
CHAPTER 4

ABSTRACT LOGICS AS MODELS

OF GENTZEN SYSTEMS

In this chapter we will introduce the issue of considering abstract logics as
models of Gentzen systems, and characterize a kind of sentential logics whose full
models can be described as, essentially, the models of some Gentzen system. We
will also relate our study with the theory of the algebraization of Gentzen systems;
this generalization of Blok and Pigozzi’s theory of the algebraization of sentential
logics was begun in Rebagliato and Verdú [1993] for some particular cases, and
the general theory has started to be developed in Rebagliato and Verdú [1995]26.
We will treat some general material in Section 4.1, and in Sections 4.2 and 4.3
two particular cases will be studied, where things behave quite well. As a by-
product we will get interesting results about properties of sentential logics; in
particular, the open problem presented in Chapter 2 (page 48) will be solved for
two important classes of logics.

Note that while in the literature Gentzen systems are mostly used to reason
about their derivable sequents, in principle nothing prevents us from considering
the relation of derivability of a sequent from other sequents; it is in this sense that
we consider Gentzen systems in this monograph, that is, as a kind of sequential
logic, a relation of consequence operating on sequents rather than on formulas,
whose axioms are called initial sequents and whose theorems are called derivable
sequents in the standard terminology. As a matter of fact, many particular Gentzen
calculi exist in the literature having some particular axioms (i.e., initial sequents)
besides the sequent ϕ ` ϕ, so one can just generalize this procedure. We will use
the symbol |∼G to denote this relation of derivability; thus when we write

{Γi ` ϕi : i ∈ I} |∼G Γ ` ϕ

we mean that there is a derivation of the sequent Γ ` ϕ using the rules of the

26Later papers that have somehow continued the same trend are Pynko [1999] and Raftery [2006].
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Gentzen system G whose initial sequents are among the initial sequents (or ax-
ioms) of G or in the set {Γi ` ϕi : i ∈ I}; this is more classically (and more
graphically) expressed by saying that the rule

{Γi ` ϕi : i ∈ I}
Γ ` ϕ

is a derived rule of G. Although the tree-like notation may be more intuitive
to talk about sequents, we will use the alternative notation with |∼G more often,
partly to save space, and partly because we are not dealing with proof-theoretic
issues that might require the classical notation.

Since our goal is to treat Gentzen systems only in order to study the sentential
logics that they define and such that their models (in a certain, natural, sense) are
abstract logics (to be able to compare them with the full models of the sentential
logic), we will not deal with completely arbitrary Gentzen systems, but with those
satisfying the so-called structural rules. Moreover, the sequents we will treat will
have a finite set of formulas, rather than a sequence or a multiset, on the left-
hand side of the turnstile (the symbol `) and just one formula on its right-hand
side; as a consequence, there is no point in considering the rules of Exchange and
Contraction. The reader should thus bear in mind that what we call a Gentzen
system in this chapter is a restricted case of what this term commonly describes in
the literature.

4.1. Gentzen systems and their models

For our needs, we will take a sequent of formulas to be a pair 〈Γ, ϕ〉 where Γ is
a finite (possibly empty) set of formulas andϕ is a formula; tradition compels us to
write Γ ` ϕ instead of 〈Γ, ϕ〉, and to use the customary notational abbreviations
like Γ, ψ ` ϕ for Γ ∪ {ψ} ` ϕ, etc. We will consider the set Seq(Fm) of
all sequents, and the set Seq◦(Fm) = {Γ ` ϕ ∈ Seq(Fm) : Γ 6= ∅} of all
sequents with non-empty left-hand side. We will use boldface Greek letters to
stand for sequents (lowercase: δ,σ) and sets of sequents (uppercase: ∆ ,Σ).

DEFINITION 4.1. A Gentzen system of type ω (resp. of type ω◦) is a pair G =
〈Fm, |∼G〉 where |∼G is a finitary and structural consequence relation on the set
Seq(Fm) (resp. on the set Seq◦(Fm)) which in addition satisfies the following
structural rules:

(Axiom) ∅ |∼G ϕ ` ϕ for every ϕ ∈ Fm.
(Weakening) Γ ` ϕ |∼G Γ, ψ ` ϕ for every Γ ∪ {ϕ,ψ} ⊆ Fm.
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(Cut) {Γ ` ϕ , Γ, ϕ ` ψ} |∼G Γ ` ψ for every Γ ∪ {ϕ,ψ} ⊆ Fm.

In this definition, by a finitary consequence relation on the sets Seq(Fm) or
Seq◦(Fm) we understand the obvious generalization to sequents of the notion
of finitary consequence relation of a sentential logic: |∼G is a binary relation be-
tween sets of sequents and sequents satisfying conditions (S1) to (S4) of page 25
with formulas replaced by sequents; and for it to be structural means the general-
ization of condition (S5) by extending homomorphisms to sequents in the obvious
way: If {Γi ` ϕi : i ∈ I} |∼G Γ ` ϕ then for any homomorphism h of Fm into
itself, {h[Γi] ` h(ϕi) : i ∈ I} |∼G h[Γ ] ` h(ϕ). Several other notions are sim-
ilarly extended from the formula concept to a sequent concept. If ∅ |∼G Γ ` ϕ
then we say that the sequent Γ ` ϕ is a derivable sequent of G.

Note that since by definition all our Gentzen systems have Weakening, they
also have as a derived rule a more general form of the Cut rule, which written in
tree-like form is

Γ ` ϕ ∆,ϕ ` ψ
Γ,∆ ` ψ

.

We will often refer to applications of this rule by the same term “Cut rule”.
If Σ and ∆ are sets of sequents, then Σ |∼G ∆ means that Σ |∼G δ does

hold for every δ ∈∆, andΣ v||∼G ∆ means that bothΣ |∼G ∆ and∆ |∼G Σ

hold.
For any Gentzen system G we denote by Seq(G) either Seq(Fm) if G is of

type ω or Seq◦(Fm) if G is of type ω◦, and we call sequents of G the elements
of Seq(G). This consideration of Gentzen systems of different types27 is a sim-
plification of the terminology introduced in Rebagliato and Verdú [1993]; our
sequents of type ω are called “of type

(
ω, {1}

)
” in Rebagliato and Verdú [1993],

[1995], while those of type ω◦ are called “of type
(
ω r {0}, {1}

)
”. The con-

sideration of two different kinds of Gentzen systems is motivated by the need to
treat Gentzen systems for all kinds of sentential logics, with or without theorems,
in a uniform way; this may become clearer in the comments after the following
definition.

DEFINITION 4.2. Let G be a Gentzen system. The sentential logic defined by
G is the sentential logic 〈Fm,`G〉 where the consequence relation `G is defined
in the following way: For all Γ ⊆ Fm , ϕ ∈ Fm,

Γ `G ϕ ⇐⇒ there is a finite ∆ ⊆ Γ such that ∅ |∼G ∆ ` ϕ.

27The closely related notion of trace has been introduced in Raftery [2006] to allow for a greater
generalization of these ideas.
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If S is a sentential logic, then we say that G is adequate for S when S is the
sentential logic defined by G (that is, `G = `S ) and moreover either S has
theorems and G is of type ω, or S does not have theorems and G is of type ω◦.

Note that the first part of this definition really gives a sentential logic because
we are assuming that G satisfies the structural rules (see Definition 4.1). We can
summarize the second part of Definition 4.2 by saying that a Gentzen system G is
adequate for a sentential logic S when S is the sentential logic defined by G, and
G is of the specified type according to whether S has or has not theorems. The
following observations are straightforward:

1. If G is of type ω◦ then `G has no theorems.
2. If G is of type ω then its restriction G◦ to Seq◦(Fm) is also a Gentzen system,

and it is of type ω◦.
3. If G is of type ω and `G has no theorems, then `G = `G◦ .

These facts tell us that for our purposes there is no point in using sequents of
the form ∅ ` ϕ when the sentential logic defined by the Gentzen system has
no theorems. This is the motivation behind our use of Gentzen systems of two
different types in the notion of adequacy of a Gentzen system for a sentential
logic depending on whether the logic has or has not theorems; see Definition 4.2.

For any sentential logic S there is a general way of obtaining a Gentzen system
G that is trivially adequate for S: Take it as being of type ω or ω◦ according
to whether S has or does not have theorems, take the structural rule (Axiom)
of Definition 4.1 and the elements of the set {Γ ` ϕ ∈ Seq(G) : Γ `S ϕ} as
axioms, and (Weakening) and (Cut) as the only rules. It is straightforward to check
that `G = `S . However, with this definition we cannot guarantee that G has any
of the metalogical properties of S as a derivable rule; for instance in Font and
Verdú [1991], pp. 403–404, it is shown that the Gentzen system so obtained from
CPC∧∨, the {∧,∨}-fragment of classical logic, does not have the Property of
Disjunction (see also Section 5.1.1). We can thus say that the notion of adequacy
just defined is too weak for our purposes. A better link will be established on the
basis of the following notion.

DEFINITION 4.3. An abstract logic L = 〈A,C〉 is a model of a Gentzen sys-
tem G when for any family of sequents {Γi ` ϕi : i ∈ I} ∪ {Γ ` ϕ} ⊆ Seq(G)
such that {Γi ` ϕi : i ∈ I} |∼G Γ ` ϕ it holds that for any h ∈ Hom(Fm,A)
such that h(ϕi) ∈ C

(
h[Γi]

)
for all i ∈ I , also h(ϕ) ∈ C

(
h[Γ ]

)
.

This notion was introduced in Font and Verdú [1991], Definition 2.11, for fini-
tary abstract logics, with the closure operator replaced by its associated conse-
quence relation. This notion of model parallels the notion of matrix model of a
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sentential logic; thus it is natural to expect that the models on the formula algebra
correspond to the “theories” of the Gentzen system. Let us call a setΣ ⊆ Seq(G)
a closed set of G whenΣ is closed under the relation |∼G. If for any such set and
any Γ ⊆ Fm we define the set

CΣ(Γ ) = {ϕ ∈ Fm : there is a finite ∆ ⊆ Γ such that ∆ ` ϕ ∈ Σ}

then it is easy to see that CΣ is a finitary closure operator on Fm that is a finitary
model of G. Conversely, given any 〈Fm,C〉 model of G on Fm, the set

ΣC =
{
Γ ` ϕ ∈ Seq(G) : ϕ ∈ C(Γ )

}
is a closed set of G. It is straightforward to check the following facts:

PROPOSITION 4.4.

(1) 〈Fm,C〉 is a finitary model of G on Fm iff ΣC is a closed set of G and
C = CΣC .

(2) Σ is a closed set of G iff 〈Fm,CΣ〉 is a finitary model of G andΣ = ΣCΣ .
(3) The abstract logic 〈Fm,`G〉 is the smallest model of G on Fm and it coin-

cides with 〈Fm,CΣ〉 whereΣ is the set of derivable sequents of G.
(4) (Completeness) {Γi ` ϕi : i ∈ I} |∼G Γ ` ϕ if and only if for every model

L = 〈A,C〉 of G and every h ∈ Hom(Fm,A), if h(ϕi) ∈ C
(
h[Γi]

)
for all

i ∈ I then h(ϕ) ∈ C
(
h[Γ ]

)
. a

PROPOSITION 4.5. Let G be a Gentzen system and let L,L′ be two abstract
logics such that there is a bilogical morphism between them. Then L is a model of
G if and only if L′ is a model of G. In particular, an abstract logic L is a model
of G if and only if its reduction L∗ is a model of G.

PROOF. Assume that h is a bilogical morphism from L onto L′. We prove that
L is a model of G if and only if L′ is a model of G.

(⇒) Suppose that L is a model of G, assume that {Γi ` ϕi : i ∈ I} |∼G Γ ` ϕ
and let g ∈ Hom(Fm,A′) be such that g(ϕi) ∈ C′

(
g[Γi]

)
for all i ∈ I . Since

h is onto, there is f ∈ Hom(Fm,A) satisfying h ◦ f = g. Thus we have
h
(
f(ϕi)

)
∈ C′

(
h
[
f [Γi]

])
for each i ∈ I , and therefore, using that h is a bilogical

morphism, f(ϕi) ∈ h−1
[
C′
(
h
[
f [Γi]

])]
= C

(
f [Γi]

)
. Hence, since L is a model

of G, this implies f(ϕ) ∈ C
(
f [Γ ]

)
which implies h

(
f(ϕ)

)
∈ h

[
C
(
f [Γ ]

)]
=

C′
(
h
[
f [Γ ]

])
, that is, g(ϕ) ∈ C′

(
g[Γ ]

)
. Thus also L′ is a model of G.

(⇐) Suppose that L′ is a model of G, assume that {Γi ` ϕi : i ∈ I} |∼G Γ ` ϕ
and let g ∈ Hom(Fm,A) be such that g(ϕi) ∈ C

(
g[Γi]

)
= h−1

[
C′
(
h
[
g[Γi]

])]
for all i ∈ I . This implies h

(
g(ϕi)

)
∈ C′

(
h
[
g[Γi]

])
for all i ∈ I , and so

also h
(
g(ϕ)

)
∈ C′

(
h
[
g[Γ ]

])
; therefore g(ϕ) ∈ h−1

[
C′
(
h
[
g[Γ ]

])]
= C

(
g[Γ ]

)
,

which proves that L is a model of G. a
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DEFINITION 4.6. For any abstract logic L = 〈A,C〉, the finitary part of L is
the abstract logic Lfin = 〈A,Cfin〉, where Cfin is the strongest finitary closure
operator weaker than C.

Recall that Cfin always exists and is defined by the expression

Cfin(X) =
⋃
{C(Y ) : Y ⊆ X , Y finite},

see for instance Wójcicki [1988] Section 1.2.2. Thus L is finitary if and only if
L = Lfin. We present here some properties of the construction L 7→ Lfin that will
be needed in the sequel:

PROPOSITION 4.7. If L is an abstract logic, then ∼
Ω(L) = ∼

Ω(Lfin) and
Λ(L) = Λ(Lfin). As a consequence L is reduced if and only if Lfin is reduced,
and L has the congruence property if and only if Lfin has it. Moreover, if G is
any Gentzen system, then L is a model of G if and only if Lfin is.

PROOF. From the expression we have just given for defining Cfin it follows that
for any finite X ⊆ A , C(X) = Cfin(X); in particular for any a ∈ A , C(a) =
Cfin(a). This immediately implies Λ(L) = Λ(Lfin), and by the characterization
(1.3) of ∼Ω(L) on page 19 it also implies ∼Ω(L) = ∼

Ω(Lfin). From these equal-
ities the two stated consequences follow trivially. Finally, since being a model
of a Gentzen system G involves only finite sets of formulas, the first observation
implies that L will be a model of G if and only if Lfin is. a

Having defined a very general notion of model of a Gentzen system, it is natural
to single out the algebraic reducts of the reduced models as a class of algebras
naturally associated with the Gentzen system:

DEFINITION 4.8. Let G be a Gentzen system and A be an algebra. We say
that A is a G-algebra when A is the algebraic reduct of a reduced model of G.
The class of all G-algebras will be denoted by AlgG.

Notice that by Proposition 4.7 we can assume without loss of generality that
the models considered in this definition are finitary.

LEMMA 4.9. Let G be a Gentzen system adequate for S. Then every model of
G is a model of S, and AlgG ⊆ AlgS.

PROOF. Suppose that Γ `S ϕ. By assumption there is a finite ∆ ⊆ Γ such
that ∅ |∼G ∆ ` ϕ. Since the left part of this relation is vacuously satisfied by
every model L = 〈A,C〉 of G and any h ∈ Hom(Fm,A), we have h(ϕ) ∈
C
(
h[∆]

)
⊆ C

(
h[Γ ]

)
. That is, L is a model of S . Therefore every model of G is
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a model of S, and then every reduced model of G is a reduced model of S. By
taking algebraic reducts and using Proposition 2.19 we obtain AlgG ⊆ AlgS. a

Now, suppose that a sentential logic S has an adequate Gentzen system G, and
consider the two following ways for associating a class of algebras and a class
of abstract logics with S: The standard one of S-algebras and full models of S,
and the new one of G-algebras and the (finitary) models of G. In principle this
second method may depend on the G chosen; for instance if G is the “trivial” one
described just before Definition 4.3 the models of G are all the models of S, not
the full models. One of the main tasks of this chapter is to find conditions for the
existence of a Gentzen system G such that both methods give the same result. In
order to investigate this issue we introduce the idea of a Gentzen system whose
finitary models are precisely the full models of the sentential logic; with some
technical adjustments, this gives rise to the following definition:

DEFINITION 4.10. Let G be a Gentzen system and S be a sentential logic. We
say that G is strongly adequate28 for S when one of the two following conditions
holds:

(A) S has theorems, G is of type ω and for every abstract logic L of the similarity
type of Fm, L is a full model of S iff L is a finitary model of G.

(B) S does not have theorems, G is of type ω◦, and for every abstract logic L of
the similarity type of Fm, L is a full model of S iff L is a finitary model
of G without theorems.

PROPOSITION 4.11. If G is a Gentzen system strongly adequate for a senten-
tial logic S then G is adequate for S.

PROOF. We only have to prove that `S = `G. If Γ `G ϕ, there is some finite
Γ0 ⊆ Γ such that ∅ |∼G Γ0 ` ϕ; from this it follows that Γ0 `S ϕ because S itself
is a full model of S, so by assumption it is a model of G, and thus also Γ `S ϕ.
Therefore `G ⊆ `S . We also know that 〈Fm,`G〉 is a model of G, it is finitary,
and it does not have theorems if S has none either; therefore, by assumption, it is
a full model of S. Since by Proposition 2.10 S is the weakest full model of S on
Fm, it follows that `S ⊆ `G, thus completing the proof. a

The notion of strong adequacy has been defined in terms of the two classes
of abstract logics, associated with S and G respectively. The following charac-
terization, in terms of the two classes of algebras associated with them, will be
especially useful:

28This notion has been further and more deeply investigated in Font, Jansana, and Pigozzi [2001],
[2006], where the alternative and slightly more descriptive term fully adequate has been adopted.
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PROPOSITION 4.12. Let G be a Gentzen system and S be a sentential logic.
Then G is strongly adequate for S if and only if the following conditions hold:

(1) AlgS = AlgG;
(2) For every A ∈ AlgS, the abstract logic 〈A,FiSA〉 is the only finitary and

reduced model of G (having no theorems, if S hasn’t) onA; and
(3) Either S has theorems and G is of type ω, or S has no theorems and G is of

type ω◦.

PROOF. (⇒) If G is strongly adequate for S then (3) holds by definition. More-
over by Lemma 4.9 AlgG ⊆ AlgS. If A ∈ AlgS then we know that 〈A,FiSA〉
is a full model of S, and that it is reduced; the assumption implies that it is a
reduced model of G, therefore A ∈ AlgG, thus completing the proof of (1). Fi-
nally, by assumption, finitary and reduced models of G (having no theorems, if S
has none) are exactly the reduced full models of S; ifA ∈ AlgS then 〈A,FiSA〉
is such a reduced full model, and by the Isomorphism Theorem 2.30 it is the only
full model of S onA to be reduced. This proves (2).

(⇐) Let L = 〈A, C〉 be any abstract logic. Then L is a full model of S iff
A∗ ∈ AlgS and C∗ = FiSA∗. But by (1) and (2) this is equivalent to saying
that A∗ ∈ AlgG and 〈A∗, C∗〉 is a reduced finitary model of G (without theo-
rems if S has none), and this by Proposition 4.5 is equivalent to saying that 〈A, C〉
is a finitary model of G (without theorems if S has none). Taking (3) into account,
we conclude that G is strongly adequate for S. a

It is natural to ask whether every sentential logic has a strongly adequate
Gentzen system. The general answer is negative; a counterexample is given in
Section 5.3.1. On the other hand, if there is a Gentzen system G strongly adequate
for a sentential logic S , then it is unique; this is so because S is characterized by
its full models (Theorem 2.22) while a Gentzen system is also characterized by its
models (Proposition 4.4). Note that we are talking of the uniqueness of Gentzen
systems as consequence relations on sequents, and not as specific presentations
of the system. Obviously the same consequence |∼G can have different presenta-
tions in terms of axioms and rules, which might have different properties from the
proof-theoretical point of view (and maybe some authors would prefer to speak
of them as different calculi).

While a sentential logic may have several adequate Gentzen systems defining
it (see Section 5.2.1 for an example), we will see in the next two sections that
under reasonable hypotheses a strongly adequate Gentzen system exists, and is
therefore unique; it is a distinguished object naturally associated with the senten-
tial logic. Our results will be based on another kind of relationship between a
Gentzen system and a class of algebras. It is the relation considered in the theory
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of algebraization of Gentzen systems developed in Rebagliato and Verdú [1993],
[1995], which closely parallels the theory of algebraization of sentential logics
due to Blok and Pigozzi [1989a], [1992], [200x]. The main tool in these theories
is the following relation of consequence between equations.

DEFINITION 4.13. For each class of algebras K, the relation of equational
consequence relative to K is the relation |=K ⊆ P

(
Eq(Fm)

)
×Eq(Fm) defined

as:

{ϕi ≈ ψi : i ∈ I} |=K ϕ ≈ ψ ⇐⇒ For everyA ∈ K and every ~a inA ,

ifA |= ϕi ≈ ψi [~a] ∀i ∈ I, thenA |= ϕ ≈ ψ [~a] .

Following usual conventions, we write A |= ϕ ≈ ψ [~a] to mean that ϕA(~a) =
ψA(~a), that is, h(ϕ) = h(ψ) for any homomorphism h ∈ Hom(Fm,A) that
maps the relevant variables to the sequence ~a. If E ⊆ Eq(Fm) then {ϕi ≈ ψi :
i ∈ I} |=K E means that for every ϕ ≈ ψ ∈ E , {ϕi ≈ ψi : i ∈ I} |=K ϕ ≈ ψ;
the symbol =||=K also has the obvious meaning.

If K is the class of all algebras of the given type, then |=K is in fact the restric-
tion to equations of the ordinary consequence of first-order logic in a language
having the algebraic operations of our similarity type as functional symbols, and
equality as the only relational symbol. The consequence |=K, whose closed sets
are called “the equational theories of K” in Blok and Pigozzi [1989a], should
not be confused with the ordinary “equational logic”; actually the theories of |=K

which are closed under substitution are the equational theories, in the ordinary
sense, associated with subvarieties of the variety generated by K. Note that |=K

always satisfies the following rules:

(Symmetry) ϕ ≈ ψ |=K ψ ≈ ϕ.
(Transitivity) {ϕ ≈ ψ,ψ ≈ η} |=K ϕ ≈ η.
(Congruence) {ϕi ≈ ψi : i < n} |=K $ϕ0 . . . ϕn−1 ≈ $ψ0 . . . ψn−1

for every basic operation $, where n is the arity of $.

The rule we have called Congruence is equivalent to the Replacement rule; these,
plus the Rule of Substitution, are the rules of Birkhoff calculus. If K is a quasi-
variety then |=K can be axiomatized by taking all equations valid in K as axioms,
and the following rules of inference: the three rules mentioned above plus one
rule of the form {ϕi ≈ ψi : i < n} |=K ϕ ≈ ψ for each quasi-equation of the
form ϕ0 ≈ ψ0 & . . .&ϕn−1 ≈ ψn−1 ⇒ ϕ ≈ ψ that is valid in K; if this class if
a variety then the latter rules are not necessary.

In the following definition we use the notation P ◦ω (A) to denote the set of all
finite and non-empty subsets of an arbitrary set A.
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DEFINITION 4.14. Let G be a Gentzen system. A translation from sequents
into equations is any mapping t : Seq(G) → P ◦ω

(
Eq(Fm)

)
; this mapping

is extended to arbitrary sets of sequents by defining t(Σ) =
⋃{

t(σ) : σ ∈
Σ
}

. Similarly, a translation from equations into sequents is any mapping s :
Eq(Fm) → P ◦ω

(
Seq(G)

)
, and if E is a set of equations then we define s(E) =⋃{

s(ϕ ≈ ψ) : ϕ ≈ ψ ∈ E
}

.

If K is a class of algebras and t and s are translations as above, then G is (t, s)-
equivalent to the equational consequence |=K when the following two conditions
are satisfied:

(Eq1) {Γi ` ϕi : i ∈ I} |∼G Γ ` ϕ ⇐⇒ t
(
{Γi ` ϕi : i ∈ I}

)
|=K t(Γ ` ϕ)

(Eq2) ϕ ≈ ψ =||=K t
(
s(ϕ ≈ ψ)

)
The lack of “symmetry” in the definition is easily resolved; there is in fact a

complete symmetry regarding the behaviour of both translations:

PROPOSITION 4.15. A Gentzen system G is (t, s)-equivalent to |=K if and only
if the following two conditions are satisfied:

(Eq3) {ϕi ≈ ψi : i ∈ I} |=K ϕ ≈ ψ ⇐⇒ s
(
{ϕi ≈ ψi : i ∈ I}

)
|∼G s(ϕ ≈ ψ)

(Eq4) Γ ` ϕ v||∼G s
(
t(Γ ` ϕ)

)
PROOF. To prove (Eq3) just apply t to both sides of its right-hand part, and

then use first (Eq1) and after use (Eq2). And (Eq4) is true iff t(Γ ` ϕ) =||=K

t
(
s
(
t(Γ ` ϕ)

))
, by (Eq1), and this is true just because of (Eq2). In a similar way

one proves that (Eq3) and (Eq4) together imply both (Eq1) and (Eq2). a

In Rebagliato and Verdú [1993], [1995] a class of algebras K is called the equiv-
alent algebraic semantics of a Gentzen system G (which is then called algebraiz-
able) when G is, in our terminology, (t, s)-equivalent to |=K and the two transla-
tions are, roughly speaking, finite and structural; this means that each translation
is definable by substitutions from a finite set of equations and sequents, respec-
tively, which are the translations of basic sequents and equations (those made
only of variables). This extension of Blok and Pigozzi’s concept of algebraizabil-
ity can be applied to Gentzen systems that are adequate for logics which are not
algebraizable in the sense of Blok and Pigozzi [1989a]. In this chapter we are
going to use these notions only in the case where the translation from equations
into sequents has the following precise form:

DEFINITION 4.16. The translation sq : Eq(Fm)→ P ◦ω
(
Seq(G)

)
is the map-

ping defined by

sq(ϕ ≈ ψ) = {ϕ ` ψ , ψ ` ϕ}.
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The use of this translation in equivalences between Gentzen systems and equa-
tional consequences is intimately connected with the congruence property. Let us
state formally what this property means when applied to a Gentzen system:

DEFINITION 4.17. We say that a Gentzen system G satisfies the congruence
rules when for each basic operation $ of the similarity type it holds that

{ϕi ` ψi , ψi ` ϕi : i < n} |∼G $ϕ0 . . . ϕn−1 ` $ψ0 . . . ψn−1 ,

where n is the arity of the operation.

Trivially, if a Gentzen system satisfies the congruence rules then all its models
have the congruence property. In the next two results we see some of the connec-
tions just mentioned, which we will use later on.

PROPOSITION 4.18. If a Gentzen system G is (t, sq)-equivalent to |=K for
some class K of algebras and some translation t, then G satisfies the congruence
rules. If moreover G is adequate for some sentential logic S, then S is selfexten-
sional and the variety generated by the class K is the variety KS generated by the
Lindenbaum-Tarski algebra of S.

PROOF. If we apply the translation sq to the congruence rules for |=K, we
obtain exactly the congruence rules for G as stated in Definition 4.17. Now as-
sume that G is adequate for some sentential logic S, and that ϕi a`S ψi for
i < n; this means that ∅ |∼G {ϕi ` ψi , ψi ` ϕi : i < n}, and from this, us-
ing the congruence rules for G and Cut, it follows that ∅ |∼G $ϕ0 . . . ϕn−1 `
$ψ0 . . . ψn−1 and ∅ |∼G $ψ0 . . . ψn−1 ` $ϕ0 . . . ϕn−1, and therefore that
$ϕ0 . . . ϕn−1 a`S $ψ0 . . . ψn−1. Thus S has the congruence property, that is,
it is selfextensional. Finally, an equation ϕ ≈ ψ holds in K iff ∅ |=K ϕ ≈ ψ, but
by (Eq3) for sq this is equivalent to ∅ |∼G {ϕ ` ψ ,ψ ` ϕ}, which is equivalent
to ϕ a`S ψ because G is adequate for S; but S is selfextensional, hence Propo-
sition 2.43 tells us that this is equivalent to saying that the equation ϕ ≈ ψ holds
in the variety KS . a

A partial converse to the preceding result, which will be useful in the next
sections, is the following: under some conditions one half of (Eq3), necessary
for proving the equivalence between a Gentzen system and an equational conse-
quence, holds:

PROPOSITION 4.19. Assume that a Gentzen system G satisfies the congruence
rules and is adequate for a sentential logic S . If {ϕi ≈ ψi : i ∈ I} |=KS ϕ ≈ ψ
then sq

(
{ϕi ≈ ψi : i ∈ I}

)
|∼G sq(ϕ ≈ ψ).
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PROOF. The same argument of Proposition 4.18 proves that if G satisfies the
congruence rules and is adequate for S then S is selfextensional. Therefore, by
2.43, ifϕ ≈ ψ is an equation valid in KS thenϕ a`S ψ, and so ∅ |∼G sq(ϕ ≈ ψ),
because G is adequate for S. Moreover observe that G satisfies the sq-translations
of the rules of |=KS : Symmetry because actually sq(ϕ ≈ ψ) = sq(ψ ≈ ϕ); Tran-
sitivity because of Cut, and Congruence (or Replacement) because by assumption
G satisfies the congruence rules. Therefore by an easy inductive argument, from
a proof in |=KS of ϕ ≈ ψ from equations in {ϕi ≈ ψi : i ∈ I} we obtain a proof
in G of sq(ϕ ≈ ψ) from sequents in sq

(
{ϕi ≈ ψi : i ∈ I}

)
. a

4.2. Selfextensional logics with Conjunction

The main goals of this section are to prove that for logics with Conjunction (i.e.,
that satisfy the Property of Conjunction, PC, introduced in Section 2.4) the notion
of strong selfextensionality reduces to the much simpler one of selfextensionality,
that any logic having these properties has a strongly adequate Gentzen system G

equivalent to |=AlgG by two specific translations t∧ and sq, and that the associated
class of algebras is always a variety. These properties tell us that selfextensional
logics with Conjunction are very well behaved; this adds to the extensive study
of Fregean protoalgebraic logics with Conjunction in Section 6.5 of Czelakowski
[2001a] and in Czelakowski and Pigozzi [2004a]29.

We begin by proving a sufficient condition for a logic with the PC to have a
strongly adequate Gentzen system.

PROPOSITION 4.20. Let S be a sentential logic with the PC, and let G be a
Gentzen system such that the following conditions are satisfied:

(1) G is adequate for S.
(2) G is (t, sq)-equivalent to |=AlgG for some translation t.
(3) AlgG is a variety.

Then G is strongly adequate for S.

PROOF. We will show that the three conditions of Proposition 4.12 are satis-
fied. Condition 4.12(3) holds because G is adequate for S. For the same reason,
and by Lemma 4.9, AlgG ⊆ AlgS. Moreover, assumptions (1) and (2) allow us
to apply Proposition 4.18 for K = AlgG and conclude that KS , which contains
AlgS by Proposition 2.26, is the variety generated by AlgG. But by assumption

29Further investigations on selfextensional logics with Conjunction are contained in Jansana
[2006], where some of the results in this section are obtained by essentially different methods.
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(3) this variety is AlgG itself, hence AlgS ⊆ AlgG, and therefore AlgG = AlgS,
which is condition 4.12(1). To show condition 4.12(2) let A ∈ AlgG and let
L = 〈A, C〉 be any finitary reduced model of G (having no theorems if S has
none). Since by Proposition 4.18 G satisfies the congruence rules, L has the con-
gruence property, and by 4.9 is a model of S, so by Proposition 2.46 it is a full
model of S; but since it is reduced we obtain C = FiSA, which completes the
proof of 4.12(2). Therefore, G is strongly adequate for S. a

The interest of this sufficient condition is that it rests almost completely on
properties of the Gentzen system, and the only relationship between it and the
sentential logic that has to be proved is that the Gentzen system is adequate for it;
therefore it can be especially useful to obtain strongly adequate Gentzen systems
of logics for whose filters or full models a nice, direct characterization has not
been found; actually, a characterization of the full models follows from strong
adequacy, by definition. We will make use of this Proposition in several of the
examples analyzed in Section 5.1, and also in the proof of the main result of this
section. To this end we will show that there are specific G and t satisfying the
assumptions of Proposition 4.20, provided that S is selfextensional and has the
PC.

First we introduce the translation:

DEFINITION 4.21. Let S be any sentential logic with the PC. The translation
t∧ from Seq◦(Fm) to Eq(Fm) is defined as follows:

t∧(Σ ` ϕ) =
{

(
∧
Σ) ∧ ϕ ≈

∧
Σ
}
,

where
∧
Σ stands for

(
(ϕi1 ∧ ϕi2) ∧ . . .

)
∧ ϕin if Σ = {ϕi1 , . . . , ϕin} with

i1 < i2 < · · · < in and n > 2, taking for granted a fixed enumeration of the set
of all formulas Fm = {ϕi : i ∈ ω}, while

∧
{ϕi} = ϕi.

If moreover S has theorems then the translation can be extended to the whole set
of sequents Seq(Fm) by selecting a fixed theorem τ of S and defining

t∧(∅ ` ϕ) = {ϕ ≈ τ } .

Actually, since S has the PC, it will not matter which enumeration and which
position of the parentheses in the expression

∧
Σ is chosen for the above defini-

tion. Also note that in fact this translation can be defined independently of S if
we choose τ as a fixed formula (but in the applications it will be a theorem of S).

As noted in Section 2.4, the fact that a logic S has the PC can be expressed by
saying that the three following sequents

{ϕ,ψ} ` ϕ ∧ ψ , ϕ ∧ ψ ` ϕ and ϕ ∧ ψ ` ψ (4.11)
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are Hilbert-style rules of S. Therefore, if S has the PC then these three sequents
must be derivable sequents of any Gentzen system G adequate for S, and as a
consequence every model of this G will have the PC. Moreover, using Cut, one
can easily prove that a Gentzen system G has the sequents in (4.11) as derivable
sequents if and only if the usual rules for introduction of Conjunction to both sides
of the turnstile

Γ ` ϕ∧
Γ ` ϕ

and
Γ ` ϕ Γ ` ψ

Γ ` ϕ ∧ ψ
(4.12)

are derivable rules of G. Bearing all this in mind we prove a very general re-
sult, which can be seen as another partial converse to the first part of Proposition
4.18, for logics with the PC; moreover, it will be used when we show that the
assumptions in Proposition 4.20 are satisfied.

PROPOSITION 4.22. Let S be a sentential logic with the PC and let G be a
Gentzen system adequate for S and satisfying the congruence rules. Then G is
(t∧, sq)-equivalent to |=AlgG.

PROOF. We begin by proving that ϕ ≈ ψ =||=AlgG t∧
(
sq(ϕ ≈ ψ)

)
, which is

condition (Eq2) of Definition 4.14; in our case, this means that we have to prove
that ϕ ≈ ψ =||=AlgG {ϕ∧ψ ≈ ϕ , ψ∧ϕ ≈ ψ}. For anyA ∈ AlgG there is some
closure operator C over A such that the abstract logic L = 〈A,C〉 is a reduced
model of G. This abstract logic will have the PC as well, and the congruence
property by the assumption that G satisfies the congruence rules; this implies that
C(a) = C(b) holds if and only if a = b. Since C(a ∧ b) = C(a, b) = C(b ∧ a),
we obtain a ∧ b = b ∧ a for all a, b ∈ A, and this implies that the equation
ϕ∧ψ ≈ ψ∧ϕ holds in AlgG, therefore {ϕ∧ψ ≈ ϕ , ψ∧ϕ ≈ ψ} |=AlgG ϕ ≈ ψ.
If a = b then C(a ∧ b) = C(a, b) = C(a) and C(b ∧ a) = C(b, a) = C(b) thus
a∧ b = a and b∧a = b; this shows that ϕ ≈ ψ |=AlgG {ϕ∧ψ ≈ ϕ , ψ∧ϕ ≈ ψ}.
Therefore condition (Eq2) is proved.

To prove condition (Eq1) we must prove that

{Γi ` ϕi : i ∈ I} |∼G Γ ` ϕ ⇔ t∧
(
{Γi ` ϕi : i ∈ I}

)
|=AlgG t∧(Γ ` ϕ) .

(⇒) Let A ∈ AlgG, and take any C over A such that the abstract logic L =
〈A,C〉 is a reduced model of G; this abstract logic will have the PC and the
congruence property as well. Let ~a be a sequence of elements of A such that for
each i ∈ I , A |= t∧(Γi ` ϕi) [~a]. If Γi 6= ∅, this means A |= (

∧
Γi) ∧

ϕi ≈
∧
Γi [~a], therefore C

((
(
∧
Γi) ∧ ϕi

)A(~a)
)

= C
(∧

ΓAi (~a)
)

and by the PC
ϕAi (~a) ∈ C

(
ΓAi (~a)

)
. If Γi = ∅ then we have A |= τ ≈ ϕi [~a], so C

(
τA(~a)

)
=

C
(
ϕAi (~a)

)
; but since ∅ `S τ and G is adequate for S, we have ∅ |∼G ∅ ` τ ,

and since L = 〈A,C〉 is a model of G, we conclude that ϕAi (~a) ∈ C
(
τA(~a)

)
=
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C(∅) = C
(
ΓAi (~a)

)
. We see that in every case ϕAi (~a) ∈ C

(
ΓAi (~a)

)
for all i ∈ I .

Since L = 〈A,C〉 is a model of G, we obtain ϕA(~a) ∈ C
(
ΓA(~a)

)
. Now if

Γ = ∅ this implies that C
(
ϕA(~a)

)
= C

(
τA(~a)

)
, which gives A |= τ ≈ ϕ [~a].

If, on the other hand, Γ 6= ∅, then we get C
((

(
∧
Γ )∧ϕ

)A(~a)
)

= C
(
(
∧
Γ )A(~a)

)
which implies that A |= (

∧
Γ ) ∧ ϕ ≈

∧
Γ [~a]. So in both cases we have proved

thatA |= t∧(Γ ` ϕ) [~a].
(⇐): Let Σ be the closed set of |∼G generated by the set {Γi ` ϕi : i ∈ I}.
By Proposition 4.4 the abstract logic LΣ = 〈Fm,CΣ〉 is a model of G, so
by assumption LΣ has the PC and the congruence property. As a consequence,
∼
Ω(LΣ) = Λ(LΣ) =

{
〈ϕ,ψ〉 : CΣ(ϕ) = CΣ(ψ)

}
. Now suppose that Γi 6= ∅.

Since by construction and the PC we have that ϕi ∈ CΣ(
∧
Γi), it follows that

CΣ
(
(
∧
Γi) ∧ ϕi

)
= CΣ(

∧
Γi), that is,

〈
(
∧
Γi) ∧ ϕi,

∧
Γi
〉
∈ ∼
Ω(LΣ); this

implies that Fm/
∼
Ω(LΣ) |= (

∧
Γi) ∧ ϕi ≈

∧
Γi [π] where π is the interpre-

tation defined by the natural projection onto the quotient. If, on the other hand,
Γi = ∅ then CΣ(ϕi) = CΣ(∅); this tells us that S must have theorems, so if τ is
the theorem selected for the translation, ∅ ` τ ∈ Σ, which implies τ ∈ CΣ(∅),
and thus CΣ(ϕi) = CΣ(τ). This implies that Fm/

∼
Ω(LΣ) |= τ ≈ ϕi [π], as

before. Thus for all i ∈ I we have that Fm/
∼
Ω(LΣ) |= t∧(Γi ` ϕi) [π]. Since

Fm/
∼
Ω(LΣ) ∈ AlgG, the assumption implies that Fm/

∼
Ω(LΣ) |= t∧(Γ `

ϕ) [π]. Now a similar process in the opposite direction, distinguishing the cases
Γ empty and Γ non-empty, leads to the proof that ϕ ∈ CΣ(Γ ). Therefore we
have proved that {Γi ` ϕi : i ∈ I} |∼G Γ ` ϕ. a

In the following definition we associate a Gentzen system with every selfexten-
sional logic; however, we will use it only for the ones with the PC, for which we
will prove that it is the Gentzen system we are looking for.

DEFINITION 4.23. Let S be a selfextensional logic. Then the Gentzen system
GS is defined by the following axioms and rules on Seq(GS), which is Seq(Fm)
or Seq◦(Fm) depending on whether S has or does not have theorems:

(1) The “proper axioms” Γ ` ϕ , for all Γ ` ϕ ∈ Seq(GS) such that Γ `S ϕ.
(2) The “structural rules” of Definition 4.1.
(3) The “congruence rules” of Definition 4.17, that is, the rules

{ϕi ` ψi , ψi ` ϕi : i < n}
$ϕ0 . . . ϕn−1 ` $ψ0 . . . ψn−1

for each basic operation symbol $, where n is its arity.

Note that GS is of type ω or ω◦ depending on whether S has or has not theo-
rems.
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PROPOSITION 4.24. If S is a selfextensional logic, then GS is adequate for S.
If moreover S has the PC then GS is (t∧, sq)-equivalent to |=AlgGS .

PROOF. The set of sequents {Γ ` ϕ ∈ Seq(GS) : Γ `S ϕ}, which is the set of
axioms of GS , is closed under |∼GS

: It is closed under the structural rules of (2)
because S is a sentential logic, and it is closed under the congruence rules of (3)
because S is selfextensional. Thus the sentential logic defined by GS is exactly S,
and since we have chosen the type of GS in the right way, GS is adequate for S.
Since by definition GS satisfies the congruence rules, we can apply Proposition
4.22 to conclude that GS is (t∧, sq)-equivalent to |=AlgGS . a

Note that as a consequence, if S is selfextensional and has the PC then the
Gentzen system GS satisfies the rules of introduction of Conjunction (4.12) and
has the sequents (4.11) as derivable ones; this will simplify some proofs later on.

Observe that in order to prove that GS satisfies all the conditions in Proposi-
tion 4.20 it only remains for us to prove that AlgGS is a variety. We will do
this in an indirect way, by seeing that this class of algebras is actually equal to
a class already known to be a variety, namely the variety KS generated by the
Lindenbaum-Tarski algebra of S. Recall that if S is selfextensional, by Proposi-
tion 2.43 we know that ϕ ≈ ψ holds in KS if and only if ϕ a`S ψ; using this, if
moreover S has the PC then it is easy to see that the following identities hold in
KS :

ϕ ∧ ϕ ≈ ϕ (4.13)

ϕ ∧ ψ ≈ ψ ∧ ϕ (4.14)

ϕ ∧ (ψ ∧ ξ) ≈ (ϕ ∧ ψ) ∧ ξ (4.15)

Therefore the variety KS is a variety of semilattices with additional structure;
more precisely, it is a variety whose ∧-reducts form a subclass of the variety
of semilattices. Our goal is to prove that KS = AlgGS = AlgS . In order to
achieve this, we will prove that the Gentzen system GS is (t∧, sq)-equivalent to
the equational consequence |=KS . First note:

LEMMA 4.25. If S is a selfextensional logic with the PC, then the following
hold:

(1) An equation ϕ ≈ ψ holds in KS if and only if ∅ |∼GS
sq(ϕ ≈ ψ) .

(2) For any Γ ` ϕ ∈ Seq(GS) , Γ `S ϕ (that is, ∅ |∼GS
Γ ` ϕ) if and only if

all equations in t∧(Γ ` ϕ) are valid in KS .

PROOF. Part (1) is a simple reformulation of Proposition 2.43 in view of Propo-
sition 4.24. Now we prove part (2). If Γ = ∅ and τ is the theorem selected to de-
fine t∧, then ∅ `S ϕ iff τ `S ϕ iff τ ≈ ϕ is valid in KS , but t∧(∅ ` ϕ) = τ ≈ ϕ,
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thus completing the proof in this case. If Γ 6= ∅ and Γ `S ϕ, then making re-
peated use of the PC we obtain

∧
Γ `S (

∧
Γ ) ∧ ϕ and also (

∧
Γ ) ∧ ϕ `S

∧
Γ ,

that is, t∧(Γ ` ϕ) = (
∧
Γ ) ∧ ϕ ≈

∧
Γ is an axiom of KS . Conversely, if this

last equation is valid in KS , by 2.43
∧
Γ `S (

∧
Γ ) ∧ ϕ and (

∧
Γ ) ∧ ϕ `S

∧
Γ ;

since by the PC we have Γ `S
∧
Γ and (

∧
Γ ) ∧ ϕ `S ϕ, we get Γ `S ϕ. a

PROPOSITION 4.26. For any selfextensional sentential logic S with the PC, the
Gentzen system GS is (t∧, sq)-equivalent to the equational consequence |=KS .

PROOF. The proof of condition (Eq2) of Definition 4.14 is trivial: By using
equations (4.13) and (4.14) of KS it is easy to see that ϕ ≈ ψ =||=KS

{ϕ ∧ ψ ≈
ϕ , ψ ∧ ϕ ≈ ψ} = t∧

(
sq(ϕ ≈ ψ)

)
, that is, (Eq2). The proof of (Eq1) will also

need condition (Eq4):

Γ ` ϕ v||∼GS
sq
(
t∧(Γ ` ϕ)

)
, for all Γ ` ϕ ∈ Seq(GS) .

To prove this we distinguish between two cases: If Γ = ∅, then we have to show
that ∅ ` ϕ v||∼GS

{τ ` ϕ ,ϕ ` τ}. By Weakening, ∅ ` ϕ |∼GS
τ ` ϕ.

Since ∅ `S τ , we also have ϕ `S τ , which implies ∅ |∼GS
ϕ ` τ , and a

fortiori ∅ ` ϕ |∼GS
ϕ ` τ . On the other hand, using that ∅ |∼GS

∅ ` τ and
Cut, we obtain {ϕ ` τ , τ ` ϕ} |∼GS

∅ ` ϕ. If Γ 6= ∅ then sq
(
t∧(Γ `

ϕ)
)

=
{

(
∧
Γ ) ∧ ϕ `

∧
Γ ,
∧
Γ ` (

∧
Γ ) ∧ ϕ

}
. From the PC for S we get

∅ |∼GS
Γ `

∧
Γ and ∅ |∼GS

(
∧
Γ ) ∧ ϕ ` ϕ, so after several Cuts we obtain{

(
∧
Γ ) ∧ ϕ `

∧
Γ ,
∧
Γ ` (

∧
Γ ) ∧ ϕ

}
|∼GS

Γ ` ϕ. For the converse, the PC
produces ∅ |∼GS

(
∧
Γ ) ∧ ϕ `

∧
Γ , which is one half of what we have to prove,

and also Γ ` ϕ |∼GS

∧
Γ ` ϕ; then using the axiom

∧
Γ `

∧
Γ and a new Cut

we obtain Γ ` ϕ |∼GS

∧
Γ ` (

∧
Γ ) ∧ ϕ, which completes the proof of (Eq4).

Now we will prove condition (Eq1), that is,

{Γi ` ϕi : i ∈ I} |∼GS
Γ ` ϕ ⇔ t∧

(
{Γi ` ϕi : i ∈ I}

)
|=KS t∧(Γ ` ϕ) .

We will first prove (⇒). Assume that {Γi ` ϕi : i ∈ I} |∼GS
Γ ` ϕ. In

order to prove that t∧
(
{Γi ` ϕi : i ∈ I}

)
|=KS t∧(Γ ` ϕ) it will be enough

to take any A ∈ KS and any sequence ~a in A and show that the set of sequents
Σ =

{
Γ ` ϕ ∈ Seq(GS) : A |= t∧(Γ ` ϕ) [~a]

}
is a theory of GS : By Lemma

4.25 it contains all proper axioms of GS ; note that this also includes the structural
axiom ϕ ` ϕ. Using that ∧ is associative and commutative in every A ∈ KS , as
we have already mentioned, one can easily prove thatΣ is closed under Weaken-
ing. Finally it is closed under the Cut rule and the Congruence rules because of
the replacement and substitution properties of equality in any algebra.

Now to prove (⇐), if we apply the translation sq to the right-hand side of (Eq1),
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by Proposition 4.19 we get sq
(
t∧
(
{Γi ` ϕi : i ∈ I}

))
|∼GS

sq
(
t∧(Γ ` ϕ)

)
.

But since condition (Eq4) proved before says that every sequent is GS -equivalent
to its double translation, we obtain exactly the left-hand side of (Eq1). This
finishes the proof that GS is (t∧, sq)-equivalent to the equational consequence
|=KS . a

We are now ready to obtain the main results of this section.

THEOREM 4.27. Every selfextensional logic S with the PC has a strongly ade-
quate Gentzen system, namely the system GS defined in 4.23; this Gentzen system
is (t∧, sq)-equivalent to |=AlgS , and AlgS = AlgGS and they coincide with the
variety KS .

PROOF. We have seen in Proposition 4.24 that under these assumptions the
Gentzen system GS is (t∧, sq)-equivalent to |=AlgGS . Recall that AlgGS is the
class of all algebra reducts of reduced finitary models of GS . It has been proved
in Rebagliato and Verdú [1995] that in such a case the class AlgGS is a quasiva-
riety (indeed, the equivalent quasivariety semantics for GS , uniquely determined
by GS ). In addition, by Proposition 4.26 this Gentzen system is also (t∧, sq)-
equivalent to |=KS . Therefore |=AlgGS = |=KS . But KS is a variety, hence a qua-
sivariety, and two quasivarieties determining the same equational consequence are
equal, that is, AlgGS = KS . Therefore AlgGS is a variety. Hence the three con-
ditions in Proposition 4.20 are satisfied, and we can conclude that GS is strongly
adequate for S. As a consequence of this and of Proposition 4.12, AlgS = AlgGS
and in particular GS is (t∧, sq)-equivalent to |=AlgS . a

The presentation of GS given in Definition 4.23 is completely general, and it
might not be suitable for practical purposes. However for particular logics more
satisfactory presentations are available, as is shown in Chapter 5.

THEOREM 4.28. If S is a selfextensional sentential logic with the PC then S
is strongly selfextensional.

PROOF. From Theorem 4.27 we know that GS is strongly adequate for S,
therefore every full model of S is in particular a model of GS . But this Gentzen
system satisfies the congruence rules by definition, so every full model of S has
the congruence property. This tells us that S is strongly selfextensional. a

Thus the open problem mentioned on page 48 has been solved for logics with
Conjunction. At this point it may be helpful to summarize some of the preceding
results in the following statement:
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PROPOSITION 4.29. Let S be a sentential logic with the PC. Then the follow-
ing conditions are equivalent:

(i) S is selfextensional.
(ii) S is strongly selfextensional.

(iii) The Gentzen system GS is strongly adequate for S.
(iv) There is a Gentzen system G adequate for S that is (t, sq)-equivalent to |=K

for some class K of algebras and some translation t.

PROOF. (i)⇒(iii) is contained in Theorem 4.27. The implication (iii)⇒(ii) can
be proved in the same way as Theorem 4.28, since in its proof we use just (iii). The
implication (ii)⇒(i) is trivial. The implication (i)⇒(iv) is contained in Proposition
4.24, and its converse (iv)⇒(i) is contained in Proposition 4.18. a

Note that condition (iv) does not imply that the Gentzen system appearing in it
is strongly adequate for S, and thus equal to GS ; actually the requirements on G

stated in (iv) are weaker than those in Proposition 4.20.
By examination of the presentation of GS given in Definition 4.23 one sees that

the converse of Proposition 2.46 holds for selfextensional logics with the PC, thus
obtaining the following characterization of their full models:

COROLLARY 4.30. Let S be a selfextensional sentential logic with the PC.
Then an abstract logic L is a full model of S if and only if it is a finitary model of
S with the congruence property, and having no theorems if S has none. a

In the terminology of Blok and Pigozzi [1989a], a sentential logic is strongly
algebraizable when it is algebraizable and the equivalent quasivariety semantics
is a variety. Using this notion, we have:

PROPOSITION 4.31. Every selfextensional and algebraizable sentential logic
with the PC is strongly algebraizable.

PROOF. By Proposition 3.2, if S is algebraizable then its equivalent quasivari-
ety semantics is precisely AlgS. Since S is selfextensional, we can use Theorem
4.27, which says that AlgS is a variety. Therefore, S is strongly algebraizable. a

Since we already proved in Theorem 3.18 that any Fregean protoalgebraic sen-
tential logic with theorems is algebraizable, as a particular case of the preceding
result we obtain a radically new proof of a property of Fregean protoalgebraic
logics which has been originally obtained by quite different methods30:

COROLLARY 4.32 (Czelakowski, Pigozzi). Every Fregean and protoalgebraic
sentential logic with theorems and with the PC is strongly algebraizable. a

30See Theorem 6.5.5 in Czelakowski [2001a].
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We can establish the following parallelism between Theorem 4.27 and Corol-
lary 4.32: While, by the latter, Fregean protoalgebraic logics with the PC and
with theorems are algebraizable in the sense of Blok and Pigozzi and the associ-
ated class of algebras is a variety, by the former, selfextensional logics with the
PC, which form a much wider class and may not be algebraizable in the same
sense, determine in a unique way a Gentzen system bearing a very close relation-
ship with them (strong adequacy) and this Gentzen system is algebraizable, in the
sense of Rebagliato and Verdú [1993], [1995], with respect to a variety. And in
both cases the variety is determined in the same way from the logic itself, it is the
variety KS characterized by the set of equations {ϕ ≈ ψ ∈ Eq : ϕ a`S ψ}.

As a different kind of application of Theorem 4.28, we will show the hereditary
character of the Property of Intuitionistic Reductio ad Absurdum (PIRA) dealt
with in Section 2.4 (see Definition 2.53). As far as sentential logics are concerned,
we can say that S has the PIRA when Γ `S ¬ϕ holds if and only if Γ ∪ {ϕ} is
inconsistent (in general, a set is inconsistent relative to some closure operator
when its closure is the whole universe). We need two properties of such logics:

LEMMA 4.33. Let S be a sentential logic with the PIRA. Then it satisfies the
contraposition rule, that is, for any Γ ⊆ Fm and any ϕ,ψ ∈ Fm, if Γ, ϕ `S ψ
then Γ,¬ψ `S ¬ϕ. If moreover S has the PC then for every ϕ ∈ Fm , `S
¬(ϕ ∧ ¬ϕ), and for every ϕ,ψ ∈ Fm it holds that ψ,¬(ϕ ∧ ψ) `S ¬ϕ.

PROOF. From the PIRA it follows that the set {ϕ,¬ϕ} is always inconsistent,
hence any set containing it is also inconsistent. If Γ, ϕ `S ψ then a fortiori we
have that Γ, ϕ,¬ψ `S ψ, therefore the set Γ ∪{ϕ,¬ψ} is inconsistent, and by the
PIRA this implies that Γ,¬ψ `S ¬ϕ. If moreover S has the PC then any formula
of the form ϕ ∧ ¬ϕ is inconsistent, so by the PIRA ¬(ϕ ∧ ¬ϕ) is a theorem.
Finally, since by the PC the rule ϕ,ψ `S ϕ∧ψ holds, the contraposition rule just
proved implies that also ψ,¬(ϕ ∧ ψ) `S ¬ϕ holds, as was to be proved. a

PROPOSITION 4.34. Let S be a selfextensional sentential logic with the PC
and the PIRA. Then every full model of S has the PC and the PIRA.

PROOF. We already know that every full model of S has the PC. In order to
prove that every full model of S has the PIRA it will be enough to prove it for
models of the form 〈A,FiAS 〉, that is, we have to prove that for any X ∪ {a} ⊆
A , ¬a ∈ FiAS (X) if and only if FiAS (X, a) = A. If ¬a ∈ FiAS (X) then also
¬a ∈ FiAS (X, a); since ϕ,¬ϕ `S ψ, it follows that FiAS (X, a) = A. Conversely,
assume that FiAS (X, a) = A. In particular a ∧ ¬a ∈ FiAS (X, a). By finitarity and
the PC we know that there is some b ∈ FiAS (X) such that a ∧ ¬a ∈ FiAS (a, b) =
FiAS (a∧b): take b = ¬(a∧¬a) ifX = ∅, else b = a1∧· · ·∧ak for some ai ∈ X .
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Since a∧¬a is inconsistent, it follows that FiAS (a∧b) = FiAS (a∧¬a) = A. Now,
since S is selfextensional and has the PC, by Theorem 4.28 it is strongly selfex-
tensional, that is, all its full models have the congruence property. In particular
for the negation operation we can infer that FiAS

(
¬(a∧ b)

)
= FiAS

(
¬(a∧¬a)

)
=

FiAS (∅). Then, since ψ,¬(ϕ ∧ ψ) `S ¬ϕ as proved in Lemma 4.33, we have that
¬a ∈ FiAS

(
b,¬(a ∧ b)

)
= FiAS (b) ⊆ FiAS (X). This completes the proof that the

abstract logic 〈A,FiAS 〉 has the PIRA. a

PROPOSITION 4.35. If S is a sentential logic satisfying the PC with respect to
∧ and the PIRA with respect to ¬ and these are the only primitive operations of
the formula algebra Fm, then S is selfextensional and all its full models satisfy
the PC, the PIRA and have the congruence property.

PROOF. In view of Theorem 4.28 and Proposition 4.34 we have only to prove
that S is selfextensional. We have already observed after Definition 2.45 that the
PC implies thatΛ(S) is a congruence with respect to ∧. Now from the Contrapo-
sition Rule of Lemma 4.33 we see that from ϕ a`S ψ it follows that ¬ϕ a`S ¬ψ,
which says that Λ(S) is a congruence with respect to ¬. Since these are all the
primitive operations of the algebra, we have proved that Λ(S) ∈ ConS, that is,
S is selfextensional. a

Concerning the relationship between the PC and the DDT see the comments at
the end of next section, on page 102.

4.3. Selfextensional logics having the Deduction Theorem

Here we deal with sentential logics satisfying the Deduction-Detachment The-
orem, as introduced in Section 2.4. The structure of the section will follow the
same pattern as that of Section 4.2: We will first prove a sufficient criterion for
a selfextensional logic with the DDT to have a strongly adequate Gentzen sys-
tem, and then we will introduce a translation and a Gentzen system and prove in
several steps that they satisfy the assumptions of the criterion. So we omit many
comments31.

DEFINITION 4.36. Let → be a binary operation symbol, either primitive or
defined by a term. Let G be a Gentzen system of type ω. Then we say that:

31The properties of selfextensional logics with the DDT have been further investigated, with other
methods, in Czelakowski and Pigozzi [2004a], [2004b] and in Jansana [2005]. The relationship be-
tween the DDT and the property of having a strongly adequate Gentzen system has been dealt with
in Font, Jansana, and Pigozzi [2001], [2006].
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(1) The MP is a rule of G (or that G satisfies the MP) when for any ϕ,ψ ∈ Fm
and any finite Γ ⊆ Fm, Γ ` ϕ→ ψ |∼G Γ, ϕ ` ψ; and that

(2) The DT is a rule of G (or that G satisfies the DT) when for any ϕ,ψ ∈ Fm
and any finite Γ ⊆ Fm , Γ, ϕ ` ψ |∼G Γ ` ϕ→ ψ.

LEMMA 4.37. If the DT is a rule of a Gentzen system G, then every finitary
model of G has the DT. If the MP is a rule of G then all its models have the MP.
Moreover, if G is adequate for a sentential logic S and S has the MP, then the
MP is a rule of G (and thus every model of G has it).

PROOF. Let L be a finitary model of G, and assume that G satisfies the DT.
Then suppose that b ∈ C(X, a) for some X ∪ {a, b} ⊆ A. There is some finite
X0 ⊆ X such that b ∈ C(X0, a), and thus we can find suitable variables Γ0 ∪
{p, q} ⊆ V ar and an homomorphism h ∈ Hom(Fm,A) such that h[Γ0] =
X0 , h(p) = a and h(q) = b. Since by the DT, Γ0, p ` q |∼G Γ0 ` p→ q and
L is a model of G, we obtain a→ b ∈ C(X0) ⊆ C(X); therefore L satisfies
the DT. Now assume that G has the MP; since ∅ |∼G ϕ→ ψ ` ϕ→ ψ, also
∅ |∼G ϕ→ψ,ϕ ` ψ. Therefore, any model L of G satisfies b ∈ C(a, a→b) for all
a, b ∈ A. As we observed after Definition 2.47, this is enough to guarantee that L
has the MP. Finally, if G is adequate for S and S has the MP, then ϕ→ψ,ϕ `S ψ,
so ∅ |∼G ϕ → ψ,ϕ ` ψ. Then using Cut and Weakening we can show that
Γ ` ϕ→ ψ |∼G Γ, ϕ ` ψ, that is, the MP is a rule of the Gentzen system G. a

PROPOSITION 4.38. Let S be a sentential logic with the DDT, and let G be a
Gentzen system that has the DT and such that the following conditions hold:

(1) G is adequate for S.
(2) G is (t, sq)-equivalent to |=AlgG for some translation t.
(3) AlgG is a variety.

Then G is strongly adequate for S.

PROOF. Since AlgG is a variety, we can apply Proposition 4.18 as in the proof
of 4.20 and conclude that AlgS ⊆ AlgG; but AlgG ⊆ AlgS by 4.9, because
G is adequate for S, therefore AlgG = AlgS. Now let A ∈ AlgG and let
L = 〈A, C〉 be any finitary and reduced model of G overA. From 4.18 it follows
that G satisfies the congruence rules, therefore L has the congruence property. By
assumption G has the DT, and it has the MP because by 4.9 it is a model of S; so
it has the DDT. Now we can apply Proposition 2.49 to conclude that L is a full
model of S; but since it is reduced we obtain C = FiSA. The characterization of
Proposition 4.12 tells us that G is strongly adequate for S. a

First we present the translation:
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DEFINITION 4.39. For any sentential logic S with the DDT we define the trans-
lation t→ from Seq(Fm) to Eq(Fm) as follows:

t→(∅ ` ϕ) = {ϕ ≈ p→ p }

t→(Σ ` ϕ) =
{
δi1 → (. . .→ (δik → ϕ) . . . ) ≈ p→ p

}
where Σ = {δi1 , . . . , δik} 6= ∅ and we assume that k > 1 and i1 < · · · < ik
according to a fixed enumeration of the whole set Fm; p is a fixed variable.

Observe that {δ1, . . . , δk} `S ϕ if and only if ∅ `S δ1→ (. . .→ (δk→ϕ) . . . ),
by the DDT, and that the translation has been so designed in order to obtain that
t→
(
{δ1, . . . , δk} ` ϕ

)
= t→

(
∅ ` δ1→ (. . .→ (δk → ϕ) . . . )

)
(here, assuming

the δi are already ordered according to a fixed enumeration of Fm).

PROPOSITION 4.40. Let S be a sentential logic with the DDT and let G be a
Gentzen system adequate for S such that G has the DT and satisfies the congru-
ence rules. Then the Gentzen system G is (t→, sq)-equivalent to |=AlgG.

PROOF. Note that from the assumptions it follows that every model of G has
the DDT. We first prove condition (Eq2) of 4.14: ϕ ≈ ψ =||=AlgG t→

(
sq(ϕ ≈

ψ)
)
, that is, ϕ ≈ ψ =||=AlgG {ϕ→ ψ ≈ p→ p , ψ → ϕ ≈ p→ p}. Take any

A ∈ AlgG and let L = 〈A,C〉 be any a reduced finitary model of G over A:
From the assumptions it follows that L has the congruence property, therefore in
this algebra it holds that a = b iff C(a) = C(b). Now, for every a, b ∈ A we see
that a→a = b→b, because, by the DDT, we have C(a→a) = C(∅) = C(b→b).
From this it follows ϕ ≈ ψ |=AlgG {ϕ→ψ ≈ p→ p , ψ→ϕ ≈ p→ p}. To prove
the converse, assume that a→ b = c→ c and b→ a = c→ c: Then C(a→ b) =
C(b→a) = C(c→c) = C(∅) and by the DDT C(a) = C(b), which implies a = b.
Using this, we obtain that {ϕ→ ψ ≈ p→ p , ψ→ ϕ ≈ p→ p} |=AlgG ϕ ≈ ψ.
We have proved (Eq2).

To prove condition (Eq1) we must prove that

{Γi ` ϕi : i ∈ I} |∼G Γ ` ϕ ⇔ t→
(
{Γi ` ϕi : i ∈ I}

)
|=AlgG t→(Γ ` ϕ).

(⇒) Let A ∈ AlgG, L = 〈A,C〉 a reduced finitary model of G, and let ~a
be a sequence of elements of A such that for each i ∈ I , A |= t→(Γi `
ϕi) [~a]. For a fixed i assume that Γi = {δ1, . . . , δk} 6= ∅, so we have

(
δ1 →

(. . .→ (δk → ϕi) . . . )
)A(~a) = (p→ p)A(~a) = pA(~a)→ pA(~a). Therefore

C
((
δ1→ (. . .→ (δk→ϕi) . . . )

)A(~a)
)

= C(∅) and hence by the DDT ϕAi (~a) ∈
C
(
δA1 (~a), . . . , δAk (~a)

)
; if Γi = ∅ then what we have is ϕAi (~a) = pA(~a)→pA(~a)

which implies ϕAi (~a) ∈ C(∅). Thus for all i ∈ I we have ϕAi (~a) ∈ C
(
ΓAi (~a)

)
.

SinceL is a model of G, this implies thatϕA(~a) ∈ C
(
ΓA(~a)

)
. Now if Γ = ∅ this
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implies that C
(
ϕA(~a)

)
= C(∅) = C

(
(p→ p)A(~a)

)
; since L has the congruence

property and is reduced, this implies that ϕA(~a) = (p→ p)A(~a). If on the other
hand Γ = {γ1, . . . , γn} 6= ∅, then we have ϕA(~a) ∈ C

(
γA1 (~a), . . . , γAn (~a)

)
which similarly leads to

(
γ1→ (. . .→ (γn→ ϕ) . . . )

)A(~a) = (p→ p)A(~a). So
in both cases we have obtained thatA |= t→(Γ ` ϕ) [~a], as was to be proved.

(⇐) Let Σ be the closed set of |∼G generated by the set {Γi ` ϕi : i ∈ I}.
By Proposition 4.4 the abstract logic LΣ = 〈Fm,CΣ〉 is a finitary model of
G. Therefore by assumption it has the DDT and the congruence property. As a
consequence, ∼Ω(LΣ) = Λ(LΣ) =

{
〈ϕ,ψ〉 : CΣ(ϕ) = CΣ(ψ)

}
. Now sup-

pose that Γi = {η1, . . . , ηs} 6= ∅. Since by construction we have that ϕi ∈
CΣ(η1, . . . , ηs), it follows by the DDT that CΣ

(
η1→ (. . .→ (ηs→ ϕi) . . . )

)
=

CΣ(∅) = CΣ(p→ p), that is,
〈
η1→ (. . .→ (ηs→ ϕ) . . . ) , p→ p

〉
∈ ∼
Ω(LΣ);

this implies that Fm/
∼
Ω(LΣ) |= t→(Γi ` ϕ) [π] where π is the interpreta-

tion defined by the natural projection onto the quotient. If, on the other hand,
Γi = ∅, then CΣ(ϕi) = CΣ(∅) = CΣ(p → p) which as before implies that
Fm/

∼
Ω(LΣ) |= ϕi ≈ p→p [π]. Thus for all i ∈ I we have that Fm/

∼
Ω(LΣ) |=

t→(Γi ` ϕi) [π]. Since Fm/
∼
Ω(LΣ) ∈ AlgG, the assumption of this part im-

plies that Fm/
∼
Ω(LΣ) |= t→(Γ ` ϕ) [π]. Now a similar process in the op-

posite direction, distinguishing the cases Γ empty and Γ non-empty, proves that
ϕ ∈ CΣ(Γ ). Therefore {Γi ` ϕi : i ∈ I} |∼G Γ ` ϕ. a

Now we present the Gentzen system.

DEFINITION 4.41. Let S be a selfextensional logic with the DDT. Define a
Gentzen system G′S of type ω by the following axioms and rules on Seq(Fm):

(1) The “proper axioms” Γ ` ϕ for all Γ ` ϕ ∈ Seq(Fm) such that Γ `S ϕ.
(2) The “structural rules” of Definition 4.1.
(3) The “congruence rules” of Definition 4.17, that is, the rules

{ϕi ` ψi , ψi ` ϕi : i < n}
$ϕ0 . . . ϕn−1 ` $ψ0 . . . ψn−1

for each basic operation symbol $, where n is its arity.

(4) The rule corresponding to the DT:
Γ , ϕ ` ψ
Γ ` ϕ→ ψ

.

PROPOSITION 4.42. If S is a selfextensional logic with the DDT then G′S is
adequate for S and is (t→, sq)-equivalent to |=AlgGS .

PROOF. The set of sequents {Γ ` ϕ ∈ Seq(G′S) : Γ `S ϕ}, which is the set of
axioms of G′S , is actually its set of theorems, because it is closed under the rules of
|∼G′S

: It is closed under the structural rules of (2) because S is a sentential logic,
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it is closed under the congruence rules of (3) because S is selfextensional, and it
is closed under the rule of (4) because S satisfies the DT by assumption. Thus the
sentential logic defined by G′S is exactly S, and G′S is of type ω just because S has
theorems, that is, G′S is adequate for S. Moreover, since by definition G′S satisfies
the congruence rules and the DT, we can apply Proposition 4.40 to conclude that
G′S is (t→, sq)-equivalent to |=AlgGS . a

Consider the variety KS generated by the Lindenbaum-Tarski algebra Fm∗ of
S. If S is selfextensional, Proposition 2.43 states that an equation ϕ ≈ ψ holds
in KS if and only if ϕ a`S ψ. If moreover S has the DDT then one can easily
prove that the following equations hold in KS :

ϕ→ ϕ ≈ ψ→ ψ (4.16)

(ϕ→ ϕ)→ ϕ ≈ ϕ (4.17)

ϕ→ (ψ→ ξ) ≈ (ϕ→ ψ)→ (ϕ→ ξ) (4.18)

(ϕ→ ψ)→
(
(ψ→ ϕ)→ ψ

)
≈ (ψ→ ϕ)→

(
(ϕ→ ψ)→ ϕ

)
(4.19)

and from them we recognize that KS is a variety of Hilbert algebras with ad-
ditional structure (more precisely, KS is a variety such that the class of all its
→-reducts is a subclass of the variety of all Hilbert algebras). Hilbert algebras,
studied mainly in Diego [1965], [1966], are also called positive implication al-
gebras in the literature, and are the algebraic counterpart of the logic of positive
implication, the implicative fragment of intuitionistic logic, which is character-
ized by the Deduction Theorem. They can be equationally defined by the above
equations, see Diego [1966] Theorem 3, although they are usually presented with
a constant 1 which is the interpretation of the term p→ p, which is an algebraic
constant as equation (4.16) shows. Among their properties we highlight the fol-
lowing:

If a→ b = 1 and b→ a = 1 then a = b (4.20)

a→ 1 = 1 (4.21)

If 1→ a = 1 then a = 1 (4.22)

Alternative presentations of Hilbert algebras, more details and further references
can be found in Rasiowa [1974] Section II.2.

LEMMA 4.43. Let S be a selfextensional logic with the DDT. Then the follow-
ing hold:

(1) An equation ϕ ≈ ψ holds in KS if and only if ∅ |∼G′S
sq(ϕ ≈ ψ).

(2) For any Γ ` ϕ ∈ Seq(Fm) , Γ `S ϕ (that is, ∅ |∼G′S
Γ ` ϕ), if and only if

t→(Γ ` ϕ) is an equation valid in KS .
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PROOF. In view of Proposition 4.42, part (1) is just a reformulation of Propo-
sition 2.43. Let us prove part (2). Γ `S ϕ if and only if either ∅ `S δ1→ (. . .→
(δk → ϕ) . . . ), when Γ = {δ1, . . . , δk}, or simply ∅ `S ϕ otherwise. Since
∅ `S p→ p, the first fact is equivalent to δ1→ (. . .→ (δk→ ϕ) . . . ) a`S p→ p

and the second one is equivalent to ϕ a`S p→ p. Therefore, (2) holds. a

PROPOSITION 4.44. Let S be a selfextensional logic with the DDT. Then the
Gentzen system G′S is (t→, sq)-equivalent to |=KS .

PROOF. Since t→
(
sq(ϕ ≈ ψ)

)
= {ϕ→ ψ ≈ p→ p , ψ → ϕ ≈ p→ p},

condition (Eq2) of Definition 4.14 becomes

{ϕ→ ψ ≈ p→ p , ψ→ ϕ ≈ p→ p} =||=KS
ϕ ≈ ψ ;

the entailment from right to left follows from equation (4.16), while the entailment
from left to right follows from property (4.20). Condition (Eq4) is also easy to
check: For Γ = ∅, since sq

(
t→(∅ ` ϕ)

)
= {ϕ ` p→ p , p→ p ` ϕ}, we have to

check that

{ϕ ` p→ p , p→ p ` ϕ} v||∼G′S
∅ ` ϕ.

From p→ p ` ϕ and ∅ ` p→ p, an axiom of G′S , we obtain ∅ ` ϕ after a Cut.
Conversely from ∅ ` ϕ, by Weakening we obtain p→ p ` ϕ, and from the same
axiom plus Weakening we derive ϕ ` p→ p. The case Γ 6= ∅ can be reduced to
the case Γ = ∅ because if Γ = {δ1, . . . , δk} then by using the DT rule of G′S we
have that Γ ` ϕ v||∼G′S

∅ ` δ1 → (. . .→ (δk → ϕ) . . . ) v||∼G′S
sq
(
t→
(
∅ `

δ1→ (. . .→ (δk→ ϕ) . . . )
))

= sq
(
t→(Γ ` ϕ)

)
.

Now we will prove condition (Eq1), that is,

{Γi ` ϕi : i ∈ I} |∼G′S
Γ ` ϕ ⇔ t→

(
{Γi ` ϕi : i ∈ I}

)
|=KS t→(Γ ` ϕ) .

(⇒): Assume that {Γi ` ϕi : i ∈ I} |∼G′S
Γ ` ϕ. In order to prove that

t→
(
{Γi ` ϕi : i ∈ I}

)
|=KS t→(Γ ` ϕ) it will be enough to take any A ∈ KS

and any sequence ~a in A and show that the set of sequents Σ =
{
Γ ` ϕ ∈

Seq(Fm) : A |= t→(Γ ` ϕ) [~a]
}

is a theory of G′S : By Lemma 4.43 it contains
all proper axioms of G′S ; note that this also includes the structural one ϕ ` ϕ.
Using equation (4.21) we have that ϕ ≈ p → p |=KS ψ → ϕ ≈ p → p, and
this shows that Σ is closed under Weakening. Using equation (4.22) we see that
{ϕ ≈ p→ p , ϕ→ ψ ≈ p→ p} |=KS ψ ≈ p→ p, and from this it follows thatΣ
is closed under the Cut rule. ThatΣ is closed under the congruence rules follows
from replacement for equality together with property (4.20). FinallyΣ is trivially
closed under the DT rule, because by definition t→(Γ, ϕ ` ψ) = t→(Γ ` ϕ→ψ).
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(⇐): Since the t→-translation of a set of sequents is a set of equations, if we have
t→
(
{Γi ` ϕi : i ∈ I}

)
|=KS t→(Γ ` ϕ), then by Proposition 4.19 we also have

sq
(
t→
(
{Γi ` ϕi : i ∈ I}

))
|∼G′S

sq
(
t→(Γ ` ϕ)

)
, and then by (Eq4) we obtain

{Γi ` ϕi : i ∈ I} |∼G′S
Γ ` ϕ. a

Now we obtain our main results.

THEOREM 4.45. Every selfextensional logic S with the DDT has a strongly
adequate Gentzen system, namely the system G′S defined in 4.41; this Gentzen
system is (t→, sq)-equivalent to |=AlgS ; and AlgS = AlgG′S = KS , the variety
generated by the Lindenbaum-Tarski algebra of S .

PROOF. We have seen in Proposition 4.42 that under these assumptions the
Gentzen system G′S is (t→, sq)-equivalent to |=AlgG′S

. Recall that AlgG′S is the
class of all algebra reducts of reduced finitary models of G′S . It has been proved
in Rebagliato and Verdú [1995] that in such a case the class AlgG′S is a quasiva-
riety (indeed, the equivalent quasivariety semantics for G′S , uniquely determined
by G′S ). By Proposition 4.44 this Gentzen system is also (t→, sq)-equivalent to
|=KS . Therefore by (Eq3), |=AlgGS = |=KS . But KS is a variety, hence a quasi-
variety, and two quasivarieties determining the same equational consequence are
equal, hence AlgG′S = KS , therefore AlgG′S is a variety. Since by 4.42 G′S is
adequate for S, and it has the DT as a rule, we can apply Proposition 4.38 and
conclude that G′S is strongly adequate for S. As a consequence, AlgS = AlgG′S .
Therefore G′S is (t→, sq)-equivalent to |=AlgS . a

THEOREM 4.46. Every selfextensional logic with the DDT is strongly selfex-
tensional.

PROOF. We know that, by the preceding theorem, all the full models of S will
be models of G′S . Since this Gentzen system satisfies the congruence rules by
definition, all the full models of S will also have the congruence property, that is,
S will be strongly selfextensional. a

Thus the open problem mentioned on page 48 has been solved for logics with
the Deduction Theorem. Now we summarize some of the preceding results in the
following statement:

PROPOSITION 4.47. Let S be a sentential logic with the DDT. Then the follow-
ing conditions are equivalent:

(i) S is selfextensional.
(ii) S is strongly selfextensional.

(iii) The Gentzen system G′S is strongly adequate for S.
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(iv) There is a Gentzen system G adequate for S that is (t, sq)-equivalent to |=K

for some class K of algebras and some translation t.

PROOF. (i)⇒(iii) is contained in Theorem 4.45. The implication (iii)⇒(ii) can
be proved in the same way as Theorem 4.46, since in its proof we use just (iii). The
implication (ii)⇒(i) is trivial. The implication (i)⇒(iv) is contained in Proposition
4.42, and its converse (iv)⇒(i) is contained in Proposition 4.18. a

Note that condition (iv) does not imply that the Gentzen system appearing in it
is strongly adequate for S, and thus equal to G′S ; actually the requirements on G

stated in (iv) are weaker than those in Proposition 4.38; for instance (iv) does not
require G to satisfy the DT rule.

Taking Proposition 2.48 into account we see that the converse of Proposition
2.49 holds, and we get the following characterization of the full models of the
logics treated in this section:

COROLLARY 4.48. Let S be a selfextensional logic with the DDT, and let L be
any abstract logic. Then L is a full model of S if and only if it is a finitary model
of S with the DT and having the congruence property. a

As an application of these constructions we obtain an important property of the
Fregean logics with the DDT, parallel to that obtained by Pigozzi and Czelakowski
for Fregean protoalgebraic logics having the PC (see our Corollary 4.32); note that
here it is not necessary to explicitly assume protoalgebraicity since it follows from
the DDT.

PROPOSITION 4.49. Every selfextensional algebraizable logic with the DDT is
strongly algebraizable. In particular, every Fregean logic with the DDT is strongly
algebraizable.

PROOF. Since S is algebraizable, by Proposition 3.2 its equivalent quasivariety
semantics is AlgS. Since S is selfextensional, by Theorem 4.45 AlgS is a variety.
Thus S is strongly algebraizable. Now assume that S is Fregean and has the DDT.
The latter property implies that S has theorems, and also that S is protoalgebraic
(actually, protoalgebraic logics are characterized by a weaker type of Deduction-
Detachment Theorem, see Czelakowski and Dziobiak [1991]). Thus S is Fregean,
protoalgebraic, and has theorems, and we can apply Theorem 3.18 to conclude
that it is regularly algebraizable, and as in the first part we obtain that it is also
strongly algebraizable. a

Finally, consider what happens with a selfextensional logic S that satisfies both
the PC (with respect to ∧) and the DDT (with respect to→): By Theorem 4.27 the
Gentzen system GS defined in 4.23 is strongly adequate for S; but by Theorem



4.3 SELFEXTENSIONAL LOGICS WITH THE DDT 103

4.45 the same is true for the system G′S of 4.41. Since a strongly adequate Gentzen
system, if it exists, is unique, we conclude that both systems are the same (i.e.,
as consequence relations among sequents), and after comparing them we obtain
the (maybe surprising) conclusion that the DT is actually a derived rule of the
Gentzen system GS .




