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String Topology
Background and Present State

Dennis Sullivan

“One imagines trying to push the input circles through levels of a
harmonic function on the surface. As critical levels are passed the
circles are cut and reconnected near the critical points. The Poincaré
dual cocycle creates the possibility of positioning the surface inside the
target manifold.”

ABSTRACT. (from [12]) The data of a “2D field theory with a
closed string compactification” is an equivariant chain level action
of a cell decomposition of the union of all moduli spaces of punc-
tured Riemann surfaces with each component compactified as a
pseudomanifold with boundary. The axioms on the data are con-
tained in the following assumptions. It is assumed the punctures
are labeled and divided into nonempty sets of inputs and outputs.
The inputs are marked by a tangent direction and the outputs are
weighted by nonnegative real numbers adding to unity. It is as-
sumed the gluing of inputs to outputs lands on the pseudomanifold
boundary of the cell decomposition and the entire pseudomanifold
boundary is decomposed into pieces by all such factorings. It is
further assumed that the action is equivariant with respect to the
toroidal action of rotating the markings. A main result of com-
pactified string topology is the

THEOREM 1 (closed strings). Each oriented smooth manifold
has a 2D field theory with a closed string compactification on the
equivariant chains of its free loop space mod constant loops. The
sum over all surface types of the top pseudomanifold chain yields
a chain X satisfying the master equation dX + X * X = 0 where
x 18 the sum over all gluings. This structure is well defined up to
homotopy*.

The genus zero parts yields an infinity Lie bialgebra on the
equivariant chains of the free loop space mod constant loops. The
higher genus terms provide further elements of algebraic structure*
called a “quantum Lie bialgebra” partially resolving the involutive
identity.

There is also a compactified discussion and a Theorem 2 for
open strings as the first step to a more complete theory. We note
a second step for knots.

*See the Appendix “Homotopy theory of the master equation” for more
explanation.
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1. Part 1. Sketch of string topology results and proofs from
11, 12]

1.1. The classical intersection product, infinity structures
and the loop product in homology. One knows from classical topol-
ogy the homology H, of an oriented manifold of dimension d has a ring
structure of degree —d:

H; ® H; ™ Hy,

where k — (i + j) = —d.

One way to define m is by taking two cycles z; and zo and inter-
secting them transversally. In other words, after perturbing (z1, z2) to
(2], 2}), intersecting 2] x z with the diagonal Mjs in My x My where
M, and My are two copies of M, ((21,25) M Mi2) C Mg C My x M.

One also knows that this intersection operation can be extended to
the chain level by using a Poincaré dual cocycle U in a neighborhood of
the diagonal by considering

z1 0 zo = (projection onto diagonal)((z1 x z2) NU).

In this formula N means the cap product operation C* ® Cj; — Cj on
the chain level. On homology this intersection product is graded com-
mutative and associative while this chain level “diffuse intersection”
product is infinitely chain homotopy graded commutative and associa-
tive [55].

Such a structure on chains is called an F,, structure and such ob-
jects have a natural homotopy theory [55]. They can be deformed at
Q or at a prime p to give higher tensors on the homology. Besides giv-
ing back the intersection product on homology, at Q they give rise to
Massey products. At p they give Massey products and the Steenrod
powers. At Q and at p these F chain level structures up to homotopy
determine the entire homotopy type of simply connected or even nilpo-
tent spaces. See [68, 63] for Q and [55] for p. This is true literally for
closed manifolds while for manifolds with boundary it is literally true
for relative chains mod the boundary.

At Q this result may also be stated for the at Q equivalent notion
of Lie infinity or commutative infinity structure [63] which can also be
calculated from Q-differential forms [68]. At p the E. structure over
the algebraic closure of the prime field must be used [55].

These theorems provide a strong motivation for studying algebraic
structures at the chain level and also for treating them up to homotopy.
One perspective on homotopy theory of algebraic structures is sketched
in the Appendix. There are others; see [27, 75, 82].

One knows from string topology [11] how to embed this classical
intersection ring structure into a ring structure on the homology H, of
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the free loop space of M9
H; ® H; = Hy,

where k — (i + j) = —d.

Starting with two cycles Z; and Z, of maps of S' into M, evaluate
at p € S to get two cycles z; and 2z in M. Perturb Z; and Z» to
Z1 and Zj so that the evaluation cycles z{ and z} are transversal to
My C M; x M. Then on the locus (2] x 25 M Mjs) in M2 compose
the loop of Z; with the loop of Z5 to get the intersection cycle of loops
representing m([Z1] ® [Z2]).

The evaluation Z; — z; determines a ring homomorphism retracting
the string topology product on H, onto the intersection product on H,,
where the embedding of H, in H, is effected by the embedding of points
of M into constant loops in the free loop space of M. These rings have
a unit if and only if M is closed. In the next section we define this
product on the chain level.

1.2. The chain level generalization [12] of the loop product
and the BV and bracket structures of [11]. One may also define
this loop product on the chain level using the diffuse intersection product
z1029. On the support of z1 029 the marked points of z; and z9 determine
a point in the neighborhood of the diagonal. The corresponding loops
can be composed by using a short path between these nearly equal
points in M. This chain level product is infinitely homotopy associative
and so defines an A, structure in the sense of Stasheff [67]. It may
be transferred to an A, structure on the homology of the free loop
space. There are other infinity structures on the chain level based on
this diffuse string topology construction associated to further homology
structures which we will now describe.

There is a circle action on the free loop space rotating the domain
of maps S'! — M which determines a degree 41 operator A on the
homology. More generally, there is the S' equivariant homology ]HI*S1 of
the free loop space and the long exact sequence relating ordinary and
equivariant homology,

M E Nec

1 1 M
Hi 12 HzSJrz H%g

E
Hiyq ——> - -

where M marks a point on an equivariant loop and E erases the marked
point on a nonequivariant loop and, by definition, A = M o E. Thus

AoA=(MoE)o(MoE)=Mo(EoM)oFE=0.

It turns out that A is not a derivation of the loop product e but the
two-variable operator {, } defined by

{z,y} = Az ey) — (Az ey + (—1)|z|a: o Ay)

is a graded derivation in each variable [11].
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Since the loop product is graded commutative and associative one
can say that (HY ' e, A) forms a Batalin Vilkovisky or BV algebra since
these properties are the definition of a BV algebra [35]. Batalin and
Vilkovisky observed these structures exist on the functionals on fields
of a wide variety of theories and used them to formalize quantization
algorithms [5, 6].

It follows from the mentioned properties of a BV algebra that {a,b}
on the ordinary homology, satisfies the jacobi identity and that the
binary operation on the equivariant homology defined by

[a,b] = E(Ma e Mb)
also satisfies the jacobi identity [11]. Note from the definition {, } has

degree —d+1, [, | has degree —d + 2, and Hfl M H;,1 is a Lie algebra
homomorphism. For d = 2, [, ] is identical to the Goldman bracket for
surfaces [11]. See section 2.1.

QUESTION 1. How can these results from [11] be explained and
what is the general picture?

1.3. String diagrams for closed strings, dessins d’enfants,
the combinatorial model and the general construction for the
equivariant loop space. A string diagram is a special type of ribbon
graph. A ribbon graph is by definition a graph provided with a cyclic or-
der on the half edges at each vertex where graph means one-dimensional
CW complex. The data of the cyclic ordering allows one to construct
a jet of oriented surface along the ribbon graph for which the ribbon
graph is a deformation retract or spine. Omne can add disks to each
boundary component of the surface jet to form a closed surface with a
natural cell decomposition. To be a string diagram means the cells can
be labeled input or output so no two cells of the same label meet along
an edge.

String diagrams were described in terms of permutations and par-
titions in [13]. They are also the same as Grothendieck’s “dessins
d’enfants” and from that context [91] admit a mysterious action of the
Galois group of the algebraic closure of Q.

We can form stacks ! of string diagrams where the output bound-
ary of one is provided with a combinatorial identification to the input
boundary of the diagram just below.

Stacks of string diagrams can be given a geometric interpretation by
providing the input circles with metrics. Then the output circles of one
string diagram inherit a metric obtained by cutting and reconnecting
the input circles. This metric is transported to the next input by the
identification. The choices correspond to the parameters of cells which

1We use the word “stacks” as in ordinary parlance, not as in the mathematics
concept.
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are labeled by the combinatorial type of the stacks of string diagrams.
Continuing on down, each point in the cell is represented by a cylindrical
geometric surface. See figure 1.

“combinatorial
e harmonic function”

-- -1 /_\

output output

FI1GURE 1. Combinatorial harmonic function.

The proofs in [11] work with partially defined chain level operations
defined using certain string diagrams that describe by transversality
these operations. In [12] the chain level version of [11], narrated here,
we complete the picture of this construction, replacing transversality by
cap product with a local Poincaré dual cocycle to obtain globally defined
operations on chains, and we use all possible string diagram operations.

The string diagrams when arranged in vertical stacks are separated
by cylinders where heights vary in tandem between 0 and 1. The stacks
exactly describe all possible compositions of cutting and reconnecting
strings on the one hand with the spacings allowing deformations or
homotopies between operations. On the other hand, stacks of string
diagrams give a combinatorial cell decomposition of moduli spaces of
Riemann surfaces as pseudomanifolds with corners which adapts to our
compactification to be discussed below.

Stacking stacks by adding a new spacing of height 1 between two
stacks describes a part of the codimension one pseudomanifold boundary
of these combinatorial models of moduli space called the composition
or gluing boundary.

The basic transversal string topology constructions of [11], refor-
mulated with Poincaré dual cocycles defined near the diagonal in [12],
determine completely defined chain operations for each of these stacks
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of string diagrams (see section 3.2). These operations fit together like
the cells of the model and on the composition pseudomanifold boundary
give composition gluing of chain operations. Finally the models can be
filled in or zipped up on the rest of the codimension one pseudomanifold
boundary corresponding to small topology. We find the string topology
construction extends over this extended model, in the case of closed
strings.

The string topology construction starting from families of maps of
the input boundary of a combinatorial surface ¥ into M builds families
of maps of ¥ into M. This reverses the direction of the left solid arrow
in the following diagram. Here, I and O are restrictions to input and
output boundary, respectively.

-
{input boundary — M} ~ {surface — M} — {output boundary — M}
Then composing with the right arrow gives string-to-string opera-
tions from string-to-surface operations.

1.4. Zipping up the noncomposition type A boundary of
the combinatorial moduli space. In all the cases, higher genus or
multiple outputs or both, there will be noncomposition boundary which
we want to deal with. There are two types of pseudomanifold bound-
ary in the complement of the stacking or composition pseudomanifold
boundary. For the combinatorial model we start with input circles of
equal length totaling 1. As we go down through the levels and vary
parameters, some part of the model carrying nontrivial topology may
become small and then we reach the boundary of the model. Consider
a connected subgraph I' of the combinatorial model surface with small
combinatorial metric diameter. There are three cases depending on the
Euler characteristic of I'. See figure 7.

i) If x(T') = 1 (one less “equation” than “unknowns”) we pass to a
lower cell of the model, i.e., I" is a tree and we can collapse I" and
stay in the moduli space of stacks of string diagrams without
going beyond the pseudomanifold boundary. We are still in a
lower cell of the model where the string topology construction
is already defined and there is nothing further to do. (Here the
approximate solutions to the “equation” are the support of the
pulled back Poincaré dual cocycle and the “unknowns” are the
evaluations.)

ii) If x(I') = 0 (same number of equations as unknowns) the regu-
lar neighborhood of I" is homotopy equivalent to a circle and we
consider the unique circuit @ embedded in I which is homotopy
equivalent to I'. The combinatorial surface may be analyzed
as a local connected sum near two marked points or the circle
lies on a level. Let one marked point run around a small circle
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with center the other in the first case; or cut along «, twisting
and regluing in the second case. This shows there is a circle
action in the region of the combinatorial moduli space where
I' has small combinatorial metric diameter, when x(I') = 0.
If T is small in the combinatorial model, it is also small in
M because the construction (section 3.2) uses only short ge-
odesic pieces together with pieces from the model. Thus the
image of a may be filled by a two-disk in M. This means we
can add a disk onto the circle orbit in the model and extend
the geometric part of the string topology construction over the
two-disk. The Poincaré part of the construction works by pull
back as the combinatorial length of I', the radial coordinate of
the two-disk, tends to zero.

This way of filling in the combinatorial moduli space and
the string topology construction is familiar from the nodal
curve compactification in algebraic geometry.

iii) If x(I') < 0 (more equations than unknowns) a convenient mir-
acle happens. As we pull back the Poicaré dual cocycle to
the domain of specializing evaluation — we have, because of
having more equations than unknowns, a product cocycle of
bigger dimension than the specialized domain. Thus it is iden-
tically zero and the string topology construction has a vacuous
locus. In this situation we can collapse to a point this part
of the boundary and extend by zero. If d > 1 this argument
applies as well to chain homotopies between Poicaré dual co-
cycles. This is used in the arguments showing the “2D field
theory with closed string compactification” is well defined up
to homotopy.

Together, these two arguments zip up the type A boundary of moduli
space, where some topologically essential part of the cylindrical surface
model becomes geometrically small.

1.5. Zipping up type B boundary in the equivariant case
of closed strings, indication of main theorem and its first six
components. Type B boundary: when there are multiple outputs, the
input length (and the short geodesic pieces) distribute themselves among
the output components. The input length distribution among the out-
put components is described by a point in a k-simplex if there are &+ 1
output components. The boundary of this simplex x the combinatorial
model defined without weights is by definition the type B boundary.

In the equivariant case we take care of the type B boundary by work-
ing in a quotient complex obtained by dividing out by the subcomplex
of small loops. See section 3.6.

Then there is an argument that the subcomplex of equivariant chains
with at least one output component very small in M is mapped by
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any equivariant string operation into an essentially degenerate chain
(section 3.6). In particular, by modding out by degenerate chains, the
equivariant operations act on the quotient by the subcomplex with at
least one small output component.

This removes the type B boundary from consideration in the equi-
variant or closed string theory.

The combinatorial model of stacks in the equivariant case has marks
on the input boundary components and no marks on the output bound-
ary components. We have weights on the outputs adding to one which
record the simplex of output length distribution of the total input
length. The dimension of the combinatorial model is —3y — 1 where
x is the Euler characteristic of the combinatorial surface ¥, y = 2 —
2g — #inputs — #outputs.

In stacking or gluing, x gains one by adding a mark to the output
before gluing and loses one upon erasing the mark after gluing — resulting
in a net gain of zero parameters for each equivariant gluing. The fact
that gluing lands in the pseudomanifold boundary of the combinatorial
model is consistent with the equation

(=3x1—1)+(=3x2—-1)=0Bx—-1) -1
since x = x1 + Xx2.

Corollary in the general equivariant case: In the above discussion,
we have indicated there are operations on equivariant chains parametr-
ized by the equivariant cells in a zipping up of the equivariant combi-
natorial moduli spaces .# C M except for the composition boundary.
We can apply this to the top chains of /Z/v(g, k,1) of dimension 3|y| — 1.
Let X = Hg,kJ top chain of /Z/V(g,k,l). Then X satisfies the master
equation
0X+XxX =0,

where * means the sum over all possible gluings. In other words the
completed chain with type A and type B boundary filled in only has
composition terms in its boundary. This is the main result. It is dis-
cussed in more detail in section 3.2. We will explain in part IIT how
the terms corresponding to f and & define a bracket and cobracket
operation of degree —d + 2 while those corresponding to figure 2 yield
four relations among these i.e., jacobi, cojacobi, drinfeld compatibility,
and the involutive relation of an “involutive” Lie bialgebra.

The other surfaces give a hierarchy of higher homotopies. Restrict-
ing to the genus zero part gives a structure precisely equivalent to oo
Lie bialgebra (as a dioperad). The higher genus terms give a quantum
version of this infinity Lie bialgebra, called a quantum Lie bialgebra,
which may be embedded in a general discussion of algebraic structures
up to homotopy. (See the Appendix.)
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FIiGURE 2.

1.6. String diagrams for open strings, general string topol-
ogy construction and the nonequivariant loop space extending
[11, 70]. By open strings we mean oriented families of paths in an
ambient manifold with endpoints on prescribed submanifolds.

For example the space of chains on the free loop space on M is
isomorphic to the linear space generated by equivalence classes of open
strings in M x M with endpoints on the diagonal in M x M.

There is a string topology construction associated to general open
strings organized by the cells of a combinatorial model of the moduli
space of surfaces with boundary having marked points or punctures on
the boundary. Some are designated as input open strings, some are
designated as output open strings. Now we need to choose a Poincaré
dual cocycle for each submanifold; one for the diagonal in the product of
the ambient manifold and one for each diagonal in the product of each
prescribed submanifold with itself. A cell that labels an operation cor-
responds to a combinatorial harmonic function like in figure 1 for closed
strings that is proper, plus infinity at the input boundary punctures and
minus infinity at the output boundary punctures. The strength of the
poles at the inputs are equal to one another while they are allowed to
vary at the outputs. Now there are no marked points on the input open
strings.

A typical combinatorial harmonic function will have Morse-type sin-
gularities on the boundary or in the interior and all of these are at dif-
ferent levels. There are two types of boundary critical points: one type
increasing by two and the other type decreasing by two the number of
boundary components of the level. There are two types of interior criti-
cal points: one type increasing by one, the other type decreasing by one
the number of components of the level.

Starting with some input open strings, i.e., families of paths in M
with various boundaries, we read down the combinatorial surface using
a Poicaré dual cocycle to impose each approximate equation at a critical
point. Then as before we position the surface in the ambient manifold
by using short geodesics to build the spine.
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Each critical point on the boundary imposes the number of con-
straints equal to the codimension of the submanifold in one case and
the dimension of the submanifold in the other case. Each interior critical
point imposes the ambient dimension number of constraints.By number
of constraints we mean the dimension of the Poincaré dual cocycle that
is used to impose the approximate equations.

If we glue two combinatorial surfaces together, output to input, the
number of constraints is additive.

On the other hand the number of free parameters in such a top
cell corresponding to a combinatorial type of combinatorial harmonic
function is two for each interior critical point, one for the increasing
type of boundary critical point, zero for the the other, one for each
spacing between critical levels and one less than the number of output
punctures because of the variable weights. These weights must add up
to the total length of the input. These quantities in total are additive
less one. This dimension count checks with the fact that composition
gluing puts us on the codimension one boundary of the model.

As in the closed string case, there are more types of boundary be-
sides the composition or gluing boundary. There is the simplex bound-
ary associated to the varying output lengths. There are also types of
boundary associated to metrically small subcomplexes with nontrivial
topology in the surface relative to the boundary.

The negative euler characteristic argument in the closed string case
has an analogue here. The pulled-back Poincaré cocycle is zero for di-
mension reasons if the small complex has complicated topology. (A
quick calculation shows we are left with collapsing circles in the interior
or collapsing arcs between surface boundary as well as the simplex pseu-
domanifold boundary. This calculation needs to be done more carefully
in general.) We treat the collapsing circles in the interior as before.
Fach of these remaining pseudomanifold boundary pieces of the model
can be described in terms of earlier moduli spaces.

We arrive at the result:

THEOREM 2 (open strings). The top chain in each moduli space
yields an operation from strings to surfaces so that the total sum X
satisfies a master equation

dX + X+ X +0X+06X+---=0

where x denotes the sum over all input output gluings, d1 refers to the
operation inverse to erasing an output boundary puncture, do refers to
the operation of gluing which is inverse to cutting along the small arc,...
The § operations involve capping with Poincaré dual cocycles.

REMARK 1. We say more in [12] about the anomalies d1, d2... in
the nonequivariant case.
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1.7. Classical knots and open string topology. We can con-
sider open strings in 3-space with endpoints on an embedded closed
curve in 3-space.

With M. Sullivan we are developing an argument [72]to deform the §
terms to zero. This will yield a structure motivated by contact homology
in the relative case. It is known from work of Ng [60] and Ekholm,
Etnyre, Ng and Sullivan [30] that nontrivial knot invariants arise from
consideration of the zeroth homology level of these invariants.

2. Part II. History, background, different perspectives and
related work

2.1. Thurston’s work, Wolpert’s formula, Goldman’s bra-
cket and Turaev’s question. The story of string topology begins for
this author? with the general background question, “What characterizes
the algebraic topology of manifolds?” The immediate answer is the
characterization should be some form of Poincaré Duality. In particular,
the intersection ring of chains, C, ® C, — C, defined for manifolds
and its compatibility with the coalgebra structures on chains, C, —
C, ® C,, defined for all spaces, should play a role in any answer. See
the CUNY theses of Mahmoud Zeinalian [92] and Thomas Tradler [76]
for discussions related to duality characteristic classes and Hochschild
complexes.

A second strand of the background to string topology relates to
closed curves on a compact surface up to free homotopy. Their position
via intersections counted geometrically rather than algebraically was
important in Thurston’s use of the Teichmuller space of surfaces in
the study of 3D manifolds. Again, in Thurston’s analysis of surface
transformations he studies the orbits of embedded closed curves and
how they geometrically intersect a fixed finite set of embedded closed
curves instead of the usual idea in dynamics to study the orbits of points.
There is also a “cosine formula” of Scott Wolpert for measuring the
infinitesimal change of hyperbolic lengths for any geodesic 8 induced by
Thurston’s a earthquake deformation, where « is an embedded geodesic
[89]. It is a weighted sum over the intersection points of & and 3 of the
cosines of the directed angles between them.

The Teichmuller space T' of the hyperbolic structures up to isotopy is
a symplectic manifold and, by a change of variables from the cosine for-
mula, Wolpert showed the functions Lg on 1" given by 2 cosh(%lengthﬂ)
formed a Lie subalgebra of the Poisson Lie algebra of functions on T
[89].

2This account, as expected, describes the story as known and remembered by
the author.
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Scott Wolpert suggested a Lie bracket on homotopy classes of undi-
rected closed curves and an explanation in terms of a Lie algebra ho-
momorphism for this remarkable Lie subalgebra fact. This was fully
illuminated by Bill Goldman [38] who was interested in the symplec-
tic structure on other representation manifolds into Lie groups of the
fundamental group of compact surfaces. He embedded as the invari-
ant part under direction reversal Wolpert’s construction for undirected

[}

curves into a Lie bracket V @ V' =5 V on the vector space V of di-
rected closed curves up to free homotopy. In the example of figure 3
[a,b] = (a-¢b) — (a-p b) Here (a -, b) means compose loops a and b at
and then take the free homotopy class.

FIGURE 3. Goldman bracket [a,b] = (a ¢ b) — (a - b).

Recently, Moira Chas managed to show for embedded curves there is
no cancellation in the Goldman bracket i.e., the number of terms in the
bracket of two embedded closed curves is actually equal to the minimal
number of intersection points [10]. This relates the string bracket or
Goldman bracket even more forcefully to Thurston’s work and suggests
an algebraization is possible.

Returning again to the past, Goldman found other Lie subalgebras
of functions inside the Poisson Lie algebra of all functions on the sym-
plectic manifold of representations of the group of the surface into G by
considering traces, and provided an explanation using his Lie algebra of
directed curves [38].

These manifolds of representations play a role in 3D topological
quantum field theories via the geometric quantization program [4].

A few years after Bill Goldman’s paper, Vladimir Turaev looked at
self intersections of closed curves on surfaces, one by one, to split the
curve into two closed curves at each self intersection. Forming a skew
symmetric formal sum, Turaev defined a coLie algebra structure £ —
E ® E on the vector space E of essential directed curves on the surface
up to homotopy [79]. Since the trivial conjugacy class was central for
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Goldman’s Lie algebra, the bracket of Goldman passes from V to E.
Note this passage from V to F is the precursor of the discussion above
about modding out by small loops when there are multiple outputs
(section 1.5).

[;

We then have on E a Lie bracket (Goldman) £ ® F = E and a Lie

cobracket (Turaev) E 2 E® E. Turaev showed the five-term drinfeld
compatibility condition Ala,b] = [Aa,b]’ 4 [a, Ab)" where each [,]’, with
two terms, denotes the action of the Lie algebra E on its own tensor
square F ® E [79]. Our generalization is sections 3.3 to 3.8 together
with the new involutive property from [9, 13].

QUESTION 2. What is the deeper meaning or significance of this Lie
bialgebra on the vector space E of essential directed closed curves up
to free homotopy?

One can see the cobracket appearing in a formal expansion by Sasha
Polyakov of a Wilson loop path integral calculation [62]. Turaev himself
said he spent ten years thinking about quantizing this Lie bialgebra
(which he did using knots [79]) and trying to understand its quantum
meaning.

Turaev also asked a provocative question which led to the joint work
of the author and Moira Chas “String Topology” [11]. Namely it is ob-
vious the cobracket of an embedded simple closed curve is zero and
Turaev asked the beautiful question whether or not this property char-
acterizes embedded simple closed curves among conjugacy classes which
are not powers of other conjugacy classes [79].

2.2. Chas’ conjectures on embedded conjugacy classes and
the group theory equivalent of the Poincaré conjecture. An
algebraic characterization of simple conjugacy classes on 2D surfaces
might be important for the topological study of 3D manifolds. There
is a group theoretic statement (Jaco and Stallings [44, 66]) which is
equivalent to the 3D Poincaré conjecture:

“Every surjection 7, — F, x Fj contains in its kernel a nontrivial
embedded conjugacy class.”

Here 7, is the fundamental group of the compact surface of genus g,
F, is the free group on g generators and embedded means represented
by an embedded closed curve.

In the late ’90’s, motivated by this statement from the '60’s, Moira
Chas and the author tried to answer Turaev’s question relating the
kernel of the cobracket and embedded conjugacy classes. Trying to prove
the affirmative answer led to the study of paths or 1-chains in the space
of all closed curves on the surface. This attempt failed, but at some
moment, it became clear that Goldman’s bracket and Turaev’s cobracket

for 2D surfaces actually existed at a geometric level in the vector spaces

of chains S, of closed curves on any manifold M d, Sy ® Sk u Sy and
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S LY S, ® S, where the degree of each operation is 2 — d. Note that
the degree is zero precisely for surfaces. We have indicated the full
generalization above and in more detail below. See Part III.

At the same time it was clear that the basic idea, to study mapping
spaces of lower dimensional manifolds into M by intersecting chains
in M induced by evaluation at points and then forming connected
sums gave a rich supply of additional operations. We chose the name
“string topology” for the idea of intersection followed by regluing in the
study of the algebraic topology of this entire package of mapping spaces
{intervals or circles — M}, {surfaces — M}, etc. See e.g., [24, 71].

We describe in more detail this “string topology package” for closed
curves in general manifolds in Part III. Now we report on the current sta-
tus of Turaev’s motivating question about embedded conjugacy classes
of closed curves on surfaces.

Chas gave a combinatorial presentation of the Lie bialgebra on sur-
faces which could be programmed for computation and when a search
was performed, examples of nonembedded and nonpower conjugacy
classes in the kernel of A were found ([9]).This answered Turaev’s orig-
inal question about the kernel of the cobracket in the negative. Chas
then reformulated a new conjecture about characterizing simple classes
algebraically in terms of the bracket instead of the cobracket.

CONJECTURE 1 (Chas). A conjugacy class o which is not a power
is stmple iff any one of the following holds:
(1) [@™,a™] =0 for all n,m
(2) [@",a™] =0 for some n # m and nm # 0

See [9] for the case n =1, m = —1 and [14] for n =2, m = 3.

Recently the second criterion was proven for n = 2,m = 3 by Chas
and Krongold [14] so the first characterization is also established. They
also suggest that a replacement for Turaev’s condition cobracket(x) = 0,
namely cobracket(z?) = 0, may be sufficient to characterize embedded
conjugacy classes.

Now we have Perelman’s Ricci flow completion of Hamilton’s pro-
gram verifying Thurston’s geometrization picture of 3D manifolds. Since
Thurston’s picture includes the Poincaré conjecture, we know that the
group theoretic statement of Jaco and Stallings about embedded con-
jugacy classes is actually true! Thus the above-mentioned Chas-Turaev
characterizations and conditions are relevant in a new way: one wants
to find a purely group theory and/or topological proof of a known state-
ment about groups which is now proved using hard PDE and hard ge-
ometry.

2.3. Algebra perspective on string topology. This definition
of the string bracket [11] was so direct we thought it must be already
known in some form. One idea possibly lay in algebra. Hochschild, in
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the "40’s , following the idea of Eilenberg and Maclane (’40’s) that groups
I" had homology or cohomology with coefficients in any I'-module, show-
ed that associative algebras A had homology or cohomology with coef-
ficients in any A-bimodule [41].

These were defined as for groups using free resolutions and Hoch-
schild gave specific resolutions yielding the now so-called Hochschild
complexes. During the '80’s it was learned [45, 36| that taking the
algebra to be the cochains C* on a simply connected space X and the
bimodule to be the chains C, the Hochschild cochains gave a model for
the chains on the free loop space of X.

In the ’80’s Connes introduced the fruitful cyclic subcomplex of
this particular Hochschild complex with its extra cyclic symmetry and
defined the cyclic cohomology of an associative algebra [26, 53]. He
further related this cyclic symmetry to spaces with S* action.

This cyclic structure in the Hochschild complex of C*(X) fit with
the S! action on the free loop space so the cyclic cohomology of C*(X)
became the equivariant homology of the free loop space of X [45], again
in the simply connected case.

This is only half of the relevant Hochschild story. The rest occurs
in the Hochschild complex for the other obvious bimodule (the predual)
studied by Gerstenhaber in the ’60s.

In a celebrated paper [34] Gerstenhaber, motivated by a major the-
ory at the time, the Kodaira-Spencer theory of deformations of com-
plex structures, tried for a purely algebraic formulation. Gerstenhaber
studied formal deformations of the multiplication in an associative al-
gebra, bearing in mind the complex structure resides in the algebra
structure of the sheaf of holomorphic functions. He made use of the
Hochschild complex of an algebra A with coefficients in the bimodule
A itself. Gerstenhaber defined a *-operation in the Hochschild cochain
complex (A; A) which was non associative but whose commutator gave
a differential Lie algebra structure on this Hochschild complex.

Nowadays one says this Gerstenhaber differential Lie algebra con-
trols the deformation theory of A and one says the Kodaira-Spencer
differential Lie algebra of (x,0) polyvector fields with coefficients in the
(0, %) forms controls the deformation theory of the complex structure.
The obstruction in each theory to extending a linear deformation « (here
da = 0 and « is taken mod boundaries) to a second order deformation
is [, a] mod boundaries. If this first obstruction vanishes [, a] = df3,
the next obstruction to a third order deformation is [«, 3] (which is
a cycle in characteristic # 3 by the jacobi identity) mod boundaries,
etc. These have the same universal form in any deformation theory
controlled by a differential Lie algebra. Gerstenhaber also showed the
Hochschild complex (A; A) had a rich supply of other operations: an
associative product, brace operations extending * and so on.
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This entire Gerstenhaber discussion can be applied to the cochains
C*(X) on a space. I don’t know a topological interpretation of all this
Gerstenhaber structure except when the space is a manifold, where it
is part of the string topology of the free loop space of the manifold.

This happens because of Poincaré duality at the level of chains and
cochains: in the case of a manifold X the two bimodules over the
cochain algebra, chains and cochains, are equivalent. Equiva-
lent means their resolutions are chain homotopy equivalent as chain
complexes of bimodules over the algebra of cochains. This concept and
fact for manifolds appeared in the CUNY thesis of Thomas Tradler [76]
which began the algebraic interpretation of string topology. Also there
is an appropriate formulation for manifolds with boundary.

Thus, at least for a manifold M, the entire package of Gersten-
haber operations in his deformation theory may be translated from
Hochschild(C*(X); C*(X)) to Hochschild(C*(X); C«(X)). The latter
maps into the chains on the free loop space where the corresponding
operations can be defined geometrically by the constructions of string
topology. In the simply connected case the map is a quasi-isomorphism
and we have an algebraic interpretation of at least a part of string
topology in terms of the two Hochschild complexes Hochschild(A; A)
and Hochschild(A; A% and the duality equivalence between them
A« A%al a5 A-bimodules in the homotopy category of A-bimodules.
Such an algebra with this equivalence may be called a homotopy Frobe-
nius algebra.

Let us go back a bit before going on because we skipped a step in
the story. The Lie bracket of Gerstenhaber in the above discussion is
really defined on the Hochschild cohomology which models the ordinary
homology H, of the free loop space and so defines a Lie bracket there
which turns out to have degree —d + 1. The generalized string bracket
above generalizing the Lie bracket on surfaces begun by Wolpert and
Goldman and generalized in [11] is defined on the equivariant homology
HS " of the free loop space and has degree —d + 2.

There is, as mentioned above, a map of degree +1, H*Sl M, H,
which is part of the long exact sequence

M M E

Hiyg ——---

Myt - Hi; = H 1
relating ordinary homology and equivariant homology of any space with
a circle action. The map M is a map of graded Lie algebras, provid-
ing a connection of the geometrically defined string bracket with the
Gersenhaber bracket from algebra.

This is a complicated path. It turns out there is a more direct route
to the string bracket generalizing Goldman’s bracket in surfaces. We
can translate Gerstenhaber’s associative product on Hochschild(A; A)
into a geometric product on the ordinary chains of the free loop space
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— simply intersect an a—family of marked strings with a b—family of
marked strings at the marked points to obtain a locus ¢ of dimension
¢=a+b—d. Along ¢ compose the loops to construct an “associative”
product on the chains of the free loop space of any manifold. This
product e, which we call the loop product (the Chas-Sullivan product
in the literature), can be used to reinterpret the geometric definition
of the string bracket using the chain maps for F and M of the exact
sequence relating ordinary and equivariant homology (above).

string bracket(a,b) = E o loop product(Ma, Mb).

Thus begins a sequel to Gerstenhaber’s algebraic deformation theory
when the associative algebra satisfies some kind of Poincaré duality like
the homotopy Frobenius property above. This occurs because the rich
deformation story on one Hochschild complex (Gerstenhaber) can be
combined using the equivalence of bimodules A «» A% with the simi-
larly interesting cyclic story (Connes) on the other Hochschild complex.

The first combined algebraic structure that emerges is a Batalin
Vilkovisky algebra structure (e, A) on the ordinary homology of the
free loop space [11] or its model the Hochschild cohomology of cochains
C* with coefficients in C* or C,. Here e is the loop product and A is
the generator of the circle action which satisfies Ao A = 0 and is related
to the product e by {a,b} which satisfies jacobi and is a derivation in
each variable where {, } is defined by

—{a,b} = (Aa)eb+tae(Ab) —Alaebd).

In other words, the odd Poisson algebra (e,{, }) (also called a Gersten-
haber algebra) that Gerstenhaber discovered on the Hochschild coho-
mology (A; A) for an associative algebra, in the presence of Poincaré
duality or appropriate homotopy Frobenius, is actually derived from
a BV algebra (e, A). This algebraic statement trying to explain the
geometric version of BV in string topology [11] appeared first to my
knowledge in the CUNY thesis of Tradler [76].

Stronger versions, improvements and variants have appeared in sev-
eral other works: Merkulov [59], R. Kaufmann [46], Tradler [77], Trad-
ler-Zeinalian [78].

Currently, there are several works in progress using ribbon graphs to
explore the full implications of variants of homotopy Frobenius proper-
ties of associative algebras and their generalizations to linear categories,
A algebras and linear A, categories. Kevin Costello [28] and Maxim
Kontsevich [51] in parallel work (suggested by earlier work of Kontse-
vich [52]) have pursued the idea that the celebrated topological string
theories

(1) A-model defined by J—holomorphic curves (Gromov-Witten)
(2) B-model defined by generalized Kodaira-Spencer deformations
of Calabi-Yau manifolds
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are conjecturally just this full algebraic exploration of the appropriate
homotopy Frobenius property applied to appropriate linear (Ay) cate-
gories

(1) for the A-model, the Fukaya A, category of transversal La-
grangian submanifolds with morphisms given by the Floer com-
plexes of J—holomorphic curves

(2) for the B-model, the Ay category of coherent sheaves on a
Calabi-Yau manifold where the morphisms are the complexes
for defining Ext(, ).

In the examples A-model and B-model it is important that the cyclic
Hochschild complex here has finite type and satisfies Poincaré duality
in its own right which does not occur for string topology because the
free loop space is infinite dimensional.

Véronique Godin [37] and Ralph Kaufmann [47, 48] and Mike Hop-
kins with Jacob Lurie [42] are developing this ribbon graph picture of
what can be called the “Br part” of string topology from either the
original string topology perspective or this homotopy Frobenius algebra
perspective.

By the “Br part” of string topology we mean the part of the struc-
ture described below associated to the cells in the interior of the moduli
space of Riemann surfaces together with those on the boundary associ-
ated to gluing Riemann surfaces.

By I" we mean the mapping class group and one knows (in several
different statements) that the open part of moduli space is homologically
equivalent to the classifying space Br of I.

As we mentioned above, there is more to discuss about the Br part
of string topology. The issue is whether or not the rest of the boundary
of the open moduli space beyond composition can be “zipped up” or
compactified.

In compactified string topology [12] the boundary is zipped up by
combinatorially finding and then filling in loops that are small in the
manifold.

2.4. Homotopy theory or algebraic topology perspective on
string topology. Umkehr map of string topology The operations
in string topology use a wrong way or umkehr map associated to the
left arrow in the diagram

(surface, M) (output boundary, M)

Here (X, M) is the space of all maps of X into M. This “umkehr
map” is defined after applying a linearizing functor, say F', to the dia-
gram and then doing a version of intersection product to get the umkehr
map

F(input boundary, M) umbkehr F(surface, M).

(input boundary, M)
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For example, taking the surface to be a pair of pants with marked
input boundary (2 in, 1 out) and F' to be the chains on the loop space,
leads to the loop product. If F' is the subcomplex of equivariant chains
inside all the chains, one gets the string bracket. Here umkehr is geo-
metrically intersecting with the diagonal or, as we mentioned above and
described in more detail in sections 1.3 and 3.1 to 3.8, pulling back a
Poincaré dual cocycle to the diagonal, e.g., a Thom class representative
for the (neighborhood of the diagonal, boundary).

One could also take F' to be representatives of bordism instead of
chains. The most general object to use instead of the chains is the
spectrum of any cohomology theory h* for which the normal bundle of
the diagonal M — M x M is orientable.

Cohen and Jones [21] have devised such a stable homotopy for-
mulation of some of the operations in the Br part of string topology
corresponding to string diagrams. Recently, Véronique Godin has de-
veloped a spectrum formulation of the “Br part” of string topology
[37] (see previous section for a definition of “Br part”). Jacob Lurie
and Mike Hopkins have a categorical understanding of a general form of
these constructions and a potential framework for the A and B models
mentioned in the previous section [42]. I suppose their framework will
eventually include the compactified form of string topology discussed
here.

These constructions respect the composition part of the boundary
of open moduli space. I don’t know what to expect about their behavior
near the rest of the boundary of open moduli space at infinty, except to
say that the Euler class, which is the image of the class of the Poincaré
dual cocycle under the map

h¢(neighborhood of diagonal, d(neighborhood of diagonal))
— h¥(neighborhood of diagonal)

should play a role.

The above remarks concerned stable homotopy theory. Here is a
connection to unstable homotopy theory.

The Fy term of the homology spectral sequence for the natural fi-
bration

inclusion evaluation

based loop space free loop space manifold

is the tensor product of the homology of the based loop space and the
homology of the manifold (Q coefficients, no twisting). The first factor
is a graded cocommutative Hopf algebra and the second is a graded
commutative Frobenius algebra.

The tensor product E5 term is therefore both an algebra and a
coalgebra. It is not clear how to express an intelligent compatibility
between these two structures.
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Now the differentials of the spectral sequence respect the coalgebra
structure (true for all spaces) and this leads to the coalgebra structure
on the limit which agrees with the coalgebra structure on the free loop
space. Before string topology came along one could have asked if the
differential d3 preserves the algebra structure on F» and then ask if this
algebra structure persists through the spectral sequence to some algebra
structure on the homology of the free loop space.

Actually, the geometric construction of the loop product at the chain
level respects the filtrations defining the spectral sequence. Thus the
loop product exists all through the spectral sequence and the differen-
tials respect both the algebra and the coalgebra structure.

Cohen, Jones and Yan [22] also noticed and then emphasized this
neat fact and used this property to obtain simple computations of the
free loop space homology for familiar spaces.

Recently, Xiaojun Chen, in his Stony Brook thesis, [16] has built
a chain model of this free loop space fibration (Q coefficients) with an
explicit differential on the tensor product of the forms and a completed
cobar construction on the dual of forms that is both a derivation and
coderivation for the product and completed coproduct.

An intriguing problem is to formulate the kind of bialgebra this
construction instantiates. Up to now the diagonal coalgebra structure
of the free loop space has stood somewhat apart from the algebraic
structures on the free loop space coming from string topology. A special
case of the problem is illustrated by the Fo term above — how should
one view the tensor product of a Frobenius algebra and a Hopf algebra?

Of course the Hopf algebra there is really the universal enveloping
algebra of a Lie algebra. The tensor product of a commutiative algebra
with a Lie algebra is a Lie algebra. Also our commutative algebra has
an invariant trace in the closed manifold case. But then what?

QUESTION 3. How much of string topology is a homotopy invariant
of the pair (M,0M)? In [23] it is shown that the string bracket and
the loop product are homotopy invariants of closed manifolds. Perhaps
the entire Br part can be constructed from the homotopy theory, using
Hopkins’ and Lurie’s construction [42].

On the other hand we have conjectured that the entire “zipped up”
string topology package is not a homotopy invariant (see Postscript [69]
and next section). The motivation for this conjecture can be obtained
from the sequence of statements.

(1) (René Thom ’58) A polyhedron which is locally a Q—homology
manifold has Q—Pontrjagin classes [74]. These classes are not
homotopy invariants but in fact parametrize the infinite part
of the diffeomorphism types for higher dimensional simply con-
nected manifolds (’60’s surgery theory).
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(2) (Clint McCrory ’70) An oriented pseudomanifold P without
boundary for which the diagonal P — P x P has a dual cocycle
supported in a regular neighborhood of the diagonal (mod its
boundary) is a homology manifold [56].

(3) The string topology constructions discussed above precisely use
a local near the diagonal Poincaré dual class to construct the
chain level string topology operations and the locality seems
necessary.

2.5. Symplectic topology perspective on string topology.
There has been renewed activity (referred to as symplectic topology)
since 1985 and Gromov’s discovery of the control plus flexibility of
J—holomorphic curves (i.e., surfaces mapping into a symplectic mani-
fold provided with an almost complex structure J). Homological invari-
ants of the moduli spaces of such curves with specified boundary condi-
tions and lying in fixed relative 2-dimensional homology classes provide
a rich array of invariants. Being homological with Q—coefficients, these
invariants remain unchanged as the almost complex structure and the
symplectic structure are deformed continuously. Thus they can in this
sense be considered to be part of topology (as the physicists have done
for years).

These theories in various forms can be applied to general smooth
manifolds M by considering the cotangent bundles and their tautological
exact symplectic structures (w = dn where locally n = >, p;dg;).

There are at least three forms of symplectic topology that may be
used here:

(1) aFloer type theory that leads to operations in a J-holomorphic
disk description of the ordinary homology of the free loop space
of M [83, 84, 64, 3, 19]. This relates to the nonequivariant
loop space (open string topology).

(2) the symplectic field theory (SFT) [31] applied to the cotangent
bundle minus the zero section regarded as the symplecticiza-
tion of a contact manifold, the unit sphere cotangent bundle.
J—holomorphic curves in the symplectization can describe the
equivariant homology of the free loop space. This relates to
the equivariant loop space (closed string topology).

(3) relative symplectic field theory, also related to open string
topology.

Yasha Eliashberg has emphasized two interlocking questions:

(1) does the symplectic structure on T*M determine M up
to diffeomorphism and is Dif f(M) homotopy equivalent to
Symplectomorphism(T*M)?

(2) can all the known invariants of smooth manifolds: the ho-
motopy type, the characteristic classes, the surgery invariants
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of higher dimensional manifolds, the Donaldson and Seiberg-
Witten invariants of 4-manifolds, and the quantum invariants
of 3-manifolds of Chern-Simons, Vaughan Jones and Vasiliev,
be described in terms of J—holomorphic curve invariants of the
cotangent bundle?

Eliashberg has also perceived a role for string topology in the gen-
eral theory of J—holomporphic curve invariants of pairs (symplectic
W, systems of Lagrangian submanifolds Lq, Lo, ...). Namely, conjec-
turally, the symplectic theory of the cotangent bundle may be described
in terms of string topology and also maybe this constitutes a natural
piece of symplectic topology near the Langrangian boundary conditions.
This might happen because of Weinstein’s result that the neighborhood
of any Lagrangian L in symplectic a symplectic manifold W is symplec-
tomorphic to a neighborhood of the zero section in the cotangent bundle
of L.

Let us examine in somewhat more detail the first point of this specu-
lation and discuss a bit the program of Janko Latschev and Kai Cieliebak
[17]. Starting from the algebraic formulation of SFT [31] they consider,
in the case of the cotangent bundle, a rich algebraic invariant of M. In
fact, there are three levels as follows.

The formulation of SFT [31] uses punctured J—holomorphic curves
in the cotangent bundle minus the zero section stretching between pe-
riodic orbits of the Reeb flow (e.g., the geodesic flow) at +00 or —oo
(which is near the zero section). The genus zero curves with one compo-
nent at +oo (level I) leads to a derivation differential d = do+d;+da+. ..
on the free graded commutative algebra on periodic Reeb orbits. Using
the filling of the contact manifold by the unit disk bundle a change of
variables can be discovered that reduces the constant term dy to zero.
Then dyod; = 0 and the linearized homology (the homology of d; on the
indecomposables) turns out to be the equivariant homology of the free
loop space mod constant loops, i.e., the reduced equivariant homology
used in section 2.2.

Analyzing the string cobracket of string topology (see below) leads
to a similar structure — a coLie infinity structure on ﬁf 1, the reduced
equivariant homology of the free loop space.

The Cieliebak-Latschev program at level I is to construct this type of
structure by transversality as in the string topology of [11, 13] (rather
than the Poincaré dual cocycle version here) and show it is isomorphic
to the structure coming from the J—holomorphic curves.

They have a similar program for level II using genus zero curves
with several punctures at +0o. Now one can view the SF'T formalism
as an infinity Lie bialgebra structure (see our description below of the
infinity Lie bialgebra structure arising from string topology). They try
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to construct this structure as in string topology [11, 13] and again show
it is isomorphic to the one coming from level II J—holomorphic curves.

Actually the Lie bialgebra in string topology is involutive at the
chain level. One now understands the infinity version of this genus one
relation for a Lie bialgebra requires at least and perhaps more operations
indexed by (k inputs, [ outputs, g = genus). Their level III program
uses the higher genus curves as well. See section 1.5 above.

There is also relative symplectic field theory that can be applied
to study classical knots K in 3-space. The conormal of K in the
cotangent bundle of 3-space provides the boundary conditions for the
J—holomorphic curves. The level I theory adjusted by the filling given
by the relative cotangent disk bundle yields a differential derivation
d=dy+dy+ ... on a free associative algebra generated by the Reeb
flow orbits starting and ending on the Lagrangian. Lenny Ng has a set
of papers motivated by the problem of computing the zeroth homol-
ogy of this dga. He found a conjectured combinatorial description and
showed it gives a powerful knot invariant [60].

This conjecture is now proved in [30]. It turns out that Ng’s com-
binatorial descriptions resonates with the open string topology of the
knot [72]- it is related to the coproduct on families of strings in R?
starting and ending on the knot which are cut by intersecting with the
knot. A Poicaré dual cocycle description of the intersection defining
ds can be chosen to eliminate the anomaly and this should lead to an
Ay coalgebra structure on the linearlized homology. Again there are
variants of the construction [72].

2.6. Riemannian geometry perspective on string topology.
One might imagine making the string topology constructions using the
heat flow. Each heat operator et commutes with d and is chain ho-
motopic to the identity via fot d*ePsds. Also et provides a differential
form Poincaré dual to the diagonal with more and more of its weighted
support tending to the diagonal as ¢ tends to zero. In the probabilistic
picture this diffusion operator is related to parallel translation modi-
fied by a curvature term along random paths weighted by the Wiener
measure [87]. One could imagine using these paths to define the string
topology operations instead of the short geodesics. In fact, as t — 0"
the Wiener measure conditioned on paths from z to y converges to a
measure on the shortest geodesics from x to y [29]. The details of this
putative heat string topology construction are nontrivial but feasible
(see [87, 67]).

However, Kevin Costello [27] has a completed diagrammatic calcu-
lation using these quantities, harmonic forms and e®?, involving ribbon
graphs. Renormalization issues are addressed and a rich structure is
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produced. It reminds one of string topology for small loops with coeffi-
cients in a compact Lie group G — resonating with the original work of
Goldman on surfaces.

3. Part III. The diffusion intersection and short geodesic
construction of string topology, the main theorem and the
first six examples

3.1. Statement of the main theorem of string topology for
closed strings and the motivation for infinity structures. The
generalized bracket for two families of closed strings A and B is very
simple to define geometrically — just intersect (transversally) the set of
possible positions on all the curves in the A family with the same in the
B family. At each point of this locus C, compose the A curves and B
curves, as based loops, to define the Lie bracket family C of unbased
loops. A picture [13] shows this operation satisfies jacobi and passes
to a Lie bracket on the equivariant homology of the free loop space of
M?®. The degree of this operation is —d + 2 as can be seen from the
intersection theory used above. If A has dimension a, B has dimension
b, then C has dimension ¢ = a + b+ 2 — d. This process is exactly the
formula [a,b] = E(Ma e Mb), mentioned in section 1.1.

One knows in algebraic topology, it is not really optimal to pass to
homology in this kind of situation but one also knows that the alter-
native is more work. The problem and the interest is that the above
bracket and jacobi identity only pertain“transversally.” In the Stony
Brook thesis of Scott Wilson [88] such partially defined structures with
one output were extended to globally defined structures on functorially
associated quasiisomorphic complexes. The theory of the Appendix
provides an adequate theory for multiple outputs. How this partial-to-
global transition should be interpreted can be learned from the inter-
section product of relative integral chains in a manifold with boundary.
The transversal intersection product is actually graded commutative
and associative. Steenrod operations show it cannot be extended to
such a product on all integral chains. However, the general theory be-
gun by Steenrod says it may be extended to a commutative and as-
sociative product up to infinite homotopy. Furthermore, as mentioned
above, over Q [63, 68] and over F,, for each prime p [55] this Ew, prod-
uct structure up to homotopy determines the entire homotopy type for
simply connected spaces. In fact in each setting (at Q or at p) there is
an equivalence of homotopy categories between spaces and the algebraic
models.

One of the main consequences of the general string topology con-
struction described below provides analogous Lie bracket and Lie co-
bracket infinity structures for the chains on the free loop space, namely
one has the following theorem.
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THEOREM 3. On the reduced equivariant chains of the free loop
space, LS (k) of an oriented d-manifold (defined below in section 3.3),
the “diffuse intersection” string topology construction produces an “in-
volutive Lie biagebra structure up to homotopy.” The degrees of the

bracket and cobracket operations are 2 — d.

What does the theorem mean algebraically? We will explain the
quotation marks in remark 3 below. There are two parts to the theorem:

Part I For each (k, !, g) associated to the top or fundamental chain of
the combinatorial moduli space there is a well defined graded
symmetric chain operation of degree
(B—d)(2g —2+k—+1) —1: ¢y : LS (k) — L5 (1), k > 0,1 >
0,9 > 0. Add a formal variable ¢ in order to sum these opera-
tions obtaining: ¢(k,l) = Z;io t2972¢,. For d = 4,5,6,. ..
all but finitely many of the operations ¢, (k,l) are zero in
the fixed degree because their degrees go to —oo. So form
S thtlp(k, 1) = 9. The theorem says that these operations are
defined and satisfy the master equation:

09+ =0

where 0¢ = the commmutator of ¥ with the boundary operator
and 9 x 9 is the sum over all possible compositions.

Part II Structures like those described in Part I can be transported be-
tween different chain complexes via chain mappings inducing
isomorphisms on homology (see Appendix). With Q coeffi-
cients the homology with zero differential is such a complex.
Thus from the ¥ in Part I on C, there is implied a collection
{95(g, k,1)} acting between (HS )&% — (HS")®L,

Adding the formal variable ¢ and summing as before ¥ =
D ki thtl > g>0%g(k,1) to get one operation ¥y on A(HS ¢),
the free graded commutative algebra on HY " the reduced equi-
variant homology of the free loop space of M? with ¢ then
adjoined. The above equation at the chain level 0¥ + 9 *x ¢ = 0
becomes the equation ¥y * ¥y = 0 at the homology level in
A(HS ¢).

If we give t the weight d — 3 then ¥ and ¥ each has degree
—1.

REMARK 2. The algebraic structure indicated by the master equa-
tion of Part I is not a complete resolution of the involutive Lie bialgebra,
thus the quotation marks in the theorem. It is however an infinity alge-
braic structure in the sense of the Appendix — namely an infinity version
of its own homotopy type. This homotopy type could be named quan-
tum Lie bialgebra. The situation is analogous to work of Kevin Costello
[28] where the diagrams constructed give a version of a resolution of
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the cyclic Ay, structure and Costello dubs the structure a quantum A
structure.

REMARK 3. For dimension d = 2, the reduced equivariant homology
of the free loop space for higher genus is concentrated in degree zero (Q
coefficients) and is just the space E of the introduction. The operations
o(k, 1, g) have degree (3 —d)(2g —2+ k+1) — 1, which is nonzero unless
g = 0 and £+ = 3. This leaves only the bracket and cobracket of
Goldman and Turaev for d = 2 if the surface is not the 2-sphere or the
torus.

For dimension d = 3 the degree of every operation is —1. For closed
hyperbolic manifolds the homology is concentrated in degree zero (Q
coeffiecients) so all operations ¢ of the minimal model are zero. In
the CUNY thesis of Hossein Abbaspour a converse is proven expressed
in terms of the loop product on the ordinary homology of the free loop
space. Namely, if a closed 3-dimensional manifold is not hyperbolic,
some string topology (loop products beyond classical intersection prod-
ucts) is nontrivial. See the precise statement [1] where double covers
must be used for certain “small Seifert fibered spaces.”

3.2. Sketch of the basic diffuse intersection and geodesic
path construction of string topology. Start with a pair consist-
ing of a family of oriented closed one-manifolds in M with k£ labelled
components and a combinatorial description (via a combinatorial har-
monic function, see [13, 8] and figure 1) of a combinatorial surface
of genus g with k labeled input 0 components and [ labeled output
components. One imagines trying to push the input circles through
the surface. As critical levels are passed the circles are cut and recon-
nected precisely at the critical points. This happens a finite number
of times until the output boundary is achieved. Between critical levels
one imagines only moving slightly, if at all. The diagrammatic picture
of the surface changes when two critical levels come together and unite
into one critical level.

For the generic picture of the surface each critical level has one
Morse quadratic-type critical point which is neither a minimum nor a
maximum. In this case there are (29 — 2 4+ k + 1) critical levels since
each one adds —1 to the Euler characteristic of what came before. The
critical level and what came just before and just after is specified by two
parameters: where the two points of the ascending manifold attach. See
figure 4.

Dt | Rt | Bt e B
o ) e L
FIGURE 4. Just before and just after a critical level in

the surface.
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In the generic case there are (29 — 2+ k +1) — 1 heights of cylinders
between critical levels which we sometimes refer to as the spacing be-
tween levels. All in all there are
2(29—24k+1)+ (29— 2+ k+1) — 1 parameters to describe the typical
picture, so combinatorially a top cell or stratum is of dimension 3|x|—1
where x is the Euler characteristic of the punctured surface.

These cells or strata fit together to form a compact pseudomanifold
with corners of that dimension. The boundary is created by imposing
certain inequalities that the combinatorial metric length of any essential
combinatorial circuit is > € > 0.

When surfaces 1 and surface 2 are glued output to input to obtain
surface 3 note that xy3 = x1+x2 but the dimensions of the moduli spaces
of these satisfy d; + do + 1 = ds3. It turns out that the product of the 1
and 2 moduli spaces is embedded in the boundary of the 3 moduli space
by gluing. This is also clear because, as mentioned above, the cylinders
created by gluing have length 1 by definition.

The string topology construction will construct, on some open subset
of the initial family of input boundary mapping into M, a mapping of
the combinatorial surface into M with the given input boundary values.
This is done step by step, over each level. If inductively (over r, say)
we have mapped the surface up to just below the critical level on some
open set U,., we map the two attaching points of the next critical level
into M x M.

before ’

after
abstract surface M

FIGURE 5. Near a critical level in the surface and in the manifold.

We pull back a small neighborhood of the diagonal in M x M to
define U, 41 inside U,. On U, the two points will be close in M. We can
draw a short geodesic between these points and map the short critical
trajectory onto this geodesic. The level after the critical level and just
before the next critical level is projected in the surface to the level just
below the critical arc plus the critical arc. Putting this together gives
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the map into M of the surface up to just before the next critical level.
See figure 5.

This describes the basic geometric construction for interiors of strata
corresponding to the combinatorial harmonic function picture being
Morse with distinct critical levels. We postpone for the moment how
this process defines a chain operation and first discuss what happens
as critical levels merge or separate. The general picture of one critical
level is combinatorially equivalent to the string diagrams or general-
ized chord diagrams introduced in [13] and defined above in section 1.3.
The relationship of stacks of these to Riemann surfaces with a harmonic
function goes back to Poincaré and Hilbert. (See [8] for more details.)

If two levels come together in a generic way there are distinct Morse
critical points at the same level. There is an associated evaluation map
to four copies of M and we can pull back the intersection of two neigh-
borhoods of the diagonals, say 12 and 34 in (1,2, 3,4). This intersection
is the Cartesian product of the neighborhood of the diagonal 12 in (1, 2)
and the diagonal 34 in (3,4). For the geometric construction we form
two short geodesics and get the picture in figure 6.

]

before ‘

after
abstract surface M

FIGURE 6. Critical levels come together, in the surface
and in the manifold.

Note this picture is not identical to one of the other pictures obtained
by doing first one operation and then the other. However these two only
differ on small convex neighborhoods in M of the points in question. So
it is possible to construct a canonical homotopy between the two maps
of the surface into M. We associate the parameter of this homotopy
to the parameter corresponding to the height of the cylinders between
critical levels.

The above geometric construction defines operations on families of
input circles mapping into M — where the family is cut down to the open
set where the appropriate equations approximately hold allowing us to
position the surface in M. To get chain operations we do the following.
1) Consider only initial bases of families which are oriented open sets in
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Euclidean balls. 2) We choose a cocycle Poicaré dual to the diagonal in
M x M supported in a small neighborhood of the diagonal. 3) We pull
back this dual cocycle to the Euclidean balls by the evaluation maps
just discussed. 4) When critical levels coalesce we form the Cartesian
or tensor product of the dual cocycles and pull them back to the base of
the input boundary family. 5) The pair consisting of the original base
family and the pull back cocycle is the output chain. More formally the
output chain is the the cap product of the input chain with the pulled
back dual cocycle, c N U where U is the pulled back cocycle. 6) If the
input chain o is already a cap product pair (¢/,U’) ~ (¢/ N U’) then
(¢!, U',U) will correspond to (¢’ NU')NU =o' N(UNT").

With this formulation using the Poicaré dual cocycle, we can en-
ter the forbidden region beyond the open moduli space cut off by all
essential circuits > €. One merely pulls back the products of dual co-
cycles via the specializing evaluation mappings. We have seen above
in section 1.4 how single loop degenerations are dealt with and filled
in. Multiple loop degenerations work very well because there are more
equations than unknowns and the corresponding dual cocycle product
has too large a dimension and becomes identically zero under restriction
and pull back (see section 1.4).

There is a contractibility property of dual cocycles to any diagonal.
Any two differ by a coboundary in the pair (neighborhood, Oneighbor-
hood). Any two such coboundaries differ by a coboundary, etc. In the
construction above these coboundaries are added in to the geometric
homotopies to create chain homotopies between slightly different geo-
desic arc constructions. We do illustrative examples in the sections 3.3
to 3.8.

These are the elements of the proof of the main workhorse theorem.
Let (X, M), denote the singular chains in the equivariant mapping space
(X, M). See section 3.3 and 3.4 for the definition of (X, M)..

THEOREM 4 (Workhorse theorem). For each (k,l, g) there is a chain
mapping of the equivariant chains on the compactified moduli space
A (g, k, 1) into the chain complex Hom((I, M), (¥, M).). Here

—~

M (g, k,l) is the moduli space with part of its boundary, excluding the
composition boundary, filled in or zipped up by coning off certain factors
in fibered product decompositions of the non composition boundary. In
more detail (see figure 7),

a) single circles that do not separate part of input from output or
visa versa correspond to S* fibrations on the boundary. These
are filled in with disk bundles.

b) Collections of mutually nonhomotopic circles that do not sepa-
rate correspond to torus bundles and get filled in by the inter-
section of cases of type a). See figure 8.
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FicUrRe 7. Type A filling in plus composition boundary.

c) If a collection of mutually nonhomotopic circles separates off
a component that has no input or output boundary, this region
1s coned off and the string topology construction is set equal to
zero because of the negative Fuler characteristic argument in
section 1.4.

d) If a collection of circles separates off a component with a non-
empty but balanced weight distribution they are treated as in a)
or b) and filled in as circle bundles.

e) If a collection of circles separates off a component with an un-
balanced set of weights, a composition is formed with the heav-
ier part being the input or output of the composition depending
on sign (see examples in section 3.7).
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f) There is one more piece of noncomposition boundary — the “out-
going lengths simplex boundary” which is filled in in the closed
string or equivariant case algebraically by working in the quo-
tient by small loops in M.

2-torus
bundle

@

2-disk bundle 2-disk bundle

FIGURE 8.

o~

REMARK 4. It seems likely the homology of these spaces .# (g, k,1)
can be known with present technology — perhaps more easily than the
open 4 (g, k,1). See the CUNY thesis of Fereydoun Nouri [61].

3.3. The string bracket and jacobi relation at the chain
level. The Goldman bracket for curves up to homotopy on a surface

generalizes to the string bracket operation on the equivariant chains

]L*Sl(Q) bl ]Lfl(l) of the free k-loop space k = 1,2,3,... of an oriented

d-manifold M?. See definition 1 iii) for the definition of LY 1(k)

More exactly, there are chain mappings L5 (2) L (P(2,1))¢ 9
L5" (1) where P(2,1)€ are the equivariant chains on the space of maps of
a pair of pants P(2,1) = {52 —3 disks} into M9, I and O are restriction
mappings to the input boundary (two components of the boundary of
P(2,1)) and the remaining output boundary of P(2,1). For a pair
of pants P(2,1) with 3 boundary circles, two of which are input and
one of which is output, the structure group G is diffeomorphisms of
P(2,1) which are rotations on each boundary circle. The string topology

construction produces maps L5’ (2) 24 P(2,1)¢, and then L5 (2) L

L5 (1) is the composition O o ST. ST was discussed briefly above and
will be discussed again momentarily.

DEFINITION 1 (G-equivariant chains on maps of a G-space X into
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i) First, consider a standard version of the equivariant singular
chain complex. Here a k—simplex is a pair (X-bundle with
specified structure group G over the standard k—simplex, map
of the total space into M) up to equivalence, where equivalence
is an X-bundle isomorphism over the simplex satisfying: the
obvious diagram of maps commutes.

ii) Second, consider the diffuse equivariant version. Here we re-

place the standard k-simplex in i) by a pair (s(U7), U) consisting
of an open set s(U) in a k-+d—simplex and a singular d-cochain
U whose closed support is in S(U ). Then the bundle, the map
and the equivalences need only be defined over the open set

The boundary map for i) is the usual one, and the boundary
map for ii) is the direct analogue of the usual one: the alternat-
ing sum of the restrictions of the cocycle to the k+ d— 1—faces
plus another term +(s(0), 6U).

iii) By L5 (k) we mean the “diffuse equivariant” chains for the
mapping space {k-labeled circles, M} with the structure group
the k-torus acting by rotations on the k-labeled domain circles.

iv) Later on we add a further equivalence relation allowing non
identity diffeomorphisms on the base of the family.

Consider a bundle whose fiber is two labeled circles, with structure
group the 2 torus, over Ay, the standard k-simplex. Let F(2) ={ordered
pairs of points, one in each circle}. Then given a map of the total space
E into M, form the map E(2) — M x M by evaluating the map of E
into M. Pull back an apriori chosen cocycle U, Poincaré dual to the
diagonal and supported on a small neighborhood of the diagonal, to
get a cocycle U on E. For each point in the support of U the image
point in M x M is near the diagonal by definition. Connect this pair of
points in M by a canonical short path (like the geodesic in some apriori
chosen metric). It follows that for each point p of the support of U we
get a map of a graph into M. The graph is made out of the two circles
mapping into M, together with the short path associated to p

The varying graph may be viewed as a varying spine of a varying
P(2,1) over s(U), the support of U. The pair (s(U),U) may be consid-
ered to be the output chain of ST. One can extend this construction
from standard k-chains to diffuse equivariant chains using the cup prod-
uct of cochains, namely (s(V), V) yields (s(V UU),VUU) .

The composition Qo ST : LS (2) — L5 (1) is the chain level bracket
generalizing Goldman’s.

To discuss the analogue of the jacobi identity we consider P(3,1), the
two-sphere minus four disks with three labeled boundary components
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input
circles

FiGURE 9. The bracket.

[le.bla]

FIGURE 10. Stratified cutoff moduli space of {S?—4 points}.

designated as input boundary and the remaining one as output. The
moduli space of the two-sphere minus four points has three points at
infinity. We will use this moduli space cut off near infinity to build out
of 17 pieces a chain homotopy for the analogue of the jacobi relation
for the string bracket. Each boundary component of the moduli space
corresponds to a term in the jacobi identity.

The moduli space is stratified as indicated in the figure 10. The
graphs of figures 11 and 12 determine ribbon graphs which thicken to
Riemann surfaces. The input circles have equal length. Each stratum
labeled will correspond to other chain operations LS (3) — L5 (1) built
according to string diagrams via diffusion intersection and short geodesic
connections. Thus, strata 4, 5, 6 correspond to the three diagrams of
figure 11 depending on which circle is in the middle.

Strata 7, 8 correspond to the two diagrams of figure 12 depending
on the cyclic order of the labeled circles.



74 DENNIS SULLIVAN
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FiGure 11.
FiGUuRrE 12.

Each of the boundary components being a composition is repre-
sented diagrammatically as in figure 13, depending on labeling, e.g.,
which new circle enters into the second bracket operation.

The operations for strata 7 and 8 are defined by evaluating the
simplex o in L,(3) at three varying points, one on each component of
the domain set of three circles to get a map
T3 x 0 — M x M x M. We pull back a Poincaré dual cocyle Uya3 defined
near the small diagonal (z, z, x) to obtain the (base space, cocycle) piece
of our equivariant chain in P(3,1),. Over each point in the support, we
construct inside M using short geodesics the (graph-spine) of the (sphere
- four disks) corresponding to the surface labeled by the appropriate
point in the moduli space of figure 10. One way to do this is first
take the geodesic convex hull of these nearby points, second take the
barycenter of this convex hull, and third connect this barycenter to each
of the three points by a short geodesic to construct the little corolla or
tripod connecting the three circles. This tripod union of the three circles
is the graph spine.

A similar construction is used for the graph spines of figure 11. Now
we evaluate the map at one point on each of the outer circles and at
an ordered pair of points on the middle circle. Label these 1, 2, 3, 4
reading left to right. We obtain a map of 7% x 0 — M*. We form the
Poincaré dual cocycles Ujs and Usy near the diagonals of (M x M)is
and (M x M)s4 and we pull back Uj2 UUsy to obtain the diffuse base of
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our equivariant chain. We construct the graph spine of figure 11 using
short geodesics as before to obtain an equivariant chain in P(3,1).,.
Now we come to the assembly step of these different pieces. Notice
that as one of the circular arcs on the middle circle of figure 11 shrinks
to a vanishingly small length, that point on stratum (4, 5 or 6) tends to
the stratum (7 or 8) depending on the cyclic order. The two operations
do not quite fit together. However, the geometric discrepancy is carried
by the convex hull of the three nearby points. So it is easy to find a
homotopy of geodesics reconciling the slight difference. There is also a
discrepancy between the diffusing classes used. We can argue abstractly
as follows. The difference is carried by the small neighborhood of the di-
agonal and the difference is the coboundary of some c there. Note again
that the space of Poincaré dual cocycles is algebraically contractible in
the sense that two differ by a coboundary, and two such coboundaries
differ by a coboundary, etc. We then combine the geometric homotopy
with ¢ to obtain a chain homotopy between the two maps, reconcil-
ing the discrepancy. We put these homotopies over the small interval
between the appropriate triple point and hash mark in figure 10.)

second bracket
operation

first bracket
operation

FIGURE 13. [[a,b],].

We proceed to the last step. The composition constructions at the
boundary of the cutoff moduli space of {S? —4 points} corresponding to
the geometric spine of figure 13 also differ slightly from the constructions
of figure 11 and figure 12 (together with the small geometric homotopy
reconciling them). Again the difference is carried by the convex hull of
3 nearby points in M and can be reconciled by a geometric homotopy.
Also again the Poincaré dual cocycles can be reconciled by a coboundary
c. Together, the geometric homotopy and ¢ can be combined to yield a
chain homotopy which we use over regions 1, 2, 3 respectively of figure
10.
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REMARK 5.

i) There are natural cartesian product maps, LS (k) @ LS' (1) —

LS ' (k 4 1), inducing isomorphisms on homology

ii) Under the permutation of component circles the generalized
bracket map L5 (2) — L5'(1) is skew-symmetric when d is
even because the fundamental class of the 72 factor is reversed.
It is symmetric when d is odd because the Poincaré dual cocycle
to the diagonal in M? x M? is also reversed under permutation
of the factors.

iii) The map in i) is graded symmetric for k = [ = 1. So we have
proved the

PROPOSITION 1. The induced string bracket maps LS (1)®LS" (1) —

]Lfl(l), has degree —d+ 2 and is graded skew-symmetric for d even and
graded symmetric for d odd.

REMARK 6. The common domain for all the pieces of the construc-
tion of the jacobi identity homotopy is LS" (1)®Lf1 (1)(2)1[‘;?1 (1). Namely,
on regions 4, 5, 6, 7, 8 of figure 10 the domain is ]L,f1 (3). On regions 1,
2, 3 of figure 10 it is L' (2) ® L5" (1) where the second tensor factor is,
in turn, each labeled circle in the input boundary of P(3,1). Thus the
common domain is 15" (1)®3. With this understanding we have the

THEOREM 5. ]Lfl(l) has the structure of a graded differential Lie
algebra of degree —d + 2 in the sense that the bracket satisfies jacobi up
to a contractible set of homotopies.

ProOOF. We add to the above discussion proof of the theorem the
following remark: the construction of the jacobi homotopy L ' (1)®3 —
P(3,1)? " was carried by small convex sets in M? and by the contractible
sets of Poincaré dual classes to the diagonals. Thus the set of these
homotopies forms a contractible object. O

We will continue to work with these ideas to construct maps LY 1(1)®k
— P(k,1)5" using the moduli spaces of the 2-sphere —(k 4 1) points in
order to construct the hierarchy of higher homotopies of a infinity Lie
structure on LS’ (1) (Q coefficients). Using the homotopy theory of such
structures (see Appendix), one then obtains a infinity Lie structure on
Hfl the equivariant homology of the free loop space of M. Since Lie
infinity structures on a complex A can be reassembled as coderivations
of square zero on the free cocommutative coalgebra A°(A) we will have
shown:

THEOREM 6. The chain level string bracket construction, together
with the moduli space chain homotopies, yields a coderivation differential
of degree —1, d =do +d3 + ... on the free graded algebra generated by
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the equivariant rational homology Hfl of the free loop space of M?,
shifted by —d + 3. The differential d is well defined up to isomorphism
homotopic to the identity. [68]

QUESTION 4. We now know that ds or, equivalently, the bracket
on equivariant homology HY s preserved by a homotopy equivalence
between closed manifolds [23]. It is conjectured that the entire package
of String Topology up to equivalence is not a homotopy invariant of
closed manifolds [69]. One may already ask whether the structure of
the higher terms of the differential on the above Lie infinity structure
(AHS " d), which are not covered by the current theorems on homotopy
invariance, e.g., [23], constitutes a diffeomorphism invariant that is not
a homotopy invariant.

Possible answer based on [42]. The zipping up procedure for (k, 1, g)
= (k,1,0) is not required here because the entire boundary is composi-
tion boundary. Thus our string topology construction in this case (which
was in fact the part presented homologically in [11]) is perhaps homo-
topy equivalent to a construction of Hopkins-Lurie. Their construction
is a homotopy invariant [42].

3.4. The string cobracket at the chain level. Choose a chain
in L5" (1) (Definition 1 iii)) with base B and total space circle bundle
E. Over each point of B put the configuration space F(2) of ordered
pairs of unequal points on the circle as a new fiber over this point of B.
Compactify this fiber by blowing up the diagonal in the ordered pairs
on the circle. Map this new total space into M x M by evaluating the
given map of E into M at the various point pairs. We pull back the
Poincaré dual cocycle defined in a small neighborhood of the diagonal.
Over each point of the support of this pull back we have an ordered pair
of nearby points in M. Connect these by a short geodesic and define a
map of the spine shown in figure 14 into M.

input circle

~

P

= |

circles

FIGURE 14. The cobracket.
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This defines an equivariant chain 7' of maps of P(1,2) into M. By
restricting to the outer boundary of P(1,2) we obtain two output cir-
cles. We order (and orient) the two output circles using the ordering
of the point pair combined with the orientation of the input circle. For
example, one way to order the circles is to say the first ouput circle
is the one first traversed starting from the first point of the point pair
and going in the direction of the orientation of the input circle. Note
that blowing up the diagonal of the torus was necessary so that this
ordering construction extends continuously to the compactification.

We assume by averaging the Poincaré dual cocycle is symmetric (up
to sign, if d is odd) under the flip of factors in M x M.

There is the involution of our chain corresponding to interchanging
the order of the two points on the input circle. To understand this
symmetry first assume the dimension, d, of M is odd. Under the flip of
factors in M9 x M? the Poincaré dual cocyle is by assumption converted
to minus itself. Also the orientation of the base of our chain is reversed.
Thus for the diffuse chain pair (s(U),U) the flip of factors induces an
orientation preserving symmetry of our chain.

Now we introduce a further equivalence relation on chains (fore-
shadowed in Definition 1 iv) and which we call attention to by using
a prime superscript) that identifies two that are related by an orienta-
tion preserving diffeomorphism of the base of the chain. Thus our chain
becomes two copies of the same reduced chain by choosing a fundamen-
tal domain of the involution. Moreover, this reduced chain is symmetric
under the involution of LY ' (2)" interchanging the components for d odd.

For d even the reduced chain is reversed under the flip of components
in LY ' (2)". There is a subtle sign issue to choose one representative of
the reduced chain in the even case. Let us then study the boundary
of this cobracket construction defined by the reduced chain. There are
three possible contributions to the boundary coming from

a) the boundary of the two-point configuration space of the input
circle,

b) coming from the boundary of a fundamental domain for the
involution exchanging the order of the points in the two-point
configuration. This fundamental domain is chosen to form rep-
resentations of the reduced chain above.

c¢) The usual boundary of the input chain for the cobracket con-
struction.

We will kill a) by working modulo small loops (see below). We
have in effect killed b) by identifying to zero any chain which admits
an orientation-reversing automorphism. This is the case for the new
boundary of the fundamental domain of the involution, the base of the
reduced chain. For c¢) we naturally do nothing.
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Now we return to a). We work on the quotient of the equivariant chain
complex by the “e-small loops.” Here e-small is defined by any number
€ > 0 so that for any two points of distance < € in the apriori chosen
metric there is a unique geodesic between them.

DEFINITION 2. A chain in L5 (k)’ belongs to (e-small loop), if there
is a covering of the base of the chain so that in each open set of the
covering there is an index 7 so that the i*" component circle has length
< € in the target.

REMARK 7. We will see below the bracket is still well defined on
this quotient by (e — smallloops)..

3.5. Cojacobi chain homotopy at the chain level. Now we
discuss the analogue of the cojacobi chain homotopy for the cobracket.
We use the moduli space for (S2—4 points) again as a key factor for
the moduli space of P(1,3) the combinatorial surface with one input
circle and three output circles. In addition to the moduli space of fig-
ure 10 we have a circle factor for the marking on the input circle and
the 2-simplex of parameters describing the distribution of combinato-
rial length on the three output circles. Thus ignoring the circle our
moduli space pair is essentially the double suspension of the 2-disk mi-
nus two smaller disks. We see a 4-dimensional chain with three cycles
on the boundary of dimension 3. The pieces organizing the cojacobi
homotopy correspond to the eight string diagrams in figure 15. The
same type of argument detailed above for jacobi will produce a chain
mapping L.(1)" — P(1,3). so that the restrictions to the three cycles
correspond to the three composition terms appearing in cojacobi. The
prime refers to the quotient by e-small loops which assures us that near
the boundary of the 2-simplex of output length distribution we have zero
mapping. The extension to the interior provides the chain homotopy of
the cojacobi expression to zero.

2
1 3 1 3 1 2
x 3 x 3 x2
7
a) b) c)

FI1GURE 15. 8 string diagrams for the cojacobi chain homotopy.

3.6. Extending the bracket to the quotient by small strings.
The idea is that we could have worked from the beginning with LS’ (k)’
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modulo geometrically degenerate chains — those which, as maps into
some space, have a lower dimensional image than their domain dimen-
sion.

A chain obtained by bracketing with a family of constant closed
strings has this property from the definition. This is because we bracket
with every point of the circle mapping to the constant string. Now the
subcomplex of small strings is chain equivalent to the subcomplex of
constant strings. Combining these two facts gives the desired extension.

3.7. The chain homotopy for drinfeld compatibility of the
bracket and cobracket. This homotopy arises from the moduli space
of 2 inputs and 2 outputs for (S? —4 points). Now besides the 2 dimen-
sions of the (2 — 3 disks) of figure 10, we have the torus of marks on the
input boundary and the interval of length distributions on the output
boundary. As usual we ignore the 2-torus factor and concentrate on the
rest, which is (8% —3 disks) in effect suspended once by crossing with the
interval and working mod the endpoints of the interval (corresponding
to working in the quotient by small loops).

)i 2 .
input %,
output PUF
input
output ,I
3 4 !
oupur 3 C I\ _— TN o
. 1 2
'”input A \ input
\ output
N N output
- 3 4
. l_ e | | N | el
/input = )i 2
‘.‘ / input
E output |
H 3 4 J
5 output
i 3 7

FIGURE 16. Drinfeld compatibility five term relation (circled).

In the figure 16 the outer boundary component corresponds to the
composition: do the bracket then the cobracket. Each inner component



STRING TOPOLOGY. BACKGROUND AND PRESENT STATE 81

corresponds to two terms in the composition boundary. The upper piece
on the right side of the figure is the composition: cobracket of the input
2 followed by bracketing in the input 1 on the right factor. This occurs
on the part of the interval where the length of the output 3 is greater
than the length of the output. 4 The lower piece on the right hand side
corresponds to the composition: cobracket of the input 1 followed by
the bracket of the input 2 on the left.

When the outputs’ lengths are approximately equal the string topol-
ogy construction yields a small image for the separating circle. This can
be filled in by the discussion of section 1.4, x(I') = 0, case. This filling
in is indicated by the 2-handle in the figure.

The other inner boundary is treated similarly. In conclusion the
construction extends over the moduli space with these two 2-handles
added. Now the boundary has five components and each corresponds to
a composition. This is the five-term relation of drinfeld compatibility.

Alz,y] = [Az,y] £ [z, Ay]

where each term on the right is two terms, the two terms in the definition
of the action of a Lie algebra on its tensor square.

3.8. The chain homotopy for the involutive identity. Now
we use our first higher genus moduli space, the space of all {torus —
2 points }. The moduli space of the torus with one tangent marked
point is the complement of the trefoil knot in S® — by an argument
usually attributed to Quillen. Adding in another puncture without a
mark for the output is the 5-dimensional universal fibration with fiber
(T?—point) over the complement of the trefoil.

The composition boundary of this moduli space corresponds to two
disjoint embedded curves which separate input from output. See figure
17 a).

input

output
a) b) c)

Ficure 17. Involutive relation - boundary terms.

We will fill in the rest of the boundary. If only one curve is collapsing,
there are two cases.
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i) The curve is essential in the torus and we fill in by the x(I"') = 0
argument above. See figure 17 b).

ii) The curve separates the input and output from the rest of the
surface and we fill in by the x(I') < 0 which implies the locus
of the string topology construction is vacuous near this part of
the boundary of moduli space. See figure 17 c).

If an additional curve is collapsing and we are not in the composition
boundary we are contained in ii).

Thus after filling in we get a chain operation whose boundary is the
composition of cobracket followed by bracket. This has been dubbed
the involutive relation [13].

Appendix: Homotopy theory of the master equation

For simplicity, we restrict to linear and quadratic terms but there is
no obstruction to treating the general case.

DEFINITION 3 (The master equation). Symbolically dX + X % X +
LX =0 where X = {X,} is a linear basis indexed by some indexing set
{a}, X * X is a sum over a collection * of binary operations combining
the various basis elements X,, and LX is a sum over a collection of
linear operations L on the span of {X,}. This may be formalized one
way in the language of universal algebras [7, 25].

Actually, we think of such a master equation as a presentation of
a free differential algebra generated by the X, with the differential on
the generators defined by the master equation. The condition dod =0
should be a formal identity in the free algebra generated by the {X,}.
The algebra is meant to be free as an algebra over an operad O generated
by the binary operations in % and the unary operations of L. These
operations may satisfy relations like jacobi so that O itself need not
be free. We further assume for what follows that there is a partial
ordering of the indexing set, with all descending chains finite, so that
the right hand side of the equation for dX, only contains variables of
strictly lower index. This property of a free dga is called the triangular
property.

Here are some interesting examples of non free differential graded
algebras over relevant gluing or composition O’s. Let C denote a chain
complex.

(1) Hom/(C) = @p>oHom(C®*,C) where binary * operations are
obtained by substituting the output for some £ into one of the
inputs for some j. There are j such binary operations given k
and j. Note the Leibniz rule holds for the binary operations
relative to the natural differentials on the hom spaces.

(2) Hom"(C) = @gso0j>0Hom(C®*, C®7) where binary * opera-
tions are substituting an output for some k,j into one of the
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inputs for some k', j' . There are in this case jk' binary oper-
ations. Again Leibniz holds.

(3) Hom'(C) = ®gs0j>0Hom(C®*, C%) where binary * opera-
tions are substituting one or more outputs for some k, j into a
set of inputs for some k', 7' . Leibniz holds here as well.

(4) HomV) = same spaces and operations as 3) with tensor prod-
ucts thrown in. Leibniz holds here.

These examples, while not free, admit maps from free triangular
dgas (in each context, i.e., for each dga over an operad O) inducing
isomorphisms on homology. This is true for arbitrary dgOas i.e., differ-
ential graded algebras over the operad O. Such dgOa maps are called
resolutions. There is a notion of homotopy for maps from free trian-
gular dgOas into arbitrary dgOas allowing the definition of homotopy
equivalence of free triangular dgOas. Resolutions are well defined up to
homotopy equivalence and the homotopy equivalence is well defined up
to homotopy. The latter uses a lifting proposition that says maps from
free triangular dgOas into arbitrary dgOas can be lifted through dgOa
homology isomorphisms.

R

7
e
/
5.

Example. If C and D are chain equivalent chain complexes one
can show the

PROPOSITION 2. For each of the cases 1), 2), 3) and 4) the resolu-
tions of HomC' and HomD are homotopy equivalent

DEFINITION 4. A “master equation package” is a triple (F,S, A)
where F' and A are dgOa algebras with F' free and triangular and S :
F — A a dgOa map. Two master equation packages (F,S,A) and
(F',S', A’) are homotopy equivalent if there are homotopy equivalences
f and r between F and F’ and R and R’ respectively so that the obvious
diagram, below, using liftings is homotopy commutative. Here R and
R’ denote triangular free resolutions of A and A’ respectively.

Fi>A<iR

L
F ST A —H R
(a) If A is one of the examples 1), 2), 3), 4) we say the master
equation package defines an infinity algebraic structure on A
of the form given by the homotopy type of F.
(b) If S is a homology isomorphism then we have called the master

equation package a resolution. In this case the dgOa is A itself.
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(c) If F is derived from looking at a system of moduli spaces and
their codimension one frontiers, A is a chain complex of geo-
metric objects where the moduli spaces live, A is provided with
operations needed to describe the codimension one frontiers ,
and S is defined using the moduli spaces we say the master
equation package arises from the compactness and gluing the-
ory of a system of moduli spaces.

In the text, the string topology for closed strings is a package of
type (a) (4) where C is the homology of equivariant chains on the loop
space of a manifold modulo constant loops. We have called the algebraic
structure arising there a quantum lie bialgebra which incorporates the
involutive identity up to a first homotopy at least, (section 3.6) and the
rest of the the three lie bialgebra identities up to infinite homotopy. The
open string topology was presented as an example of type (c) where
A had the form of a hom of chains on maps of strings into M into
equivariant chains of maps of surfaces into M.

For applications to symplectic topology, F' will be the recipe arising
in the compactness and gluing pictures, S will be defined by the moduli
spaces to first approximation and A will be defined by thinking of fami-
lies of solutions to the elliptic equations as chains in algebraic topology
and providing A with operations for the gluing.

If some of these operations involve transversality in the first ap-
proximation, i.e., they are like string topology operations, then higher
order approximations to success will involve using the device of type (a)
packages to really define the operations on A completely.

For example, if a string bracket is needed for a term in the frontier of
the moduli space one builds a lie infinity structure as in string topology
using the top cells of a genus zero moduli space construction. Then one,
to a higher order approximation, defines S using this lie infinity struc-
ture instead of just the transversally defined string bracket. There are
complicated details here but I suppose this perspective may also help out
with internal transversality issues in the elliptic equations themselves.
For example there is a nice language of Kuranishi and emphasized by
Fukaya, Oh, Ohta and Ono for describing a locally finite infinite system
of finite dimensional problems [32] to which the infinite dimensional
elliptic problem reduces. One can imagine applying the Poincaré dual
cocycle approach to this infinite system of finite dimensional problems,
and then building in the homotopies to heal discrepancies as was done
above for string topology.
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