
THE STRUCTURE OF A
MARKOV CHAIN

J. L. DOOB
UNIVERSITY OF ILLINOIS

1. Introduction

Let p be a standard transition function on the set I of integers, that is, a
function from (0, oo) x I x I into [0, 1] satisfying

Zp(ti,j)= 1,
i

(1.1) p(s + t, i, k) = Zp(s, i,j)p(t,j, k),
j

together with the continuity condition limt0 p(t, i, i) = 1. Let f be an absolute
probability function, that is, a function from (0, co) x I into [0, 1], satisfying

(1.2) If(t, j) = 1, f(s + t, j) = If(s, i)p(t, i, j).
j i

Let L be an arbitrary set containing I as a subset. There is then a Markov
process fx(t), t > 0} with state space L having the specified transition and
absolute probability functions. The notation x(t) will always refer to the tth
random variable of such a process, and the process will be called "smooth" if
L is topological and if almost every sample function is right continuous with left
limits on (0, cc). Note that this condition does not require the existence of a right
limit at 0. For each t > 0 the random variable x(t) almost surely has its values
in I, but it has been known since Ray's work [11] in 1959 that L and the process
can be chosen to make the process and properly chosen extensions of the
transition function have desirable smoothness properties. One can always choose
L to be an entrance space in the sense of [4]; that is. one can choose L to satisfy
the following conditions:

(a) L is a Borel subset of a compact metric space in which I is dense;
(b) for every absolute probability function f there is a smooth corresponding

process with state space L;
(c) for every integer j, p(. ,j) has a continuous extension to (0, cc) x L

and (1.1) is satisfied for i allowed to be any point of L;
(d) if 4 is in L and if {x(t), t > 0} is a smooth process with absolute proba-

bility function given byf(t, i) = p(t, 4, i), then x(0+) exists (and is in L) almost
surely.

In the following, i, j, k are integers and 4, 'i are points of a specified entrance
space. The probability measure determined by a smooth process with f (t, i) =
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p(1, C, i) will be denoted by Pi. If 4 is not a branch point. P,{x(O+) = 1
and we define x(O) = I. The process will then be called a smooth process with
initial state 4. There are many entrance spaces, and none can be described as best
for all purposes. Any full analysis of Markov chains must include an analysis
of the possible entrance spaces for a given transition function.
The present paper is devoted to showing how. after ramifying any given

entrance space in order to get certain functions continuous, the resolvent of a
process can be expressed in terms of the resolvent of the process killed at a
certain type of terminal time together with certain extra operators. The case of
interest is when all states are stable. The technique has been used for Hunt
processes, but unfortunately under the hypothesis (too restrictive in the present
context) that there are no branch poi-nts. The necessary theorems on additive
functionals when the related Markov processes may have branch points,
apparently. have not been stated in the literature. but the extension to the
branch point case seems straightforward.

2. Stable case

We shall be most interested in the "stable case" by which we mean that for
every i

(2.1) -pii(O) = pij(O) < C.
j~i

As usual, we write qi for -pii(°) and qi j for pj(O) whenj =k i.
In the stable case, any smooth process with initial state an integer proceeds

at first by jumps. More precisely, if the initial state is i, there is an exponential
holding time with expected value l/qj; then there is a jump toj with probability
qi j/q; then there is an exponential holding time with expected value lI/qj; and
so on. If T1 ( < cc) is the first explosion time, that is, the supremum of these jump
times, the process is integer valued to time T1. Many papers have been devoted
to the character of the paths after time T, when T1 < cc.

In terms of transition functions, the problem is the following. Define by

(2.2) p(t- i, j) = Pi{X(t) = j. T1 > t}.
Then p _ j, with equality only under special restrictions on the matrix (qi j).
and the problem is to find the class of possible transition functions p for a given
p. that is. for a given matrix (qi j). In earlier papers, it has always been assumed
that the number of ways sample functions can "go to infinity" at T1 is discrete
(usually finite) in some suitable sense. See, for example, the recent literature
[2], [5], [12]. If an entrance space has been chosen as state space, one can
describe the process at time T1: the distribution of x(T1) if x(T1-) =, is the
branching distribution p(O+. s '). that is, the limiting distribution of p(t, 4, ')
when t -O0. (See [4].) If 4 is not a branch point, and only then, this distribution
is supported by the singleton {W}. If p(0+, . ') is supported by I for every 4,
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one can continue from T1 using the matrix (qi j); and in fact, in this case (qi j)
together with the branching distributions determine the process completely.
If the branching distributions are not restricted as stated, we shall see below
how the process can be continued-using only (qij), the state space topology.
and the branching distributions-to a time we designate as Too.
For an important class of stopping times T. including To, we shall show that

if a transition probabilitypT is defined like- in equation (2.2) but using T instead
of T1,. then any given entrance space can be ramified into one in which pT(t. j)
has a continuous extension to the space, and the corresponding resolvent
operator will then take bounded functions into continuous functions. This
property will be used in expressing the resolvent operator of the given process
in terms of the resolvent operator of the process killed at T, together with certain
other operators.

3. Terminal times and corresponding excessive functions

We assume the usual background of o-algebras and so on for Hunt processes
(using in the discussion of smooth processes. for example. the space of right
continuous functions with left limits from [0. co) into the entrance state space
less the branch points (where branch points are allowed as left limits), identifying
the value of the function at 0 with x (0+). The obvious changes are to be made
on the rare occasions when the absolute probability function is not chosen to
ensure the existence of x(0+). In particular, we shall use the translation operator
O. Note that our smooth processes are not necessarily quasi left continuous
except in a slightly extended sense, but have the strong Markov property (see
[3]. [4]).

Let L be an entrance space. A terminal time will be called "admissible" if the
following three conditions are satisfied:

(a) T is perfect (see [1]);
(b) for every nonbranch point 4, lim,,,. 0,T = 0, P, almost everywhere

where T = 0. whenever {sn, n _ 1} is a sequence of positive numbers with
limit 0:

(c) P4{T > 0} = 1 if 4 is in I.
According to the Blumenthal zero-one law, the probability in (c) must be either

o or 1 if 4 is not a branch point.
If 4 is not a branch point and t > 0, define

(3.1) pT(1, a, k) = P,{x(t) = k. T > t}.
Then the Chapman-Kolmogorov equation system

(3.2) pT(S±+ t. ck) = EP{x(s + t) = k. x(s) =j. T > s. OsT > t}
j=~ E{P {x(s + t) = k . 0,T > t 1sF(8)} 1T > sx(s) j}

EpT(s 4,j)pT(tj, k)
j
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is satisfied.
If 4 is a branch point, we make the obvious definition corresponding to starting

the process at 4 and having it jump at once:

(3.3) pT(t a, k) = I pT(t, q, k)p(O+, 4, do),

where we use the fact that p (O +, 4, ) is supported by the set of nonbranch points.
The Chapman-Kolmogorov equation system is satisfied by pT for every initial
state in L. If s < t,

(3.4) Zp(s, j)pT(t - s, j, k) = Pz,{x(t) = k, OST > t -s} PT(t, 4, k)

and the left side has limit pT(t, 4, k) when s -O 0. Then the function p(, , k) -

pT(, , k) is space time excessive (see [4]). Instead of p(, , k), any other
function on (0, xc) x L which dominates pT(., *, k) and is an exit law can be
used, for example, the constant function 1.

Define R, RT by

(3.5) Re,j() = f; e p(s, 8,j) ds, RX j(A) = fr e p(s, aj) ds

for A > 0. Then R. (A) is A excessive and what we have proved about p - pT
implies that R.j(-RT)(R ) is also A excessive.
A terminal state A can be introduced in the usual way to make pT stochastic,

and this function, with second and third arguments restricted to IA = IU {A}
is then a standard transition function relative to IA.

4. Terminal time examples

Throughout the rest of this paper we consider only the stable case. For a
function which is right continuous with left limits from [0, oc) into an entrance
space, we call a point of [0, cc) an "explosion point" of that function if it is a
limit point of discontinuities. The set r of explosion points is closed. Because
of the nature of the sample functions of smooth processes in the stable case, the
set r is, stated roughly, determined by a sample function in such a way that 17
is independent of the state space. More precisely, consider a process {x(t),
t rational > 0} with the given transition function and some absolute proba-
bility function. We take the state space as I (untopologized). Almost every
sample function is identically constant in a neighborhood of each rational
parameter value. Define an explosion time for a sample function as any real
number with the property that in every neighborhood of the number there are
infinitely many maximal constancy intervals. If L is any entrance space, the
process can be extended into a smooth process with state space L by defining
x(t) for irrational 1 > 0 as x(t +) when this limit exists in the L topology. For
almost every sample function, the set r is then the same whether defined in terms
of the original or in terms of the extended process.
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Define a terminal time T1 extending the definition in Section 2, as the
infimum of points in r - {O}, (or so, if there is no such point). The qualification
in parentheses will be omitted in further definitions. Then T1 is admissible. Note
that x(T1) may be integer valued and that OT1Tl need not be 0.

Define T1 1 = T1. If a is a countable ordinal for which T1 ,p is defined when
8 < a, define T1a = sup,<T1 p if a is a limit ordinal and T1, = T1, -1 +
OTs- 1T1 otherwise. There is a first countable a, depending on the sample
function, with T1 a = T1 , 1 = ... ; using this o, we define T1, c = T1,a. Then
T1, o is a terminal time, because this method applied to any terminal time yields
a terminal time. The admissible terminal time T2 = lim5 00o5T1,,O is the first
limit point from the right ofexplosion times. The method ofobtaining T2 from T1
is now applied to T2 to obtain an admissible terminal time T3, and so on. More
precisely, if Ta, is already defined for a a countable ordinal Ta+ 1 is obtained from
Ta as T2was from T1. If Tl is defined for P < a, where a is a (countable) limit
ordinal, Ta' is defined as lim. -O,, (supp<,Tp). A standard argument shows that
for some countable ordinal a, depending on the sample function, Ta = Ta + 1, so
that O1T.T5 = 0, and that, for any assignment of probability measures to the
Markov process in question, there is an index a independent of the sample
function, such that Ta = Ta+ 1 almost surely. Thus, if Too is defined as Ta for a
large enough to make Ta = Ta+ 1, we obtain a stopping time with OT To = 0.
Every terminal time we have obtained here is defined in terms of explosion times
and is therefore meaningful for every entrance space, and the meanings are the
same for all entrance spaces just as those of T1 are.

Obviously, pTi is determined completely by the matrix (qi j) if the initial state
is an integer. If the initial state is neither an integer nor a branch point, the
continuity properties of space time excessive functions [4] imply that

(4.1) pT1(t, c, j) = lim sup PT1(t, i,j).

If the initial state is a branch point, PT, (t, I, ) is determined by (3.3). Thus,
pTi is determined by (qij), the branching distributions, and the entrance space
topology. Evidently these same elements also determine pT2, * *, pT. .

5. Ramification of an entrance space

Let KO be an entrance space, a Borel subset of the compact metric space K,
with metric p. Let T be an admissible terminal time defined in terms of the
explosion points of sample functions. Then T has a well-defined meaning for
every entrance space, in fact, a meaning independent of the entrance space (see
Section 4). Enlarge K to KA by the adjunction of an isolated state A, setting
p(4, A) = 1 and p(t, A, A) = 1. Let p* be a metric on IA = Iu {A}, chosen in
such a way that if K* is the completion of IA under p* there is a Borel subset
K* ofK* which is an entrance space for the restriction ofpT to (0, cox) X IA x
Define R, RT as in Section 3. It is known (see [3], for example) that p* can be
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chosen so that {i,,, n > 1} is a Cauchy sequence if and only if {RT j(A), n > 1}
is a Cauchy sequence for all j and all A > 0. equivalently for A in a countable
dense subset of (0, oC). We assume that such a choice has been made.
Now let K be the completion of A in the metric p + p*. Then K is a compact

metric space in which IA is dense and there is a unique continuous map 0C [o]
from K onto KA [K*] leaving IA invariant. Since K can also be considered the
completion of KA [K*] in the metric p + p*, KA and K* can be thought of as
subsets of K.

Define

KO = ot (KA)n o*- 1(KO*)K0=~ 0
(5.1)

p(,~j Tt,*~~)p1(t, 4,j) = p(t, a(4),j). pT(t, 0,j) = pT(t. a*(4)j) 4 6eko
so that P =p and PT = PT on (0, oc) x I x I. For each j, P(- ,*j) and
PT(- ,j) are continuous on (0. oc) x K,. (In discussing these functions. A is
considered an honorary integer.) Moreover, P and fiT are stochastic transition
functions satisfying the Chapman-Kolmogorov equation system.

Let {x(t), t rational > 0} be a process with state space I and an integer initial
state. Almost every sample function of this process has right and left limits at
all real positive (.0) times in the K topology. Furthermore, the fact that

R.,j(A) and R.,j(A) - RT.j() are both A excessive on K (see Section 3) implies
that almost every sample function of the RXT)J(p) process has right and left
limits'at all real positive times in the K* topology. We conclude that almost
every x(*) process sample function has right and left limits at all real positive
times in the K* topology and therefore also in the K topology.

Define x(t) = x(t+) (limit in the K topology). The process {x(t), t _ 0} is a
smooth process with state space ko and the image process {4 1it)],t _ 0}
is a smooth process with state space KO and the same initial state. The three
processes {4ix(t)]. t _ 0}, {a[x(t)], I 0}, {x(t), I 0}, when made iden-
tically A at times . T have identical finite dimensional distributions. More
generally, the corresponding discussion goes through for any absolute proba-
bility function, for example by starting processes at time l/n and then making
n - coc. Thus, we have the situation where KO satisfies conditions (a), (b). (c) of
an entrance space relative to the restrictions to (0, oc) x I` x IA of both p and
PT. That is, in the terminology of [4], ko is an entrance adapted space for these
two restrictions. According to [4], there is then a Borel subset L ofKo which is an
entrance space for the first restriction and therefore for the second restriction
(because if i(O+) exists this right limit also exists when the process is made
identically A at the times .T). We observe that we have now identified 13T
with pT.
We have thus found an entrance space L on which the function pT(. ,j) is

continuous as desired. A trivial modification of this discussion would yield the
corresponding result simultaneously for countably many admissible terminal
times T. Thus, for example, there is a space which is simultaneously an entrance
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space for every Tj in Section 4. Moreover, the corresponding reversed processes
can be handled at the same time. for example. to make the final state space also
an entrance-exit space.

6. Continuation of Markov chains

Analyses of the continuation of a Hunt type Markov process from the first
time a set is hit have been made by many authors (for example recently by
Dynkin [7], Motoo [9], and Okabe [10]). The corresponding analysis of
Markov chains in the stable case has been limited to the analysis ofwhat happens
after the first explosion time, with strong restrictions on the number of ways
sample functions can "go to c>-" at this time (see. for example. Chung [2] and
the more recent Shih [12]). The techniques used in the analysis of Hunt process
continuation have not been applied to the stable chain case. We shall now make
such an application, following Dynkin [7] (who treated Hunt processes) with
appropriate modifications. A new difficulty is the fact that no attack on chains
can avoid the possibility of branch points. whereas the no-branch-point hypo-
thesis has not been thought improperly restrictive in the Hunt theory and the
associated theory of additive functionals.

Let L be an entrance space for our transition function in the stable case and
let T be an admissible terminal time depending on the explosion points with the
additional property that OTT = 0. For example., T . as defined in Section 4, is
such a terminal time. Then PT is well defined and we suppose that L has been
ramified if necessary to make PT(. j) continuous for every choice of j
including the terminal state. The function B.j(A) is then continuous on L. More
generally. iff is a bounded function on L (or even merely on I) and if the obvious
operational notation is used, the function RT(2)f is continuous on L. This
follows, for example, from the particular case just mentioned and the fact that
the function

(6.1) L B>mQ{) = --R.A(i)
is continuous, so that the sum on the left converges uniformly on compacta.

Let F be the closed set of points 4 at which P,{T = 0} = 1. that is. at which
>.pT(t, 4 j) = 0 for all t > (), or equivalently at which =RA(i) 1 for every
i > 0. Let Fb be the set of branch points in F. Since OTT = 0, for any smooth
process {x(t). I > 0} the random variable x(T) has its values almost surely in F
where 0 < T < cc. including 0 if x(0+) exists and x(0) is defined as this right
limit. In fact, the distribution of x(T) is supported by F - Fb, since almost no
sample path hits a branch point.

If S is the hitting time'of F. then T= S + OsT where T > S. whereas
OsT = 0 by definition of F. Thus. T = S is the hitting time of F, and the
condition OTT = 0. combined with condition (b) for an admissible stopping
time, implies that every point 4 ofF is regular for F. Then p(0+, d! F) = 1 for
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4 in F. For a smooth process, if T is the limit of an increasing sequence

{S, n _ 1} of stopping times then p[O+, x(T-), F] = 1 almost everywhere
where S,, < T < oc for all n. In particular if T = Too as defined in Section 4,
then x(T-) e F almost everywhere where 0 < T < cc.

Since Ej RE j( ) is the Laplace transform of a monotone decreasing function,
the function A ~ A2- R;j(A) is an increasing function. Then if a is a strictly
positive number, to be retained thoughout the following, and if KA f =
RT(A)f/RT(a)1 off F, then off F

(6.2) IKfI supIfI if A > a,
a
sup if if A _ a.

Let {x(t), t > 0} be a smooth process with x(O) = 4, where we allow 4 to be
arbitrary; smoothness at 0 in this context means that x (0+) exists, but is almost
certainly 4 if and only if 4 is not a branch point. Then, since almost every sample
function is right continuous on (0, iot) (and we ignore the exceptional sample
functions below), the parameter set for which a sample path lies in the open
set L - F is the union of disjoint (maximal) intervals open on the right. We
denote the endpoints of the intervals generically by y, 6. Here y + OYT =3.
Since almost every sample function is integer valued for Lebesgue almost every
parameter value, these intervals cover Lebesgue almost every point of (0, ot).
In this property, the context is simpler than that in [7], [9], [10]. As Dynkin
pointed out in [6], for a smooth process and bounded f, under certain hypo-
theses satisfied in the present study, KAf has a right limit at every left endpoint y,
for almost every sample function. We shall use this fact.
Letf be a bounded function on L (only its values on I are relevant). Let h be a

bounded continuous function on L - F with the property that for almost every
sample function of a smooth process lim5,0h[x(y + s)] exists for all y. We
denote this limit by h[x(y)]+. In a similar context [7] Dynkin proved that

(6.3) E<{Z exp {-Ay} h[x(y)]+ { f[x(t)] exp {-M(t-y)} dt}

= E {Z exp {-by} (hKf ) [x(y)] + exp {-a(t-y)} dt}.

Here A and pu are strictly positive and the sum here and below is over all strictly
positive y. (Dynkin's proof yields (6.3), although his stated hypotheses are more
special than ours.) Define OA by

(6.4) ki(') = Ee{Zexp {-Ay} h[x(y)]+ Jexp {-a(t-)} dt}.
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It is easy to see that this function is A excessive and Dynkin's proof [7] that /'
is a regular 2 potential is valid here. Thus, applying the Sur-Meyer theorem, we
find as Dynkin did, that there is a continuous additive functional A' such that

(6.5) = exp {-it} dAh(t)}.

Dynkin's proof in [7] that A' does not depend on A is valid in our context
and we omit the superscript from now on. We shall write A instead of A1.
When 2 = c and h = 1, we find

(6.6) E,= {e oT}aC- = E,{| e-atdA(t)}.
Hence,

(6.7) E,{e aTOci[x(T)]} = E,{e -T}c l = E,{| ea'tdA(t)},

where we have used the fact that OTT = 0 and must make the obvious con-
ventions if T is not finite. Comparing (6.7) with (6.6), we see that A(T) = 0,
Pi almost surely for all c. Thus (see [1]), A is supported by F; more precisely,
the measure dA(t) is P, almost surely supported by the set of t with x(t) in F.

Define for g a bounded Borel measurable function on L,

(6.8) v.,(< g) = E e-ktg[x(t)] dA(t)}

Then vA(4, *) defines a measure, and vA(4, g) is the integral of g with respect to
this measure. Below, "null set" is a set of vA(4, .) measure 0 for all I. This
condition is independent of A > 0. For example, L - F is a null set.
By hypothesis, the space L is a Borel subset of a compact metric space L';

it is convenient to introduce L' at this point in order to follow Dynkin in [7].
By a linearity argument, he shows (translating his result into our context) that
if 4 is not in some null set then there is a measure b(,, .) of Borel subsets of L'
with b(,, L') _ 1 such that if h is continuous on L', b(-, h) is Borel measurable
and dAh(t) = b[x(t)] dA(t). Thus, for such a choice of h, and hence for every
bounded Borel measurable h on L,

(6.9) E<{ exp {-Ay} h[x(y)] {exp {-a(t - y)} dt}

= E- exp {-it} b[x(t), h] dA(t)}
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If h is the indicator function of L and A = a, (6.7) together with (6.9) imply that
b(,, L) = 1 for 4 not in a null set. In other words for 4 not in a null set, b(,, * ) is
a probability measure supported by L, and we can drop L' again. Iff is bounded
on L, (6.3) yields

(6.10) E, exp {-t} f[x (t)] dt}

= E{Z exp {-Ay} exp {-(t-y)} f[x(t)] dt}

= Ed{ exp {-Av} (Kf) [x(y)] { exp {-cc(t - y)} dt}

If KAf were defined bounded and Borel measurable on L, with (Kf ) [x(y)] =
(Kzf ) [x(y)] +, or ifh[x(y)] in (6.9) could be replaced by h[x(y)] +, then we could
identify KAf with h in (6.9) to get

(6.11) EX exp {-it}f[x(t)] dt} = exp {-it} b[x(t), Kjf] dA(t)}

= VIA[E, b(*, K~f )]

In order to get some version of (6.11), one can ramify L -F to a space on which
Kjf has a continuous extension [7]. The measure vA(4, *) is then a measure on
this new space. With this interpretation of (6.11), the representation of the
resolvent R in terms of RT, v, K, is now trivial:

(6.12) [R(A)f]() exp {-it} f[x(t)] dt}

= [RT(A)f]( ) + vA[E, b(.,KAf)].
The continuous additive functional A determines the "boundary" process on F
as usual.
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