(b = c). Let Xi be e Tr and X* be what remains of
Xx when all triples (0,y,z) with y 4= z are removed from Xi. Obviously X* is
of order 1 just as Xi is. I assert that also X*e Tr. Indeed for every triple
(o,0,a) we have Xi(a,Q,a) whence also X*(a,0,a). Otherwise (o?,0,a) would
be of the form (0,y,z) with y ^ z, but that is not the case. Thus X* has the
property 1). Let us assume X*(a,/3,y). Then Xi (a,0,y), whence Xi(af,£ f,y f),
whence also X*(a,/3f,yT) unless (a,j3l,yt) is of the form (0,y,z) with y =1= z,
that is, a = 0, (3* =1= yf. But then we should have Xf (ff,fty). Thus X?e Tr and
since S2(0,b,c)-*X*(0,b,c) we have b = c.

Theorem 58. (x)(y)(z)(S (x',y,z') ->S (x,y,z)).

Proof. For each Xi e Tr we let X* be what remains of Xi when all
triples (xf,y,zf) are removed for which we have Xi (xf,y,zf) but not Xi(x,y,z),
that is, X?(x',y,z')—X^x'^z') &X!(x,y,z). Further all triples (x,y,0) are
removed for which x or y is =(= 0. Then X* has the property 1). Indeed for
all (a,Q,a) we have Xi(a,0,a)> whence X*(o?,0,a), because if a= a[, we have
also Xi (o?i,0,Q?i). Now let us assume X?(a,/3,y). Then Xi(a,/3,y) whence
Xi(o?,|3l,yt) whence X*(a,j3f,yf), unless (a,j3f,yf) = a certain (xf^y,zf) for
which Xi(x f

fy,z f) & Xi(x,y,z). That would mean Xifa^y') & Xi(ai,j3f,y) with
a = a[. Let us first consider the case y + 0, that is, y = yj for a certain
yi. Then because of X*(o?,/3,y) we have Xi(a,j3,y) & Xifo^ftyi). But
Xi («i,jS,yi) yields Xi (a,j3T,y) so that we get a contradiction. It remains for
us to look at X* (a,ftO). This requires a = j3 = 0. But Xi(0,0f,0f) is true
and therefore also Xf (0,0f,0f) because (0,Of,0T) is not removed from Xi by
the construction of X*. Thus Xt has the property 2) as well, so that X*eTr.
Now let a,b,c be arbitrary. I assert that

S2(a',b,c')^S2(a,b,c).

Let us assume_ S2 (a^bjC*) & S2 (a,b,c). Then there exists an Xi eTr such that
X1(af,b,ct) & Xi (a,b,c). We build the corresponding X* as above. Then we
have

XfeTr and Xf(a f,b,c f),

whence

S2(a',b,c')

which is a contradiction.

Corollary. (x)(y)(z)(S2 (x',y,z') -S2 (x,y',z»)).

Proof. S2(aT,b,cf) ->S2(a,b,c) -»S2(a,bf,cf).

I will only mention that such a statement as (y)(N2(y) ~»(x)(Ez)Xi(x,y,z))
is easily proved. I shall not make any use of that, but instead prove the
following theorems.

Theorem 59. (y)(N3(y) -(x)(z)(u)(S2(x,y,z) & S2(x,y,u) -(z = u)).

Proof. Let C2 be the class of all y such that (x)(z)(u)(S2(x,y,z) &
S2(x,y,u) -*(z = u)). Clearly C2(0) is true, because S2(a,0,c) is only true
for a = c. Now let C2(b) be true. If, then, for certain a,c,d we have S2(a,bf,c)
& S2(a,bf,d), then according to a remark above, c must be = c{ for a certain
GI and d = d{ likewise, whence S2(a,b,c) & S2(a,b,d), whence, because of
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C2(b), Ci = di, whence c = d. Thus C2(0) & (y)(Ca(y) -'CaCy')) is true,
whence the theorem, because of the definition of N3 .

Theorem 60. (y)(N3 (y) -* (x)(Ez)S2 (x,y,z)).

Proof. Let C2 here be the class of all y such that (x)(Ez)S2(x,y,z). Ob-
viously C2 (0) is true. Let us assume C2 (b) and let a be arbitrary. Then we
have S2(a,b,c) for a certain c, whence S2(a,bf,cf) whence C2(bf). Hence the
theorem.

The last two theorems may be combined in the single statement

(y)(N3(y)-(x)(Ez)S2(x,y,z)),

where E means "there exists one and only one". Of course this yields in
particular

(x)(y)(N3(x) & N3(y) ~*(Ez) S2(x,y,z) ,

but the question arises, whether the z here again is an element of N3 . I
shall now show that this is really the case.

Let C2 denote an arbitrary class of 2. order with the two properties
1) C2(0) and 2) (x) (C2(x) -C2(x')).

Then for every such class C2 I construct another class C* thus:

C| (y)— (x) (C2(x) -*(Ez) (S2(x,y,z) & C2(z)).

Now I assert that C * has again the properties 1) and 2). The truth of C^ (0)
is immediately seen, because we have S2(x,0,x) and C2(x) — >C2(x). Let us
assume "C? (b). Then for an arbitrary a we have a unique c such that
S2(a,b,c) and C2(c). Hence S (a,b?,cT) & C (cf), and according to a theorem
above we cannot have S2(a,bf,d) unless d = cf. Thus C*(bT) follows from

Theorem 61. (x)(y)(N3(x) & N3(y) -(Ez) S2(x,y,z) & N3(z)).

Proof. According to the definition of C* we have for arbitrary C2 of the
supposed kind

(x)(y)(C2(x) & C? (y) -(Ez)(S2(x,y,z) & C2(z))).

Now N3 is £ C2 and C* . Therefore

(x)(y) (N3(x) & N3(y) -(Ez) (S2(x,y,z) & C2(z)).

Here C2 is an arbitrary chain of 2. order, that is, a class of 2. order with
the properties 1) and 2). Therefore we may just as well write

(x)(y)(N3(x) & N3(y) -(Ez) (S2(x,y,z) & (X2)(X2(0) & (u)(X2(u) ->X2(u')) ->X2(z)))

which, by taking into account the definition of N3 , is just our theorem. In
this way we have succeeded in obtaining a ternary relation S2 (x,y,z) which in
N3 will play the role of addition, as I shall show.

Theorem 62. (z) (N3(z)-> (x)(y)(u)(v)(w)(S2 (x,y,v) & S2(v,z,u) & S2(y,z,w)->
S2(x,w,u)))

Proof. Let C2 (b) denote

(x)(y)(u)(v)(w)(S2(x,y,v) & S2(v,b,u) & S2(y,b,w) ->S2(x,w,u)).
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Clearly C2 is a class of second order. We have that C2 (0) is true, because
S2(v,0,u) & S2(y,0,w) -*(u = v) & (y = w). Let C2(b) be true and let us assume
S2(x,y,v) & S2(v,bf,u) & S2(y,bf,w). Then we have u = uj , w = wl for some
ui, wi and S2(v,b,ui) & S2(y,b,wi) which, together with S2(x,y,v), because of
C2(b), yields S2(x,wi,ui), whence S(x,w,u). Thus the implication C2(b) ->C2(bt)
is generally valid. Then the theorem follows from the definition of N3 . A
fortiori we have

(x)(y)(z)(u)(v)(w)(N3(x) & N3(y) & N3(z) & N3(u) & N3(v) & N3(w) -

(S2(x,y,v) & S2(v,z,u) & S2(y,z,w) -» S2(x,w,u)).

This is the associative law of addition.

Theorem 63. (x)(N3(x) -(y)(z)(S2(x,y,z) -S2(y,x,z))).

Proof. Let C2 (a) be an abbreviation for

(y)(z)(S2(a,y,z) ->S2(y,a,z)).

Then C2(0) is true because, according to a result above, S(0,y,z) ->(y = z)
and S2(y,0,z)— — (y = z). Let us assume the truth of C2(a) and let S2(af,b,c)
be true. Then by some results above we have c = cj for a certain GI and
S2(afjb,cf) -» S2(a,bf,cf) so that because of C2(a), we also get S2(bf,a,c),
whence S2(b,af,c). Therefore we have

(y)(z)(S2(a',y,z) -»S2(y,a',z)),

so that

C2(a)-> C2(a').

According to the definition of N3 , the theorem must be valid.
A fortiori we have

(N3(x) & N3(y) & N3(z) -(S2(x,y,z) - S2(y,x,z))).

This is the commutative law of addition.

Thus the ternary relation S2(x,y,z) & N3(x) & N3(y) & N3(z) which we can
write £3(x,y,z) or z = x + y is a relation of 3. order which has the ordinary
properties of addition, in particular,

x + (y + z) = (x + y) + z, x + y = y + x.

Now let us define a relation "less than or equal to" of second order, namely,

M2 (x, y)*— (Ez) S2 (x,z,y).

Then inside N3

Theorem 64. M2(a,b) & M2(b,c) ~* M2(a,c).

Proof. The hypothesis of the implication amounts to

S2(a,d,b)&S2(b,e,c)

for some d and e. According to Theorem 59 there is an f such that S2(d,e,f).

Then theorem 62 furnishes S2(a,f,c), whence M2(a,c).

Theorem 65. (y)(N3(y) - (x)(M2(x,y) v M2(y,x))).



60 LECTURES ON SET THEORY

Proof. Let C2(b) be (x)(M2(x,b) v M2(b,x)). Then C2(0) is true, because
M2(0,x) is obviously true. Let us assume C2(b). If M2(x,b') is true, we have
at once C2 (bf), and M2 (x,br) is true if M2 (x,b) is. Otherwise we have M2(b,x)
that is (Ez) S2(b,z,x). If z =t= 0, we have z = zl and S2(b,z,x) -*S2(b

f, Zi, x),
that is, M2(bf,x). K z = 0, we have x = b, whence M2(x,bf). Thus C2 is a
chain of 2. order, and hence (y)(N3(y) -*C2(y)), which is the theorem.

It follows that M2 will have the ordinary properties of the relation = in
Na.

Now in order to develop elementary arithmetic we must introduce multi-
plication. This can again be done by considering some ternary relations. It
must be remarked, however, that these relations ought to be chosen as 1.
order relations Yi (x,y,z). Otherwise we might have to make a transition to
unnecessarily high orders of the number series. It would not be advantageous
to take, for example, the relations Z2(x,y,z) which have the properties
1) (x)Z2 (x,0,0) and 2) (x)(y)(z)(Z2(x,y,z) & S2(z,x,u) ->Z2(x,y',u). It is better
to introduce addition and multiplication simultaneously as follows. Let us
consider all quaternary relations Ui(x,y,z,u) such that Ui is true only for
u = 0 or 1 and has the properties

)f 2) (x)Ui(x fO fO,l), 3) (x)(y)(z)(U1(x,y,z,0)-U(x,y%z',0)),

4) (x)(y)(z)(Ui(x,y,z,l) & Ui(z,x,u,0) -Ui(x,y',u,l)).

Then if S2(x,y,z) denotes the intersection of all Ui(x,y,z,0) and P2(x,y,z) the
intersection of all Ui(x,y,z,l), one is able to show that in a suitable Nn all
of the ordinary principles of addition and multiplication are provable, x + y = z
meaning S2(x,y,z) and xy = z meaning P2(x,y,z). However, I will not carry
out all that here in detail, in particular for the reason that different proced-
ures are possible.

One fact ought to be noticed: The relation S2 (x,y,z), which in N3 defined
addition, does that also in Nn for any n> 3, that is, every Nn is closed with
regard to this addition. Let us, for example, consider N4 . If N4 (a) and
N4(b), then N3(a) and N3(b) so that a unique c exists such that S2(a,b,c) &
N3(c). But how can we conclude N4 (c) ? This can be seen thus: Let S3(x,y,z)
be the intersection of all X2(x,y,z) with the properties 1) and 2). Then we
can prove in the same way as above that

(x)(y)(N4(x) & N4(y) -(Ez) S3(x,y,z) & N4(z)).

Furthermore let us write the z for which S3(x,y,z) & N4(z) as x + fy. Now it
is obvious that S3(x,y,z) ->S2(x,y,z). Hence, for arbitrary a and b such that
N4(a) and N4(b), we get that

c = a + fb— >c = a + b ,

so that the result of the operation +f is the same as the result of +. In the
same way the other operations we may introduce, such as multiplication,
exponentiation, etc., all will retain their meaning for the natural number se-
quences of higher orders.

I must confine my remarks to these hints, which I nevertheless hope are
sufficient to show that a purely logical development of arithmetic similar to
that given by Dedekind in his work "Was sind und was sollen die Zahlen" is
possible even in the ramified type theory.
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If we turn to analysis it must be remarked that the classical form of it
cannot be obtained. Indeed it will be necessary to distinguish between real
numbers of different orders. A class of real numbers of 1. order which is
bounded above possesses an upper bound, but this bound may then be a real
number of order 2. Nevertheless a great part of analysis can be developed
as usual, namely, the most useful part of it dealing with continuous functions,
closed point-sets, etc. The reason for this is that it is often possible to
prove theorems of reducibility, namely, theorems saying that a class (or
relation) of a certain order coincides with one of lower order. I will not
enter into this but only refer the reader to the book: "Das Kontinuum" by
H. Weyl, where he has developed such a kind of predicative analysis.

15. Lorenzen's operative mathematics

In more recent years the German mathematician P. Lorenzen has set
forth a system of mathematics which in some respects resembles the ramified
theory of types, but it has also one important feature in common with the
simple theory of types, namely, that the simple infinite sequence and similar
notions are characterized by an induction principle which is assumed valid
within all layers of objects. Lorenzen talks namely about layers of objects,
not of types or orders. To begin with he takes into account some original
objects, say numerals, figures built up in a so-called calculus as follows. We
have the rules of production

which means that the object or symbol 1 is originally given and whenever we
have a symbol or a string of symbols k we may build the string k 1 obtained
by placing 1 after k. He introduces the notion "system". A system is a
finite set of symbols. The systems are obtained by the rules

x

X~»X, x

The length or cardinal number of a system X is denoted by |x|. He
gives the rules

| X , X | = | X | 1

for these lengths. Now the explanation of the successive layers of language
is as follows.

From certain originally given symbols called atoms, say Ui un, he
constructs strings of symbols by the schema

X —»XUi

x -'xun


