
7. Canonization for Two Variables

In this chapter we prove that both L^ and C^ω admit PTIME canonization.
We do so by exhibiting PTIME inverses for IL2 and 7^2 . The inversion for IL2
is even PTIME in terms of the size of the IL* , a phenomenon that we know
to be peculiar to the two variable case. These are the main theorems:

Theorem 7.1. ILι admits PTIME inversion in the strong sense that for each
finite relational r there is a PTIME functor F:{//,2(2t) | 21 G fm[τ]} -»
stanfr], which is an inverse for IL^:

V2t F(/L22l) =L* 21.

It follows that

(i) the range of ILZ can be recognized in PTIME.
(ii) L^X)ω admits PTIME canonization.

(Hi) PTIME Π L'1ooω is recursively enumerable (has a recursive presentation).
(iv) PTIME ΠL^ = FP(/L2) = PTIME (7L2).

Compare the general Theorems 6.11 and 6.14 for (ii) and (iii). (i) is ob-
vious: for 3 of the format of an L2 -invariant, 3 G {/L2(2Q | 21 G fm[τ]}
if and only if F(3) G fin[τ] and /L2(F(3)) = 3. (i) and the strong form
of (iv) (if compared to the statement of Theorem 6.14) are consequences of
poly normality of F in the usual sense.

Theorem 7.2. Ic* admits PTIME inversion. For each finite relational τ
there is a PTIME functor F:{lc*(ty \ 21 G finfr]} -> stan[τ], which is an
inverse for Ic* :

V21 F(/C221) =°2 α.

It follows that

(i) the range of Ic* can be recognized in PTIME.
(ii) C^ω admits PTIME canonization.

(iii) PTIME Π C^ω is recursively enumerable (has a recursive presentation).
(iv) PTIME Π C^ω = FP(/C2) = PTIME (/σa).
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The construction of the inverses is reduced to a combinatorial problem
that only deals with the abstract information about the corresponding two-
pebble games as represented in the invariants. The relational information
encoded in the invariants through the identification of atomic types is at first
suppressed for this purpose. The reduced invariants, stripped of the relational
particulars, are what we shall call game tableaux.

• These game tableaux are introduced in Section 7.1. The inversion problems
for IL2 and 7<?2 are reduced to the problem of constructing realizations for
tableaux.

• In Section 7.2 such realizations are constructed in the case of C2.

• Section 7.3 deals with the corresponding constructions in the case of I/2.

7.1 Game Tableaux and the Inversion Problem

For the start L^)θω and C^ω can be treated in parallel. Recall from Defi-
nitions 3.3 and 3.11 the format of the invariants 7^2 and 7χ,2. The special
situation in dimension two allows for certain simplifications in their presen-
tation. Consider 7<?2 first. In the original format:

As pointed out in the general case, it suffices to retain one of the Ej
and Vj each, since the other one remains definable with the help of 5(ι,2),
the encoding of the permutation that exchanges first and second component.
This permutation is the only member of 8*2 apart from the identity. In the
following we denote by T (for transposition) both this exchange of first and
second component as a member of 82 and its operation on the elements of
7^2. The graph of this operation, S(ι,2), is also denoted T. This is not likely
to cause any confusion, since the transition between these representations is
trivial. Retaining E := 7£2 and v := ι/2, we get:

El = Eτ := {(α,α')|(Γα,Tα')e£},
i/! = vτ

 := i/oΓ.

We separate the equality type information from the remaining relational
atomic information in the PQ by putting

Δ := {a I (αι,α2) 6 a => αι=α2}.

For notational convenience finally, the partition of the universe into the
PΘ is replaced by a function Θ:A2/ =°2-+ Atp(τ;2). We thus obtain the
following format for the 7^2 , which is obviously interdefinable at first-order
level with the former one:



7.1 Game Tableaux and the Inversion Problem 151

*/=C\^E,T,Δ Θ,V). (7.1)

The same modifications apply to J/,2 :

7L2(2t) - Aη=L\^E,T,Δ-,θ. (7.2)

Proviso. For the purposes of this chapter we fix the special format for the
two- variable invariants according to equations 7.1 and 7.2 above. We re-
gard both 7^2 and IL2 as (standard representations of) ordered weighted
/^-structures, where K := {^,E,T, Δ}.

We collect a few obvious facts about the /c-reducts of two- variable invari-
ants, no matter whether 7^2 or 7^,2, in the following lemma.

Lemma 7.3. Let Q = (Q, ̂ ,£,Γ, Δ) be the κ-reduct of some /c2(2t) or

IL2 (21) . Then £} satisfies the following:

(i) E is an equivalence relation on Q.
(ii) T is (the graph of) an inυolutive function from Q to Q: T o T = idg.

(Hi) Δ consists of points fixed under T: T \ Δ = id^\.
(iυ) each E- class contains exactly one element from Δ.

Proof, (i) - (iii) are obvious on the basis of the definitions. Note in connection
with (i) that for the underlying invariant 7^2 (21) or 7/,2 (21) an .E-class exactly
corresponds to the type of a single element of 21. This may be seen as follows.
Let C = C^ω or L^, Ic the corresponding invariant, 0 = 7/:(2t) \ K. Let q be
the J£-class of an element α G Q. Fix some (αi , α2) such that α = tp£ (αi ,02).

Then by definition q consists of exactly those a1 with α' = tp£ (^1,^2) f°Γ

some a'2 G A. Let β = tp^(αι). β is fully determined by q since it exactly
consists of all those formulae φ(x\) G C[r] that are members of all a! G q.
Conversely, q itself is completely determined by /?, since α' G Q if and only
if 3x2(^α/(χi5χ2) G /J, for some formula φa'(xι,X2) that isolates a'.

For (iv) first observe that there must be an element from Δ in each -B-class
of a real invariant. If a = tp^ (αi , a^) , then tp^ (αi , 01) is in Δ and ^/-related
with a. For uniqueness as claimed in (iv) consider <5ι, 62 G Δ and assume that
δι and 62 are E-related. δι = tp^(αι,αι) for some 01, and by E-relatedness
there must be some a^ such that £2 = tp^(αι,α2). Since 62 G Δ, a\ = a^ and
therefore δ\ = δ2. Π

The following definition introduces the term game tableaux for those K-
structures that are candidates for the relational parts of two- variable invari-
ants according to the last lemma. Note that θ, the assignment of relational
atomic types, is not made part of the game tableaux.

Definition 7.4. A finite ^-structure Q = (Q, ̂ ,E,T, Δ) is called a game
tableau if and only if ^ is a linear ordering on Q and Q satisfies conditions
(i) - (iv) of Lemma 7.3. A weighted game tableau is a game tableau Q
together with a weight function v: Q ->• ω \ {0}.
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The size of a game tableau 0 is its size as a relational structure, i.e. the
size of its universe Q. The size of a weighted game tableau (0; v) is taken to be
Σα€Q "(a). These conventions ensure that the size of the original invariant
is polynomially related to the size of the abstracted tableau.

As the 0 and (Π; i/) are linearly ordered, we may think of them as stan-
dard objects. The standardization is then implicitly assumed to be the same
as for the J/,2 and 7^2 in their new format.

Note that the class of game tableaux is first-order definable. Game
tableaux and weighted game tableaux are recognizable in LOGSPACE. The
following lemma isolates some obvious conditions on the function Θ that in
real invariants associates relational types with the elements of the invariant.
The proof is immediate and similar to that of Lemma 7.3 above.

Lemma 7.5. Let £} be the κ-reduct of Ic* (21) or ILι (21) for some 21, θ: Q ->
Atp(τ;2) the mapping that associates the relational atomic types with the
elements of the invariant. Then θ satisfies the following conditions:

(i) if a £ Δ then θ(a) is the type of an identity pair: x\=x<2 £ θ(a).
(ii) for all a £ Q, <9(T(α)) is the atomic type obtained from θ(a) by ex-

changing x\ and #2 in all formulae.
(Hi) if δ is the unique element of Δ that is in the E-class of a, then θ(δ)

contains all formulae φ(xι) from θ(a).

Note that the syntactic conditions in (i), (ii) and (iii) completely deter-
mine θ(T(a)) in terms of θ(a) in (ii) and θ(δ) in terms of <9(α) in (iii).

Definition 7.6. Let Q, be a game tableau, θ a function from its domain to
Atp(τ;2) for some r. θ is a good extension o/β if conditions (i) - (iii) of
Lemma 7.5 are satisfied.

It can be checked in LOGSPACE whether θ is a good extension of Q.

The inversion of an invariant asks for the construction of a relational
structure over some n such that the types of pairs in this structure fit the
specifications laid down in the given invariant. We first approach this prob-
lem at the level of the underlying game tableaux or weighted game tableaux
— the relational atomic types, as encoded in the (9, are disregarded at first.
Correspondingly, the result of this approach is somewhat less than a rela-
tional structure. We shall call it a realization of the given game tableau. It
turns out that these realizations govern the combinatorial pattern of rela-
tional structures to such an extent that the plain relational information in
θ need only be added in later. Formally we describe the desired realizations
as mappings that associate pairs over some standard domain with elements
of the game tableau. The intention is that — once we also plug in relational
information — this mapping will actually be the projection sending pairs to
their types.
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Definition 7.7. Let Q be a game tableau. A surjectiυe mapping π: n x n ->• Q
is called a realization of £} over the standard domain n, if the following
conditions are satisfied, where mι,m2 range over the elements of n:

(i) π respects the diagonal: π(raι,ra2) £ Δ if and only if m\ = m^.
(ii) π respects T: π(mι,ra2) = T"(π(m2,mι)), i.e. π commutes with T.

(Hi) π respects E: The E-class 0/π(raι,ra2) is the set of all ^(mi^m^) for
m'<2 E n.

If v:Q -ϊ ω\ {0} is a weight function on £3, then we further say that π
realizes the weighted tableau (Π; v) if also

(iv) π is compatible with v:
ί/(τr(mι,m2)) = \{m'2 e n | π(mι,m'2) = τr(raι,m2)}|.

Obviously the definition states a number of conditions that are always
satisfied in case that Π (and v) are derived from a real invariant of a structure
over n and if π is the natural projection sending pairs of elements to their
types. We state this fact as a lemma; the proof is trivial.

Lemma 7.8. Let 21 € stan[τ] be a τ-structure over universe n. Let C =
CQOU or L£OW, ίc(2l) the corresponding invariant. Let 0 be the induced game
tableau, so that Q = Tp£(&;2). Put

π: n x n —> Q
(raι,ra2) i—> tp£(7711,7712).

Then π is a realization of the tableau 0. In case C = C^ and if v is the
weight function of Ic^ (21), π is a realization of the weighted tableau (Q i/).

A realization of a game tableau over n, together with attributions of
atomic r-types (in the form a some good extension) uniquely determines
a r-structure with domain n. Let 0 be realized by π: n x n ->• Q and let
Θ: Q ->• Atp(τ; 2) be good in the sense of Definition 7.6. Assume first that r
contains no relation symbols of arity greater than 2. Then there is a unique
structure 2l(π,θ) € stan[τ] over n for which

VmιVm2 atp2t(mι,m2) = Θ(π(mι,m2)).

Uniqueness is obvious. For the existence claim one has to check that the con-
ditions expressed in the above equations are compatible. The requirements
for realizations and for good Θ are designed just to guarantee this compat-
ibility. For instance if m\ — πi2, we have, by a corresponding condition on
realizations, that π(mι,mι) G Δ, whence it follows that θ(ττ(mι,raι)) is
an atomic type of an identity pair. For any 7711,7712 € n, compatibility of
Θ(π(mι,m2)) with θ(τr(mι,mι)) follows from the fact that π(mι,mι) must
be the unique element of Δ in the E-class of π(mι,m2), since π respects E.
But then θ(π(mι,mι)) corresponds to the restriction of θ(π(7711,7712)) to
the first component as Θ is good.
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In order to extend the definition of Sl(π,θ) in a well-defined way to the
general case in which relation symbols of arity greater than 2 are admitted
in T, we stipulate that no tuple involving more than two distinct components
is put into the interpretation of such relations.

Definition 7.9. For a realization π: n x n ->• Q of a game tableau £} and
good Θ: Q —ϊ Atp(τ;2) let St(π,θ) be the unique r-structure over standard
universe n induced by π and θ as described above.

Note that 21 (π, θ) is constructible from π and θ in PTIME.
The following is an obvious statement to the effect that in the intended

case — the case that all the data are obtained from a real structure over some
standard universe — 21 (π, θ) essentially reproduces that original structure.

Lemma 7.10. Let St £ stan[τ], £ = C^ω or L2

OQω1 £5 the game tableau
induced by /c2(Sl) or /iXSt), respectively. Let Θ:Q ->• Atp(τ;2) be the good
extension induced by the invariant itself. Let π:nxn —> Q be the realization
that is the natural projection π:A2 —ϊ A2/ =*~. If τ contains no relation
symbols of arity greater than 2 then Sl(π,<9) = St. Otherwise St and Sl(ττ,<9)
agree on all atoms involving at most two elements, so that at least 21 =^
2t(π,<9).

The following proposition is crucial for showing that inversion for the Ic*
and IL* reduces to the construction of realizations for (weighted) tableaux.

Proposition 7.11. Let Q be a game tableau, Θ:Q -> Atp(τ;2) a good ex-
tension 0/£ϊ.

(i) If π and π' are any two realizations of Q then St(π,<9) =L Sl(π',<9).
(ii) If v. Q -> ω \ {0} is a weight function on £} and π and π1 are any two

realizations of the weighted tableau (Q;^) then St(π, θ) =c St(π',<9).

Proof. Consider (ii), the case of C2. It has to be shown that St := 2l(π,θ)
and St' := St(ττ',<9) satisfy exactly the same C2-types. Using the game char-
acterization for C2-equivalence, Theorem 2.2, we show that player II has a
strategy to maintain the condition that π(01,02) = ^(a^a^) throughout all
stages (SI, (01,02); SI', (αί, 02)) in the infinite (7Λ-game. This is the natural
condition since realizations are modelled to describe the projections to the
C2-types. This condition is also sufficient for a strategy in the game since
the atomic types of pairs over St and SI' are determined by θ o π and θ o π'
respectively.

Assume that π(αι,θ2) = ̂ '(α'l,^) ~ αo m tne current position. Every-
thing is explicitly symmetric with respect to SI and St' and implicitly also with
respect to first or second component, since realizations and good extensions
respect T. Let therefore without loss of generality player I choose pebble 2
and put forward the challenge B C A. Let q C Q be the E-class of QQ. For
each α E q, let Ba := {b G B | π(αι,6) = α}. It follows that B is the disjoint
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union of the Ba — only a G q need be considered since π respects E. Since π is
also compatible with */, \Ba\ ^ Kα) π/ respects E and */ as well so that in 21'
there are disjoint subsets B'a C {&' G A' | π'ία^fe') = α} with |jBα| = \B'a\.

In fact, for each a G </ we have that the size of {bf £ A' \ π'(aΊ,b') — a} must
be ι/(α). Let II respond with B' := \Jaeq B'a. In the second exchange of this
round I now chooses br G B'a for some α G <?, so that II can answer with any
b G Ba and the desired equality π(αι,δ) = π^αί,^') = α is maintained. D

Together with Lemma 7.10 this proposition yields the main preparatory
result for the construction of inverses: full reduction of the inversion problem
to that of finding realizations. We give separate statements for L^x>ω and C^.

Theorem 7.12. Let Q be a game tableau, Θ:Q ->• Atp(τ;2) a function. The
following are equivalent:

(i) (Q; 0) = 7L2(a) for some a G fin[r].
fπ,) (9 w α <?0od extension of Q and £Λere ts a realization π of Q

suc/i ίΛoί 7L2(a(τr,<9)) = (Π;<9).
fiiij θ is a good extension of Π, ί/iere w a realization of Q, and /or a//

realizations π o/Q: /L*(Sl(7Γ,θ)) = (Q θ).

Theorem 7.13. For a weighted game tableau (Π; v) and a function θ: Q ->
Atp(r;2) the following are equivalent:

(i) (Q; θ, ι/) - JC2(a) /or 5ome a G fin[r|.
fπ'^ θ is a good extension of Q and there is a realization π of (Π; z/)

such that /C2(a(π,<9)) = (Q;θ,ι/).
(̂ m^ θ w α ^ooα7 extension o/Q, ίΛere is α realization o/(£J;z/), and for all

realizations π o/(0;ι/): /c 2(a(π,θ)) = (Π;θ,ι/).

Proo/. The proof is indicated for the case of C2: (iii) =* (ii) => (i) is obvi-
ous. Assume (i). Without loss of generality a G stan[τ]. Then the natural

projection π: A2 -> A2 /ΞC yields a realization, see Lemma 7.8. Any two

realizations of (Q z/) lead to C2-equivalent structures a(π,θ) by Proposi-
tion 7.11; we therefore get (iii). D

These theorems reduce the proof of the main theorems on PTIME inversion
for /£2 and 7^2 to the following claims. Recall for complexity considerations
that the size of a tableau Π is the size of its universe Q as usual, while the
size of a weighted tableau (Q; ι/) is Σα€g V(OL).

Theorem 7.14. There are PTIME algorithms A and A* defined on all K-
structures Q, respectively on all ^-structures with positive weights (Q z/),
such that

(a) if Π is a game tableau that admits any realization then A applied to-Q
yields a realization of Q.

(b) if (Π; i/) is a weighted game tableau that admits any realization then A*
applied to (£ί;ι/) yields a realization o/(0;ι/).
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Such algorithms provide the basis for Theorems 7.1 and 7.2. We sketch
an algorithm F as required in Theorem 7.1 with respect to i/^ The case of
C^)Qω is entirely analogous. The input is a structure 3 = (0; Θ] of the format
of an /zXδl). The following diagram describes the desired algorithm:

3 = (£J; (9) check whether 0 is a game tableau and
whether Θ is a good extension of 0

if 0 is not a game tableau, or if Θ is not a
good extension of £1, then 3 & range (/L2)

In the positive case apply A to 0 and check whether
the output Λ(Ω) is a realization of 0

if the output is not a realization of 0, then
3 g range(IL*)

Let in the positive case π = *4(0) be that realization

Construct 2l(π,<9) £ stan[τ]

Compute 1^2 (21 (π,Θ)) and compare with 3

if /L2 (a(π, Θ)) 9* 3, then 3 £ range(/L2)

In the positive case output F(3) := 2t(π,Θ).

Correctness essentially depends on Theorem 7.12, which says that any
realization of the game tableau leads to a successful construction of an inverse
to the invariant if there is any! The rest of this chapter is devoted to the proof
of Theorem 7.14.

7.1.1 Modularity of Realizations

This section exhibits an important modularity property of the game tableaux
that facilitates the construction of realizations. The overall problem can be
decomposed into simpler subproblems, whose solutions form the building
blocks for the desired realization.

Definition 7.15. Let Q. be a game tableau. We enumerate the E-classes as
< 7 ι , . . . ,<#. Here I = \Q/E\ and the ordering is that induced by ̂ a in terms
of ^-least elements of the classes.

(i) We denote by δi the unique element of qi Π Δ.
(ii) LetqT : = { Γ α | α e g < } .

(Hi) Letqij :=qiΠqJ.
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Note that the qj are the equivalence classes with respect to EΊ', defined by
Eτ = {(a,a1) I (Γα,Γα') G E}. For real invariants Eτ = E1 is accessibility
via a move in the first component. Note also that T(qij) = qji and that
therefore qij Γ\qji — 0 unless i = j; in this case, 5; G 9n 7^ 0 Simple examples
show, however, that by no means need qu = {δi}. Consider a directed cycle
of length 4 as a graph. For the associated C2-invariant there is only one type
in Δ, E and Eτ are both trivial, but there are 4 different C2-types.

Fig. T.I
Eτ

92

9ι

913

9i2

'

923

#21

932

9l

The following characterization of the % is technically very useful, for a
pictorial presentation see Figure 7.1. In Figure 7.1 the fine structure of 0 is
depicted as projected onto some n x n square that would be a realization.

Lemma 7.16. Let Ω. be a game tableau, π be a realization of Π. Then

τr(raι,m2) G if and only if π(raι,raι) =

Proof. Observe that π(mι,m2) G qij implies that π(mι,m2) and δi are E-
related. Therefore there must be some m^ such that π(mι,ra2) = δi. As π
respects Δ, m'2 = mi, so that τr(raι,mι) = δi. Applying the same argument
to Eτ we get ^(rn^.m^) = δj.

Conversely, π(raι,mι) = δi G qi implies π(raι,m2) G qi for all m^. Re-
peating the same argument we get that π(ra2,ra2) = δj implies π(m2,τnι) G
QJ so that π(mι,m2) G qj. Putting these together, π(mι,mι) = δi and
π(m2,m2) = δj imply π(mι,m2) G q^. D

We define the restrictions of a game tableau Q to its subdomains q^ . Note
that in restriction to each q^ the equivalence relations E and Eτ become
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trivial since the qij are the classes of the common refinement of the two. As
for Δ it is obvious that Δ Π q^ — 0 if i φ j, and Δ Π qu = {δi}. T is an
involutive mapping from qu to itself, and turns into a bijection between q^j
and qji for i φ j. If we also consider weighted tableaux, it makes sense to
retain both weight functions, v and vτ over each q^ with i ^ j since T is no
longer internal to q^.

Definition 7.17. Let 0 be a game tableau, the q^ as defined in Defini-
tion 7.15. The restriction of 0 to q^ is defined to be

{ (QU-, ̂  \ Qu, T \ qu, {δi}) for the diagonal case j — i
. .

((fo> ^ ί Qu) for the off-diagonal case i / j.

For the restrictions of a weighted tableau (0; v), put

,Λ I (Qu',v\Qii) f o r j = i
(Q; ")*:=< ,Λ , T , , f . , .

( (Ωij',v\Qij,vΛ \Qij) fon^j.

This decomposition calls for an adapted notion of realizations. The modi-
fications and simplifications required with respect to Definition 7.7 are canon-
ical. The diagonal restrictions to the qu can in fact be regarded as special
cases of game tableaux, with trivial E. It is only for the off-diagonal boxes
that formal modifications are required.

Definition 7.18. LetQ. be a game tableau, Q^ its restriction to a subdomain
qij. Assume first i Φ j. A surjective mapping π:s x t —ϊ q^ is a realization
of £lij, if for all πι\ G s and all m2 G t:

{π(mι,m2) I m2 G t} = {π(mi,m2) | mi G s} - q^.

π realizes the weighted restriction (0;z/)u = (0^;^ \ qij,vτ \ Qij) if for all
a G qij, m\ G s and all m2 G t:

|{m2 G t I τr(mι,m2) = α}| = ι/(α),

I {mi G s I π(mi,m2) = α}| = ι/τ(α).

For i—j the conditions that a surjective mapping π: s x s -)• qu realizes Qu
or (0, v)u are those of Definition 7.7 applied to the game tableau (qa,ζ\

QiiiQu x Qu,T \ qu, {δi}) and to the weighted game tableau (qu^\ qu,qu x
Qu,T \ Qϋj{δi}]i/ \ qu).

Suppose π:n x n ->• Q is a realization of 0 or (0, v) over n. Let n be
decomposed into the subsets {m G n | π(m,m) = δi}. Obviously, n is the
disjoint union of these. Without loss of generality we may assume that n
is the disjoint ordered sum n = X^n*, nί — {m € n | ττ(m,m) = δi}.
Formally this means that n\ is identified with an initial subset of n, n2

consists of a consecutive interval following that initial segment and so on. In



7.1 Game Tableaux and the Inversion Problem 159

particular identifying n with the disjoint ordered sum of the HI implies that
the subsets rii are embedded in a well-defined way into n such that n is the
disjoint union of the embedded HI. In the present case this situation may
be assumed without loss of generality because a realization over n can be
composed with any permutation of n in the obvious manner to yield a new
realization, equivalent with the former one for our purposes.

With such a presentation of n = Σin^ ni — {m £ n \ π(m> m) = J»}, we
immediately have that the restrictions of π to the subsets Ui x HJ C n x n
provide realizations for the restrictions Qij and (£};z/)ij. It is straightfor-
ward to check the conditions mentioned in the last definition. Let us supply
the argument for surjectivity of π^ := π \ Hi x Uj ->> q^: by Lemma 7.16,
π(mι,m2) G Qij if and only if ττ(raι,raι) = δi and π(m2,m2) = <Jj, i.e. if and
only if mi G U{ and m2 G rij. Thus surjectivity of π^ follows from surjectivity
of π itself.

The interesting fact is that, conversely, realizations of the individual re-
strictions can be fit together to form a realization of the whole (weighted)
tableau if they satisfy just the most obvious compatibility conditions relating
the sizes of the subdomains.

Lemma 7.19. Let Q be a game tableau, Qij, 1 ^ i,j ^ /, its restrictions
to the qij defined as above. Assume that for some tuple (rit)ι^t^/ of positive
numbers there are surjective mappings πij'.rii x Uj -> % for each 1 ^ i ^
j ^ /, such that πij is a realization ofQij. Then the following is a realization
of £} on the disjoint ordered sum n := Σini'

( πfj (mι,m2) t/rai G n», m2 G nJ9 i ζ j,
\
[ Γπj<(m2,mι) if πii G n», m2 G Πj, j < i.

The same holds for realizations of a weighted tableau (£J; i/).

Before giving a proof, let us note that together with the preceding consid-
erations we have thus found that a (weighted) gsίme tableau is realizable if
and only if its restrictions are realizable over subdomains of matching sizes.
In terms of at first arbitrary domains for the realization of the restrictions,
πij: HI x n*2 —ϊ Qij the conditions for matching size are that the n^ are

independent of j, and that the n£ are independent of i.

Proposition 7.20. A game tableau £1 has a realization over n if and only if
n = Σini f°rni > 0 such that each of its restrictions Qij admits a realization
over Hi x Uj.

Similarly, a weighted game tableau (0; z/) has a realization over n if and
only if n = ^r^ such that its restrictions (Q',v)ij admit realizations over
HI x Πj, for allij.

Proof (of Lemma 7.19). Recall from Definition 7.7 the conditions on a real-
ization π of £}. It is clear that π as defined above is surjective, since the πf, are
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surjective mappings to the qij and since Q = \J q^ — \J^j Qij U Uj<i Tqji as
q^ = T#ji. π respects the diagonal, because the πa do. π commutes with T,
because the πa do and because the appropriate transformation under T is ex-
plicitly built into π on the off-diagonal boxes. We check that π is correct with
respect to E. By construction, π (mi, 7712) € %• if and and only if mi G U{
and 77i2 G n^. Varying m^ G nj we get {π(mι,m2) | m^ G rij/} = %•/,
since the corresponding behaviour is required of the π^/ or T^-/;. Therefore
{π(mι,m2) | m^ G n} = ςf» as required.

The proof for a weighted tableau is similar. The multiplicity requirements
for the realizations π^ of the restrictions immediately imply that also the
composition π realizes the multiplicities prescribed by the overall weight func-
tion. D

We now pursue the actual constructions of realizations in separate presen-
tations for L^ and C^ω. There are more constraints in the case of C ,̂ so
that the constructions are more difficult. On the other hand these construc-
tions appear more straightforward because there are more data available and
correspondingly fewer arbitrary choices to be made. We treat C^ω or the re-
alization of weighted tableaux first and specialize and modify this treatment
in Section 7.3 to obtain the results for L.

7.2 Realizations for

7.2.1 Necessary Conditions

The numerical information contained in the /c2> and in the weighted game
tableaux that derive from these, fixes the size of a possible realization and
the Hi as in the compatibility conditions in Proposition 7.20. Fix a weighted
game tableau (0;ι/), with q^qij^&i for 1 ^ i,j ^ / defined according to
Definition 7.15. Further define the numbers

ι/(α) and n :=

An equivalent definition of n; in terms of (0;^)^ is Hi = Σa€q.. VT(OL).
Equivalence with the above is a consequence of the fact that T is an involutive
bijection between q^ and qji and that, by definition, vτ — v o T.

Lemma 7.21. Let the Hi and n be as just defined. If (0;z/) has any real-
ization, then it must be over n. The induced realizations of the restrictions
(0; v)ij must be over domains U{ x Uj.

Proof. Let π be a realization of (0;z/) over s. By Lemma 7.16, π(mι,m2) G
qij if and only if π(mι,mι) = £; and π(m2,m2) = δj. Choose mi G s such
that π(mι,mι) = <5;. Then
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It further follows that also Uj = |{m2 G s \ π(m2,m2) = δ j } \ .
Note in particular, that these numbers depend on j and not on i. This

is just the compatibility condition of Proposition 7.20. Applying the same
argument to variations in the first component, and with fixed m^ for which
7Γ (7712,7712) = δj, we obtain

I {mi G s I τr(raι,ra2) G ̂  }| - Σβ€^ z/τ(α)

This shows that the induced realization of (£}; v)ij must be over Hi x Πj.
The first claim of the lemma, s = Σiniι follows directly from Proposi-
tion 7.20. D

The following lemma states some necessary conditions for the readability
of (Q; i/) in terms of the restrictions (Q; ι/)jj. Sufficiency of these conditions
will be shown in the sequel.

Lemma 7.22. Any realization of (Q J')ij is over Ui x HJ. Recall that the
numbers Hi and Uj are defined in terms of (Π; v)ij as

// (£}; v)ij has a realization then for all a G QIJ:

w ^ = %•For realizability of a diagonal restriction (£}; i^)u i£ is necessary that in addi-
tion v(δi) = 1, and that if Hi is odd, then for all a G qu

(**) TOL = a => ι/(α) is even.

Proof. Suppose that π: s x t -)• %• realizes (Π; v)ij (cf. Definition 7.18). That
s x t = HI x Uj is shown by an argument similar that in Lemma 7.21, but
in restriction to the individual % . We show that t — Uj. For all πii G s and
all α G % , [{7712 G t \ π(mι,m2) = α}| = ι/(α). Therefore t — |{m2 G t \

π(mι,m2) G % }| = Σαe?0; ̂
α) = n^

For the quotient conditions (*) it suffices to count the number of pairs
that are mapped to α, first in column-wise fashion, then row-wise and equate
the two:

|{(mι,m2) I 7r(mι,ra2) = <*} | = ΣmieJί™2 I ̂ (^1,^2) = ot] \

α) = βι/(α),

|{(mι,m2) I π(mι,m2) = α} I = ]
Γ(α) = ίι/τ(α).
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Consider now the additional constraints expressed for the diagonal case.
Necessity of v(δi) = I is obvious, since π must respect Δ \ qu = {δi}. For (**)
assume s = t = Ui is odd and that a φ δi is a fixed point under T. π~l (a)
must be disjoint from the diagonal {(ra,ra)|ra £ s}, because π(ra,ra) = δi.
This implies that T operates as a fixed-point free involutive bijection on
π~1(α). Therefore |π~1(α)| must be even. The above counting equations

imply that this number equals |{(mι,m2) | ττ(raι,m2) = α} |= sv(a). If 5
is odd, therefore, v(a) must be even. D

7.2.2 Realizations of the Off-Diagonal Boxes

We turn to the proof of sufficiency of the conditions expressed in the last
lemma. The realization of off-diagonal restrictions turns out to be quite
straightforward.

Lemma 7.23. Let (£};z/)ij, i φ j satisfy condition (*) of Lemma 7.22: for
all a ι/(α)/ι/τ(α;) = Ujjui. Then there is a realization π:n; x HJ — > qij of
(Q;z/)ij. Such realizations are constructive in time polynomial in riiUj.

Proof. Let t / s be the reduced presentation of njjrii. Let αι,...,α r be an
enumeration of q^ as ordered by ^. By assumption there exist numbers dk,
for 1 ̂  fc ̂  r, such that ι/(αfc) = dkt and vT(otk) — dkS. Putting d = Σdk
we have ds = ni and dt = HJ by definition of nι and Uj . For the following
compare Figure 7.2.

Fig. 7.2

j =dt

(u—v) modd

rii=ds

Identify d with the ordered disjoint sum of the dk and let g: d -> {1,..., r} be
the function that characterizes the embedded dk: g(u) is that fc with u £ ά^.
Also identify HI with the product d x s, and similarly rij with d x t. Note that
the sum and product identifications can be uniquely defined with the help of
the natural orderings (we have done this explicitly for the sum above). Define
a surjective function
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/: (d x s) x (d x £) — >• m
(u-v)modd.

Figure 7.2 sketches the situation in an example with d = 4. The passage from
the left to the right indicates the effect of the projections U{ — d x 5 -)• d and
rij = d x t -+ d involved in the definition of /. On the right-hand side the
distribution of values for the function (u — v) mod d is indicated.

A realization π can now be defined on Ui x HJ — (d x s) x (d x t) by

τr(raι,ra2) :=α0(/(mι,m2))

π factorizes with respect to / and maps all those blocks, whose values
under / fall into dk C d, to α^. Let us check that π realizes the multiplicities
for columns as specified by v \ qij. Consider πι\ = (u,x) £ d x s:

{πi2 G d x t I τr(raι,m2) = 0:^} = {πi2 £ d x t | /(mi, 7712) £ d*}.

f(mι,(υ,y)) = (u — υ)modd so that there are exactly d^ί = ί/(αfc) many
^2 = (^>2/) such that /(mi, 7712) £ d^. The multiplicity conditions on rows
are checked to be in accordance with z/τ f q^ in exactly the same way.

Note that the proposed construction of a realization is quite definite:
we have sketched how to construct a particular solution to the realization
problem for an off-diagonal restriction. This construction is clearly in PTIME
with respect to the product n^Uj. D

7.2.3 Magic Squares

Sufficiency of the conditions of Lemma 7.22 and the construction of real-
izations is combinatorially more demanding for diagonal restrictions (£}; v)a
because of the symmetries imposed by T. We first present a preparatory
lemma on certain colourings of squares.

The most complicated case in the construction of realizations for diagonal
restrictions (£}; v)a — the case of even n; with fixed points a φ δi under
Γ, as we shall see — reduces to the construction of such colourings. The
colourings described in the following lemma in fact present the worst case
for the construction of a realization. The symmetry requirements for these
colourings are reminiscent of magic squares and related number puzzles (and
call for a try with paper and pencil).

Lemma 7.24. Let n be even. Then there is a colouring c:nxn — > n of the
n-square n x n with n colours 0, . . . , n — 1 with the following properties:

(i) the main diagonal, i.e. all identity pairs, are coloured 0.
(U) each colour occurs exactly once in each row and in each column.

(Hi) the entire colouring is mirror symmetric with respect to the main diag-
onal. In other words the colouring is invariant under T.

A colouring of this kind can be constructed in time polynomial in n.
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Observe that the same puzzle cannot be solved for odd n: each colour
apart from 0 has to occur an even number of times because T operates as a
fixed-point free involutive mapping on the points of this colour.

An example of a colouring of the 6x6 square according to the requirements
of the lemma is given in Figure 7.5 (a) below.

Proof. We give an inductive existence proof that can immediately be turned
into a PTIME construction. The claim is obvious for n = 2 and we now show
how to construct good colourings of the 2n-square and the (2n — 2)-square
from a given good colouring of the n-square. This yields a valid inductive
proof, because for even m > 2 at least one of ra/2 and (m + 2)/2 is even and
smaller than m. Let c: n x n -¥ n be a good colouring.

Fig. 7.3

Bτ

A good colouring C: (2n) x (2n) -> 2n is easily obtained by gluing four copies
of trivially modified c-coloured squares together. The pattern is indicated in
Figure 7.3. The box A represents an n-square coloured according to c, B an
n-square coloured by c ' r n x n -> {n,... ,2n — 1}, c'(mi,7712) = c(mι,ra2)+n.
Bτ finally is coloured do T.

Fig. 7.4

A\ A1

A"

2n-2

Consider now the (2n — 2)-square. Assume without loss of generality that
the c-coloured n-square A has top row (from left to right) coloured n — 1,
n — 2, ..., 0. By symmetry of c this implies that the rightmost column of A
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is coloured 0, 1, ..., n - 1 (from top to bottom). Let A1 be the (n - l)-square
coloured by c' = c \ (n -1) x (n -1), or A with top row and rightmost column
removed. Let A" be the mirror image of A1 across the second diagonal. As a
second building block we use an (n — l)-square B coloured as follows. The
second diagonal of B is coloured 1, . . . , n - 1 from top left to bottom right.
The remaining places are coloured with colours n, . . . , 2n—3 such that each of
these colours occurs exactly once in each row and in each column. This can be
done with a cyclic permutation of colours following the second diagonal. Bτ

finally is the mirror image of B across the main diagonal. A good colouring
of the (2n — 2)-square is obtained by gluing the four (n — l)-squares squares
A', A", B and Bτ as indicated in Figure 7.4. Note that the second diagonals
in B and Bτ exactly supply those colours from n in each row and in each
column, that are missing in A' and A". The arrows in the figure indicate how
these second diagonals in B and Bτ replace the rows and columns cut away
from A. D

Lemma 7.25. Let D C n x n be a subset of the n-square that is symmetric
with respect to the main diagonal (invariant under T), disjoint from the main
diagonal, and contains exactly two elements of each row and of each column.
Then there is a colouring of this subset with two colours c:D ->• {0,1} such
that each colour occurs exactly once in each row and in each column and such
that c is antisymmetric with respect to the main diagonal: Toe = 1 — c. Such
c is PTIME computable from D.

In Figure 7.5 (b) the set D consisting of those points that are coloured 2
or 5 in (a) is split according to these requirements.

Proof. Consider the relation S of belonging to the same row or to the same
column of n x n in restriction to D. Since each row and each column contains
exactly 2 elements of D, D must be the disjoint union of even-length S-cycles.
Since 5 and D are T-invariant, it follows that for each such cycle C either
T(C) Π C = 0 or T(C) = C. Two different cycles cannot contain points of
the same row or of the same column, since for instance there are only two
points of D in any row and these necessarily belong to the same cycle. It
follows that the requirements on c can be satisfied if for each cycle C there is
a colouring c': C U T(C) -> {0,1}, which is antisymmetric for T and contains
at most one point coloured 0, respectively 1, in each row and each column. To
obtain c take the union of these c1. Consider first a single cycle C. C can be
coloured alternately with colours 0 and 1, starting with colour 0 say from the
lexicographically least member in C and proceeding in the direction of the
horizontal S-neighbour of this point. If T(C) ^ C, then c7 on C U T(C) can
be taken as the union of this colouring of C with the antisymmetric image
under T on T(C). In case T(C) = C we have to check that the colouring we
have obtained is antisymmetric itself. Let C be enumerated in the order used
in the colouring procedure as CQ,CI, ... , C2n = £o> so that CQ and c\ are in
the same row, c\ and 02 in the same column, etc. Assume for contradiction
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that for example Tc^i = c^j (c2i and c^j are both coloured 0), where i < j.
Then C2i+ι, the element of D in the same row as C2i, must be T-related with
C2j-ι, which is the element of D that is in the same column with c^j. This
is because D is symmetric with respect to T. Proceeding in this manner we
would find Tck = Ck for k = i + j, which is impossible since D is disjoint
from the diagonal. D

Fig. 7.5 (a) 3
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(b)

7.2.4 Realizations of the Diagonal Boxes

With the help of these lemmas about colourings we finally construct realiza-
tions for diagonal restrictions (Π; v)a that satisfy the conditions derived in
Lemma 7.22.

Lemma 7.26. Let (Q; v}a satisfy the following conditions:

(i) v(δi) = 1.
(ii) for all a G : V(OL) = ι/τ(α).

(Hi) if Hi = ΣαGgii v(a) is odd, then ι/(α) is even for alia
αGgi

Then there is a realization π: Hi x Hi

δi with To. = a.

• qu of (O; v)a over Hi == Σa€q..
Moreover, such a realization can be constructed in time polynomial in n;.

Proof. Recall from Definitions 7.18 and 7.7 that a realization π of (Q z/)^
has to satisfy the following:

(a) π(raι,ra2) = δi exactly for mi = 7712-
(b) T o π = π o T.
(c) For all m\: \{rri2 | π(raι,ra2) = α}| = v(a).

(c) is a combination of (Hi) and (iv) in Definition 7.7 applied to the present
case with trivial E. Note that (c) together with (b) also implies that for all
ra2: |{mι | π(mι,ra2) = a}\ = \{πiι \ π(m2,mι) = Γα}| = ^(Tα), which
by assumption (ii) of the lemma is the same as ^(α).

The construction of π depends on whether n; is even or odd. The odd
case is the easier one.
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Case A: U{ odd. Let qu \ {δi} = qoύqi where </o consists of those points
that are fixed under T. Since T is a fixed-point free involutive permutation
on qι , qι = q U Tq for some <? C ̂  . For a definite construction it is impor-
tant that q can be specified in a unique way, with the help of the ordering
^ on qa. For instance we may take q as the lexicographically least subset
q Q <7ι for which </ι = q U T#. This q can be determined in PTIME. Let now
q0 be enumerated as αι,...,α s, and </ as /3ι,...,/? t, both in ^-order. So
5* , αi , . . . , αs ,/?!,. . ., /?t , Tβi , . . . , T/J* is an enumeration of <fo without rep-
etitions. By the assumptions of the lemma, ^(αj ) = 2k j for suitable fcj,
ι/(βj) = v(Tβj) =: lj. Let dι := Σfy, d2 := Σ/j, d := di + d2, where
we take these as identifications with the disjoint ordered sums. Note that
m = 1 + 2d. Put DO := {(u,v) ζ n>i x Hi \ (u — v)modni G {!,. . . ,d}}.
It follows that Hi x Hi = {(u,u) \ u G ni}\jDQ\JT(D0). See the sketch in
Figure 7.6 with d = 3, n^ = 7, where the values (u — v) modrii in {1, . . . , d}
are indicated. The desired realization π can be defined as follows:

π(u,υ) :=

Γ(π(ι;,u))

for M = v
if (u, v) € DQ and (T/ — v) mod rii G
if (u, υ) G DO and (n — ι>) mod n$ G

Conditions (a) and (b) are obviously satisfied.
To check the multiplicity requirements (c), note that for each u G n^ and

s G {!,.. .,d}, |{i>|(it — ι?)modni = 5}] = |{v|(w-τ;)modni = —s}\ and that
the operation of T on (u, υ) translates into (u — υ) mod n^ ̂  — (u — v) mod n^.
It follows that for all u G r^ indeed |{υ|π(tz,v) = a^}| = 2fcj = v(otj) and

|{ι;|π(t/,υ) = βj}\ = lj = ^(/Jj) as required.

Fig. 7.6
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Case B: Hi even. Enumerate qa as ί<,αι,... ,αβ,/3ι,... ,/?t,T/3ι,... ,T/3t as
above. In particular Tα^ = αj. Let ι/(αj) = fcj, ι/(/3j) = v(Tβj) = lj. Thus
nf = 1 -f di + 2d2, where di = Σ^j> ^2 = Σ'j We identify n^ with the
disjoint ordered sum 1 + ̂  fcj 4- 2d2.

Let c: Hi x n; -> r^ be a colouring function as constructed in Lemma 7.24.
The crucial properties are symmetry, c o T = c, exactly one occurrence of
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every colour in each row and in each column, and c(u, u) = 0 on the diagonal.
With the above identification we consider c as a function to the disjoint sum
1 4- £] kj + 2d2. Thus c can directly be used to define π partially as

t N ( δi for u = v
π(u,υ) := < .Γ f >. ,v ' \ Oίj if c(u, v) G fcj .

Symmetry and multiplicities for the OLJ are as required. It remains to define
π ί {(w,v) I c(u,υ) G 2d2} with values in {βl,...,βtjTβι,...,Tβt}. Note
that this remaining subdomain is disjoint from the diagonal. We now further
identify 2d2 with the product {0,1} x Σlj (in some canonical and definite
way), so that on the remaining domain c takes values (0,d) and (l,d) for

d G \Jlj. Put £>d := {(u,v) I c(u,ϋ) = (0,d) Vc(u,v) = (l,d)} for <Z G L J f j ^
is T-symmetric, disjoint from the diagonal and contains exactly two elements
of each row and each column. By Lemma 7.25 each Dd can be coloured by
some Cdi Dd ->• {0,1} in such a way that each column and each row contains
colour 0 and 1 exactly once, and such that T o Cd — 1 - Q corresponds to an
inversion of the colouring. To complete the definition of π put

/ \ _ / βj if (uιv) £ Dd,de lj and cd(u, υ) = 0
nti'V) :~ \ Tβj if (u, v) G Dd, d G /,- and ca(ti, v) = 1.

Compatibility with T follows, since T preserves Dd and inverts Cd The mul-
tiplicities for the βj are realized correctly because each row and each column
contains exactly one element (u, υ) G Dd such that Cd(u,υ) = 0 (respectively
1) for each d. Therefore |{v|π(ιι,t;) = βj}\ = \{υ\π(u,υ) = Tβj}\ = lj as
required. D

Putting those results of the preceding sections, that relate to the case of
C%oω 5 together we have the following.

Proposition 7.27. Let (£}; v) be a weighted game tableau. Let the E-dasses
of Q be ς f i , . . . ,qh let qiά := q{ Π T(qj) and put n< := Σαe^ ^(Λ)- (^5 ^)
admits a realization if and only if the following conditions are satisfied:

ft) Σαego "W = ni indePendent ofi.
(U) v(δ) = 1 for all δ G Δ.

(Hi) ι/(α) / ι/τ(α) = rij / Hi for all a G % .
(iv) For all odd rii, and all a G qu \ Δ, ifTa = α, then ι/(α) is even.

In this case a realization on n = Σ Hi can be constructed in time polynomial
in n, thus proving the C^-related part of Theorem 7.14.

We review the arguments that lead to this statement: (i) is the compat-
ibility condition for fitting together realizations of the restrictions (Q;ι/)<j;
necessity follows from Proposition 7.20 together with Lemma 7.22. (ii) is
obviously necessary, (iii) is necessary for realizability of each (Q;ι/)^ , (iv)
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is necessary for (0; v)a to admit a realization, both by Lemma 7.22. Suffi-
ciency follows from readability of the (£2; i/)y: (iii) suffices for (0; i/)^-, i ,έ j,
see Lemma 7.23; (ii) - (iv) suffice for (0; v)a according to Lemma 7.26; (i)
suffices to compose these individual realizations.

7.3 Realizations for

7.3.1 Necessary and Sufficient Conditions

We prove the following analogue of Proposition 7.27 in the case of game
tableaux without weights.

Proposition 7.28. Let 0 be a game tableau. Let the E-classes of Q be
4ι,.. .,9i. Put qij := qι Π T(qj). Then 0 admits a realization if and only
if the following conditions are satisfied:

(i) all Qij are nonempty,
(ii) if \qa\ = 1 then \q^\ = 1 for all j.

In this case a realization — one of minimal size even — can be constructed
in time polynomial in \Q\. This proves that part of Theorem 7.14 that relates
toL*-Όoα

Proof (of necessity of (i) and (ii)). (i) is trivial: if 0ij is to have a realization,
then qij must not be empty. For (ii) assume that \qu\ = 1, i.e. that qu = {δi}.
It follows that flu can only admit the trivial realization π: I x 1 ->> {δi} on
the one-element square, since no off-diagonal pair may be mapped to δi by
any realization. In the terminology of Proposition 7.20 it follows that n{ = I
and that all 0ij must have realizations on domains 1 x Πj. It follows directly
from Definition 7.18 that any realization π: s x t -)• q^ satisfies s, t ^ \qij\, so
that 5 = 1 implies \qij\ = 1. D

The rest of this section is devoted to the proof of the sufficiency claim of
Proposition 7.28. Again Proposition 7.20 is invoked to reduce the construction
of a realization for Π to the realization of the restrictions Q^ . In fact we
shall see that (ii) in the proposition reflects what remains of the numerical
compatibility conditions in Proposition 7.20 in the case of !&>„: L^ can
only count "0, l,many". For the restrictions, we first treat the off-diagonal
ones, then the diagonal ones. Fix a game tableau £}.

The off-diagonal restrictions.

Lemma 7.29. For i ^ j. If qij φ 0 then there are realizations π: s x t -> q^
exactly for all 5, t ^ \qij\-
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Sketch of Proof . The condition s,t ^ \qtj\ is necessary since π has to attain
each α G % at least once in every row and in every column.

Let so = \Qij\ and first construct a realization on SQ x SQ. Let qij be
enumerated as αo, . . . αso-ι in increasing order with respect to ^. Put

πo(tt, υ) := Oίk for k = (u + υ) mod s0.

Obviously each OLJ occurs once in each row and in each column as required.
To obtain realizations for s x t, s,t ^ s0 put

ro(u,υ) for u,ι; < s0

fc for fc = v mod SQ, ̂  ̂  SQ, v ^ SQ
Γ , , . .

jfe for k = umodso,v ^ SQ,U ^ SQ
o for v,u~^ SQ .

π extends TΓQ through repetition of (extensions of) the first row and first
column. D

The diagonal restrictions. For the diagonal restrictions Qu the size of
a minimal realization may depend on the existence of fixed points under T
other than δi. We show that the minimal size is equal to \qa\ if there are no
such fixed points, and equal to the least even number greater than or equal
to \qa\ otherwise. Put

( \qu\
di •— \

[ 2Γ| |ςft<Π otherwise.

Lemma 7.30. If qu / {̂ }, then there are realizations π:sxs-ϊ qa of Qu
exactly for all s ^ di .

Proof. First we argue that s ^ di is necessary. Trivially s ^ \qu\ is necessary,
since each a G qu has to occur at least once in every row and column, di > \qa\
if and only if \qa\ is odd and there is some α ̂  δ i such that Ta = a. In this
case di = \qu \ + 1. But then this a has to occur an even number of times under
π, whence either s has to be even (and therefore s ^ \qu\ + 1 = di in this
case), or, if s is odd, α occurs at least twice in at least one row. This row still
has to realize all other elements of qa, and it follows that s ^ \qu\ + 1 = di
in that case as well.

Now for the existence of realizations as claimed. First consider realizations
over di x di.

If \qu\ is even or if Ta ^ α for all a £ qu \ {5i}, consider (O^ i/),
with z/ identically put to 1, as a weighted game tableau. (Π^; i/) satisfies the
requirements of Lemma 7.26 so that we obtain a realization on di x di since

Otherwise \qu\ is odd, there is some α φ δi with Tα = α, and di =
Let α o be the least α € qu\{δi} that is fixed by T. Put ι/(αo) = 2 and ι/(α) = 1
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for all a. φ OL§. Again, Σα€g.. "(a) = di is even and Lemma 7.26 applies to
give a realization on d{ x di.

From these minimal realizations on di x di one may again obtain realiza-
tions over s ^ di simply by extensions that essentially repeat one row and
one column. Let TΓQ:^ x di -> qu be the minimal realization, let QQ be the
minimal element of qu\{δi}. Then the following is a realization over s ^ di\

π(u,υ) :=

πo(di — 1, υ)
7r0(u, di - 1)

TO.Q

for u,v <
for u ^ e?;
for υ ̂  di
foτ u = υ
for u > υ
for υ > u

υ < di — 1
u < di — l

Figure 7.7 illustrates this extension of the domain by one row and one column
to s = di + 1. D

Fig. 7.7
a β 7 a0 δi

a β Ί δi

TΊ

Tβ

Ta

Ta0

TΊ

Tβ

Ta

It remains to determine the size of a minimal realization for the entire
game tableau Q. Put

for i ^ j
if i = j and TOLUOL for all α G qu
if i = j and Ta = a for some α G

(7.3)

so that according to the last lemmas n^ is the minimal number such that £}̂
admits a realization over n^ x n^-. Note that for any game tableaux n^ = Uji
because T acts as a fixed-point free bijection between g^ and ς^. Assume
that the ̂  are all non-empty. Then

- each Qij for z ^ j admits a realization over s x t for all 5, £ ^ n^,
- each non-trivial Qu admits a realization on s x 5 for all s ^ n^, and
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— each trivial 0ϋ, \qu\ = {<5j}, admits only the trivial singleton realization.

Optimal values for realizations that fit together in the sense of the condition
in Proposition 7.20 are therefore given by:

HI := max{nij \ 1 ̂  j ^ 1}
n := Σ Πi.

Notice that (ii) of Proposition 7.28 implies that n* = 1 whenever \qa\ = 1.
If 0 therefore satisfies all conditions of Proposition 7.28 we do get a realiza-
tion of size n.

Proposition 7.31. Let Q be a game tableau that satisfies the conditions of
Proposition 7.28. Then either \qu\ = 1 for all i and the only realization 0/0
is over n = ̂  ί̂ = \Δ\; or there is at least one qu φ {δi} and in this case 0
has realizations exactly over all s ^ n. (The U{ and n are as determined by
equations 7.3 and 7.4 )

The explicit constructions of realizations for the individual 0;j presented
above and the general procedure for the composition of these according to
Proposition 7.20 yield a PTIME algorithm as required for Proposition 7.28.
This finishes the proof of Theorem 7.14.

It might be interesting to find a simple bound on the size n of a minimal
realization of 0 also in terms of \Q\ = Σκ»,j</ kύ'l Recall that \Q\ is the
size of the L2-invariant of the desired structure, or — in more model theoretic
terms — the number of distinct L2-types of pairs that the desired structure
has to realize. We claim that actually \Q\ + I is such a bound. In particular
this is a linear bound, whereas for k ^ 3 we know that there cannot even be
a sub-exponential bound on the size of minimal realizations of L*-invariants
by Example 3.23.

The following proposition gives a somewhat tighter bound in terms of both
the number of 2-types and the number of 1-types that are to be realized.

Proposition 7.32. For all 21 G fin[r] there is some 93 G fin[τ] such that

<B =L2 21 and \B\ ζ |TpL2(2l;2)| + 1 - (|TpL2(2l; 1)| - l)2.

In particular \B\ ζ |TpL2(2l;2)| + 1 = |/L2(2l)| + 1.

Proof. Let 0 = (Q, ̂ , E, T, Δ) be the game tableau associated with JL2 (21).
The desired 05 is obtained from a realization of 0 of minimal size. Let
( / i , . . . , ( f t , the qij, Hij, H{ and n be as described in Proposition 7.28 and
equations 7.3 and 7.4.

As IQI = |TpL2(2l;2)| and |TpL2(2l;l)| = \Q/E\ = / it suffices to show

n ^ \Q\ + 1 - (I - I)2,
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since n is the minimal size of a realization of 0 as determined above. We first
observe that Ui = max{nij|l ^ j ^ /} ^ Σι<j</ ̂  — (/ — 1) because all n^-
are positive. Recall that n^ ^ |g^ | + 1 and n^ = |g^ | at least for all i φ j.
Therefore

^ Σu l9« I + ί - ί(i - 1) = 101 + 1 - (i - 1)2,
as desired. D

The given bound is essentially optimal among bounds that are indepen-
dent of the vocabulary. This is demonstrated in the following example.

Example 7.33. Let k ^ 2 and let Tk consist of k binary relation symbols RQ,
. . . , Rk-ι - Let 2lfc consist of 2k — 2 points arranged in a cycle and with Ri in-
terpreted by the set of pairs at distance i. The following sentence axiomatizes
the complete L2-theory of 21&.

φk = VxVy (V KM Λ f\ ^(Rixy Λ R
i i&

Λ VxVy^Roxy <+ x=y Λ f\(Rixy

Models of ψk exactly correspond to realizations of the game tableau
(Qk,^,E,T,Δ) where Qk = fc, E = k x fc, Γ = idfc, ^ = {0}. In fact,
if 05 is a r^-structure over universe n, then 05 [= ̂  if and only if

π : n x n — » Qfc

< if

is a realization of 0*. By Lemma 7.30 ψk has models exactly in sizes greater

than or equal to n = 2["|Af|. Clearly |TpL2(afc;2)| = k and |TpL2(afc;l)| =
/ = 1, so that IQI -h 1 - (/ - I)2 = k + 1 = n for all odd Jb.

For situations with / > 1 one obtains similar examples by considering
structures

a=(a f c lύ...ύa f c |,Pι,.. .>«)

with extra unary Pi to encode the partition into the 21̂  . Here |TpL (21; 2)| =

Σ ki + /(/ - 1), |TpL2(a; 1)| = I so that IQI + 1 - (/ - I)2 = £*• + *• This
bound is shown to be exact as above if all ki are odd.

Another, more simple corollary to our findings about realizations concerns
the spectrum of complete L^-theories.
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Corollary 7.34. Any complete L^w-theory (in a finite relational vocabu-
lary) that has any finite models, either has exactly one finite model up to
isomorphism, or has models exactly in all cardinalities above some finite
threshold value n.

Sketch of Proof. Completeness of the theory together with existence of at
least one finite model implies that all models (in fact finite and infinite ones)
have the same value for their I/2-invariant. We know from Theorem 7.12 that
each finite model of the theory is obtained from a realization of the underlying
game tableau and vice versa. For realizations the corresponding spectrum
property is expressed in Proposition 7.31 above. In the case of at least one
non-trivial qa the above constructions for the extensions of realizations can
easily be extended to yield models in arbitrary infinite cardinalities as well.

D

7.3.2 On the Special Nature of Two Variables

Combinatorially, and with respect to the solution of the inversion problem
presented here, the two-variable invariants and their induced tableaux are
special. The trivialization of the accessibility relations EI and E^ and mod-
ularity of the solutions as discussed in Section 7.1.1 are peculiar to the two-
dimensional case in this sharp form. Basically the easy decomposition can
be attributed to the fact that the two-variable type of a pair is fully de-
termined by the individual two-variable types of its components together
with the atomic type of the pair — a property that technically is reflected in
Lemma 7.16. Combinatorially more sophisticated techniques may be required
to approach the three-variable case. We have no well-founded conjecture at
this stage whether indeed the k-variable case can be settled positively for any
k ^ 3. In view of the general theorems above these canonization and inversion
problems with and without counting remain challenging open problems.

The most important aspect with respect to classical logical concerns, in
which two variables are very special, is decidability.

Theorem 7.35 (Mortimer). L^ω has the finite model property, i.e. any
satisfiable sentence of L^ω in a relational vocabulary has a finite model. Con-
sequently, the satisfiability problem for L^ω is decidable.

Decidability of the satisfiability problem for L%ω was earlier announced
by Scott [Sco62], but the argument Scott gave was based on the erroneous as-
sumption that the Gδdel case with equality is decidable. So [Sco62] proves the
claim only for L%,ω without equality. A version of Mortimer's proof [Mor75]
can be found in [EF95]. There is also a new proof (with better complexity
bounds) by Gradel, Kolaitis and Vardi [GKV96, BGG96].

Let us consider in a brief sketch what Mortimer's result implies about the
inversion problem for lLι. To this end one may transform the information in
a given candidate L2-invariant
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3=(Q,<,E,Γ;Θ)

into an L?ωω -sentence as follows (compare also Example 7.33). Introduce new
predicates Ra for a G Q. Then the following sentence represents the full
information in 3. It may in fact be considered as an axiomatization of those
realizations of the underlying game tableau that also respect atomic types as
prescribed by Θ, whence it exactly axiomatizes the canonical ^-expansions
of all r-structures 21 with /L2(^) = 3.

VxVy\f Raxy Λ VzVi/ f\ -^(Raxy f\ Ra, xy]
oc a^a'

Λ /\VxVy(Raxy <+ Rτayx) Λ /\

Λ

This sentence may be regarded as a variant of a Scott sentence, with the
crucial difference that it is over an extended vocabulary but requires only
quantifier rank 2 and is of quadratic length in the size of the given invariant.

Prom the proof in [Mor75] one can infer that owing to the special format of
this l?ωω -sentence the size of its minimal models is bounded by a polynomial
in the size of the given invariant.

The inversion problem thus reduces to the satisfiability problem for these
associated compressed Scott sentences. This reduction induces an exponential
time decision procedure for image (/L2) and a corresponding solution through
exhaustive search to the inversion problem in exponential time.

Quite recently it has been shown in [GOR96b] that also the satisfiability
problem for C%ω is decidable (although C%ω does not have the finite model
property, compare Example 1.19).

Theorem 7.36 (Gradel, Otto, Rosen). The satisfiability problem for C%ω

is decidable.

It is remarkable on the other hand that even decidability of image (/L fc)
for k > 2 is an open problem. The corresponding problem for the Ic^ is
trivial, since the size of candidate structures is easily determined from the
proposed invariant. It should be stressed that also for the ILk there is no
obvious connection between the decidability of the set of all invariants of
actual structures and PTIME invertibility of ILk in the sense of Definition 6.9.
In fact the size of prospective realizations may always in this context be
thought of as a given parameter, in which case decidability becomes trivial
through exhaustive search (compare the remarks following Definition 6.9).






