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1. Introduction

One of the unsolved problems in ergodic theory is the following. Let T be ai
invertible measure preserving transformation on the unit interval. When does T
have a square root? When can T be imbedded in a flow? In his book on ergodic
theory, Halmos asked, (1) if every weakly mixing transformation had a square
root, (2) if every Bernoulli shift had a square root, and (3) if every Bernoulli shift
could be imbedded in a flow. Chacon [1] showed that the answer to (1) was
negative. We showed [5], [6] that the answer to (2) and (3) was yes. These results
seem to indicate that "enough mixing" forces T to have a square root or to be
imbeddable in a flow.

It is the purpose of this paper to give an example of a mixing transformation
that has no square root. (T is mixing if and only if

(1.1) lim m(T"A nB) = m(A)m(B)
n -o

where m(A) denotes the measure of the set A.) The transformation T that we will
construct will not only lack a square root but will have the property that if S is
a measure preserving transformation of the unit interval such that ST = TS,
then S = T' for some integer i (possibly negative or 0).

It is still not known if every K automorphism has a square root. (K auto-
morphisms have a stronger mixing property than "mixing." It was once con-
jectured that all K automorphisms were Bernoulli shifts but this is now known
to be false [7].)

Before starting the construction of our example we shall prove the following
theorem which we believe is of independent interest.
THEOREM 1.1. If T is a measure preserving invertible transformation of (0, 1)

such that every power of T is ergodic, and if T has the property that there is a
constant K, K > 1, and lim sup,O m(TnA rnB) < Km(A)m(B) for all measur-
able sets A and B, then T is mixing.
We could construct our example without the help of the above theorem but

only at the cost of considerable additional complication.
The main motivation for proving Theorem 1.1, however, comes from the

following conjecture of Kakutani. If there is a constant K, with 0 < K < 1, such
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that lim inf.- . m(TnA rB) _ Km(A)m(B), then T is mixing. (Clearly, all
powers of T must be ergodic.) This conjecture was shown to be false [3].
Theorem 1.1 falls into a general group of theorems to the effect that if a

transformation comes at all close to having a certain property, then it must have
that property. Here are some examples. (1) The Birkhoff ergodic theorem implies
that if for all A, B

in.(1.2) sup Z m(T'A rB) > O,

then
in

(1.3) lim + m(TA r B) = m(A)m(B).
n-o + 1 o

(2) England and Martin show that Von Neumann's mixing theorem implies the
following. If for any two setsA andB there is a sequence of integers ni of density 1
(depending on A and B) such that

(1.4) lim inf m(T'iA n B) > 0,
i-OD

then for any two sets A and B there is a sequence mj of density 1 (depending on A
and B) such that

(1.5) lim m(T'iA nrB) = m(A)m(B).
j-co0

2. A general theorem

THEOREM 2.1. Let T be a 1-1, invertible measure preserving transformation of
(0, 1) onto itself, and let m be Lebesgue measure. If (a) every power of T is ergodic,
and (b) there is a K such that lim sup,c m(TnA nB) < Km(A)m(B) for all
measurable sets A and B, then T is mixing.
LEMMA 2.1. If T satisfies the hypothesis of Theorem 2.1, then T is weakly

mixing.
PROOF. Let T be the unitary operator on L2 given by Tf(x) = f[T(x)]. If T

were not weakly mixing, then (by Von Neumann's theorem, see [4]) there would
be a complex valued function g and a complex number a such that Tg = ag.
Since T is unitary, |a| = 1. Since T is ergodic, IgI is constant a.e. Since every
power ofT is ergodic, we have (*) any set on which g is constant has measure zero.

Let F be the set ofx such that 01 > arg[g(x)] _ 02. Then, given e > 0, we
can find arbitrarily large n such that TnF is the set of x, 01 + noa _ arg [g(x)] >
02 + not, and Ina| < P. This and (*) imply that given e' > 0, we can find an
arbitrary large n such that ITF-FI < s'. Since m(F) can be chosen as small as
we want (by properly choosing 01 and 02), we have contradicted condition (b).
PROOF OF THEOREM 2.1. (1) We can pick a sequence of integers ni such that

if C and D are intervals with rational end points, then limi-,, m[(TnC) rn D]
exists. This follows from a standard diagonal procedure since there are only a
countable number of such C, D.
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(2) If T is not mixing, then ni can be chosen so that, in addition to satisfying
(1), there is one pair of intervals with rational end points CQ, D1 and

(2.1) lim m[(TIC,) r) Di] m(Cj)m(Dl).

(3) There is a measure u on (0, 1) x (0, 1) such that u is absolutely continuous
with respect to Lebesgue measure on (0, 1) x (0, 1), and if C and D are intervals
with rational end points, then

(2.2) u(C x D) = lim m[(T'IC)nD].

This requires some proof. Order the pairs C, D and let Fn be the field of sets in
(0, 1) x (0, 1) generated by the first n, C x D. Define f, to be the function on
(0, 1) x (0, 1) that is constant on each atom of F. and such that if C x D is in
F., then

(2.3) ff fn dmdm = lim m[(TMiC) n D].JJ ~~~i-oc(
CxD

Also, 0 _fn K by (b). The f, form a Martingale, and hence f, -. f a.e. andf
will be the derivative of u. (It is not really necessary to use the Martingale con-
vergence theorem here. We could have defined u on the algebra generated by the
C x D with rational end points, used (b) to show that u is countably additive
when restricted to this algebra, and hence, by a theorem in [8], shown that u can
be extended to a measure on (0, 1) x (0, 1).)

(4) If A and B are any measurable sets in (0, 1), then

(2.4) u(A x B) = lim m[(T'iA)rB].

This holds if A and B are each the union of a finite number of intervals with
rational end points. Let An and B. be a sequence of such sets approaching A and
B, respectively. Then

u(A x B) = lim u(An x B,)
n-o

(2.5) u(A. x B.) lim m[(T iAn)rlB"].
However, condition (b) implies that

(2.6) lim sup m[(T'iAn) nBn] - m[(TniA) n B]

< K(mlAn - Alm(B) + mIBn - BIm(A) + mlBn- BImIAn- Al)
where IAn- AI denotes the symmetric difference of An and A.

(5) The transformation T induces another transformation T on (0, 1) x (0, 1)
by the relation T(x, y) = (Tx, Ty). The measure u is invariant under T. To see

this, we need only check it on sets of the form A x B. This gives
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u(A x B) = lim m[(T'iA) rnB],
(2.7) i-

u(TA x TB) = lim m[(T'ITA) r TB] = lim m[T([T'iA] r B)].

(6) Since T is weakly mixing, T is ergodic (with respect to Lebesgue measure on
(0, 1) x (0, 1)). Since u is invariant under T and since u is absolutely continuous
with respect to Lebesgue measure, u must be a multiple of Lebesgue measure.
This multiple is 1 since u[(O, 1) x (0, 1)] = 1. This gives a contradiction since
u(Cl x D1) * m(C1)m(D1), using (2).

3. Construction of a special mixing transformation

Definition of Class 1. This is simply an explicit construction for a trans-
formation that can be approximated by periodic transformations. The first
step in our construction will be to describe a class of transformations that we
will call Class 1. Each transformation T in Class 1 will be defined on (0, 1) and
will be obtained as a limit of a sequence of transformations T. on subsets X, of
(0, 1). The transformations T. will have the following form: Xn will be the union
of h(n) disjoint intervals Ji, with i = 1, * - *, h(n); all of the nJi will have the
same length; and T, will map Ji, with 1 . i < h(n), linearly onto nJi+1 Tn
will not be defined on nJh(n)-
The X.,1 and T,+1 will be obtained from X. and T, as follows. Divide nJ1

into p(n) disjoint intervals ,J1, i = 1 * , p(n), of the same length. Let nJi =
Tn-1(Ji), with e = 1, * * *, h(n). For each i, with 1 < i < p(n), we will pick an
integer a(i, n) with the property that a(i, n) < h(n - 1). For each a(i, n) we will
pick a(i, n) + h(n - 1) disjoint intervals of the same length as nJi in (0, 1) -

U" I1 X,. Call these intervals nJh(n)+l,nI' h(n)+a1,n)+h(n-1). These intervals
will be added to Xn to get X,+,. Let T,+, map nJi linearly onto ,J.,+, if
j < h(n) + a(i,n) + h(n - 1),andletT,+1 map,Jh(,)+,(i,n)+h(n-l)linearlyonto
nJi1+ 1 for i < p(n). Tn+ 1 will not be defined on nJhp()+a(i n)
Let nJ = + 1Je where

j-1

(3.1) 6 = ' a(k, n) + (j - 1)[h(n) + h(n -1)] + i.
k= 1

Then
p(n)

(3.2) h(n + 1) = p(n)[h(n) + h(n + 1)] + E a(i, n),
i=l

and T.+1(n+1Ji) = n+lJi+1 for i < h(n + 1). The transformation T,+1 is not
defined on n+ 1IJ(n+ 1)
THEOREM 3.1. Class 1 contains a mixing transformation.
The rest of this section will be devoted to a proof of this theorem. Lemma 2.1

will be the crucial lemma. Here we construct a sequence with certain properties.
It is hard to do this explicitly but we will show by a probability argument that
most sequences have these properties.
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We will start with a lemma which is a form of the law of large numbers. It is
well known (and easy), and we include it only for the sake of completeness.
LEMMA 3.1. Fix a, with 0 < a < 1, and give each sequence of zeros and ones

of length n the measure cx'(1 -ax)f-l where m is the number of zeros in the
sequence. This puts a probability measure on the space of such sequences. Let
Pn (e) be the measure of the set of sequences of length n having more than (a + E)n
zeros. Then for fixed e > 0, lim supn_ [Pn(e)]1In < 1.

PROOF. Let rm be the probability that there are exactly m zeros.

n(n-1) *- (n -m + 1) [ m(1 _ )n m].

Ifm > ran, r > 1, then

rm+< 1 -ra 1 < .

rm - rax _1X- r

This follows from (3.3).
If PI > 1B2 > ra, then

/1\ 1-0l2)n z(# 2)n

(3.5) rpin]-t< r[0i2n] _ t)

This follows from (3.4). Also ~~~~1
(3.6) [E rm < rr

This follows from (3.4).
Lemma 3.1 follows from (3.5) and (3.6).
LEMMA 3.2. Given s > 0 and even positive integers N and K and ac > 1, we

can find an m > N and a sequence {ai}, with i = 1, * , m, of integers such that
(i) 11j+k ail < Kfor all 1 _ j < j + k < m.
(ii) Let H(t, k) be the number of j such that V+k ai I where 1 . j .

j + k . m. If k < (1-e)m, then H(e, k) < o(K)V1(m -k).
PROOF. (1) Let Y be the space of all sequences of integers {si(w)}, with

i = 1, * , m; w e Y, where Isi(w) <_ K. We can put a probability measure

on Y giving all sequences equal probability.
(2) For fixed i, k, and {,

(3.7) Prob {si+k(W) S(W)= }

(3) Now consider a fixed k _ (1 -s)m. We can divide the pairs of integers
(i, i + k) into two disjoint sets E(k) and E1 (k) in such a way that no integer
occurs in more than one pair in E(k), and the same is true of E1 (k). Further-
more, IE(k)| > hem and 1E1(k)l > 'sm where |E(k)l denotes the number of
elements in E(k). (This is easy to see, and we omit the details.)



352 SIXTH BERKELEY SYMPOSIUM: ORNSTEIN

(4) There exists a , with 0 < y < 1, such that for all m large enough, all {,
and all k < (1 - a)m, we have

(3.8) Prob {(number of i such that (i, i + k) E E(k)
and Si+k(W) - Si(W) = {) > x(KV)-IE(k)I} < Vm.

This follows because our choice of E(k) which makes all the Si+k(W) -SiM,
where (i, i + k) e E(k), independent and makes IE(k)I > em, allows us to apply
(2) and Lemma 3.1.

(5) Let ai(w) = si(w) - sil(w), (a1(w) = s1(w)). Then si+k(W) -s(w) =
Zi+ I aj(w). Ifm is large enough, then (4) tells us that the probability that {aj (w)}
does not satisfy (ii) is < 2mKym. (To see (5), we note that (ii) is automatically
true for Ite > K; therefore, if (ii) fails, (4) fails for one of the (1 - e)mK pairs
k, t and E(k) or E1(k).) Lemma 3.2 follows immediately from (5) since
lim,,- 2mKy' = O.

Construction of T. The construction will be determined if we decide at the
nth stage what p(n) and the a(i, n) should be. Choose N > 10', K = h(n - 1),
e = l0o"-3, and oa = 5/4. Apply Lemma 3.2 to get m > N and a sequence ai,
with i = 1, * * *, m. Let p(n) = m and let ai = a(i, n), i < m. The integer
a[p(n), n] will be a positive integer < 5 and will be determined later.
LEMMA 3.3. Pick an integer M and intervals nJ and n- lJp We will make the

following assumptions. (i) h(n - 1) < a < h(n) - h(n - 1). (ii) Define r and k
as follows: let M = k[h(n) + h(n - 1)] + r where k and r are nonnegative
integers and r < [h(n) + h(n-1)].I'Then k < (1 - 10V)p(n). (iii) Either (a)
holds, or (b) and (c) hold, where

(a) a + r > h(n) + h(n - 1),
(b) a + r < h(n) - h(n - 1), and
(c) k _ 1.

Let H be the part of nJez on which T"1+I is defined. Then

(3.9) m[(TrM+ H)n n- lJp] < 32m(H)m(n- lJp)

PROOF. (1) If nJr,, c H, then Tr,(nJ:) =1('(J If condition (a) holds, then
s(i, a) = i + k + 1 and t(i, a) = a + r + = i a((, n). If conditions (b) and
(c) hold, then s(i, a) = i + k and t(i, a) = oa + r + 1'+=-l a(e n). These
formulas follow from the definition of transformations in Class 1.

(2) ,Ja c H if i < p(n) - k - 1 and nJ t H if i > p(n) - k. (One i is not
accounted for; to account for it, one would have to see which condition (a) or
(b) holds. It will not, however, be necessary to bother with this.)

(3) There are at most two numbers yV and Y2 such that

(3.10) a + r-h(n-1) _ yi _ a + r + h(n-1), i = 1, 2

and nJ,, e n- 1Jp, with i = 1, 2. This follows easily from the description of the
construction of transformations in Class 1.
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(4) Let 4 be the number of integers i such that 1 < i . p(n) - k and t(i, a) =
y1 or t(i, a) = VY2- Using the formula for t(i, a) in (1) and Lemma 3.2 (i), we see
that a + r - h(n - 1) < t(i, a) _ oa + r + h(n - 1). Applying (3), hypothesis
(ii) and Lemma 3.2 (ii), we get

(3.11) < 1' [h(n -)] -

p(n) -k =-

Rewriting (4) we get

(3.12) m[T;+i(H)r* I e] < '[h(n -1)]1 < 3m(n_1Jf).m(H)4
LEMMA3.4. LetM be an integersuch that h(n) + h(n - 1) . M < h(n + 1) +

h(n). Then the following sets Di all have measure < 10n-+2.
D1 is the union of the nJ,, which fail to satisfy either (i) and (a) or (i) and (b) of

Lemma 3.3.
D2 is the union of the ,+ 1Jx which fail to satisfy either (i) and (a) or (i) and (b) of

Lemma3.3.By(i)wemeanh(n) < a < h(n + 1) - h(n).LetM = k[h(n + 1) +
h(n)] + r'; then k' = 0, r' = M, (a) says cx + M > h(n + 1) + h(n), and (b)
says cx + M <h(n + 1) - h(n).
D3 is the part of Xn+2 on which Tnf+ 2 is not defined.
PROOF. We have constructed T in such a way that h(n + 1) > 10'h(n). It

follows immediately from this that the measures of D1 and D2 are < 10-+2.
The transformation Tr+2 is defined on nI2Ji if i . h(n + 2) - M. Since

M < 2h(n + 1), this shows that m(D3) < 10- n+2.
LEMMA 3.5. Let A be a measurable set in X. Then we can find a sequence of

sets An such that each A. is a union of some of the ,Ji, and lA, -AA tends to 0 as
n tends to oc.
The proof is standard and will be omitted.
LEMMA 3.6. Let M be an integer such that h(n) + h(n - 1) < M <

h(n + 1) + h(n). Let A and B be measurable sets in X, and define An and B. as

in Lemma 3.5. Then m[(TMAn) n B,,-1] _ 4m(A")m(B". I1).
PROOF. Let H be the union of the ,Ji in An which are not in DI. Note that

H can be regarded as a union of .,+ 1Ji. Let H1 be the union of the "+ 1Ji in H
on which Tn+1 is defined. If m(H1) > 10" 1, then condition (ii) of Lemma 3.3
is also satisfied. Also (c) holds because h(n) + h(n - 1) _ M. We can then
apply Lemma 3.3 to get

(3.13) m[(Tr+1Hj) r) Bn ] _ 3m(H1)m(Bn-. ).
Let H' be the part ofH - H1 that is not in D2. Since TnM'1 is not defined on

H', we have that for each n+lJ c- H', ac + M > h(n + 1). If M = k'[h(n +
1) + h(n)] + r', then k' = 0 and r' = M. Since either (b) or (a) holds, (a) must
hold and we do not have to worry about (c). Condition (ii) holds trivially. We
can therefore apply Lemma 3.3 again to get the following. Let H2 be the part
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of H' on which TnM+2 is defined; then

(3.14) M[(TrM+ 2H2 ) rn B"'_ 1] _ 3m(H2 )m(Bn _ 1 )

(3.13) and (3.14) imply Lemma 3.6.
PROOF OF THEOREM 3.1. Lemma 3.5 says that, given A, B and s, there is an

N such that if n > N, then jA, -AA < e and IB, - BI < s. If M > h(N), then
there is an n' > N such that h(n') + h(n' - 1) _ M < h(n' + 1) + h(n').
Lemma 3.6 says that m[(TMAn,) rBn'i] < 4m(A .)m(Bn'_ ). We then get

(1) lim supM- m[TMA) nB] _ 4m(A)m(B). If we show that every power
of T is ergodic, we can then apply Theorem 1.1 to show that T is mixing.

(2) T is ergodic. If this were not true, there would be an invariant set A,
m(A) < 1/2, and an n and i such that m(AJi A) > (9/10)m(,Ji). This implies
that m(Jjn A) > (9/10)m("Jj) for 1 _ j _ h(n), contradicting m(A) _ 1/2.

(3) Every power of T is ergodic. If this were false, we could use (1) to show
that there is a minimal set, A, invariant under T'. We would then get an a such
that TiA are disjoint for a < j < a and A = TaA. Note that a must be _ 4
by (1) andu TiA = X by (2). By the argument in (2), for n large enough, more
than 9/10 of each nJi is in one of the TVA, with 0 _ j < a, and if i = k (mod x),
then 9/10 of both nJi and nJk are in the same TiA. Since this is true for n and
n + 1, we get that more than half of the h(n - 1) + a(i, n), with 1 _ i . p(n),
must be congruent to 0 mod a. Furthermore, the above statement must hold
for all n large enough. By changing a[p(n - 1), n - 1], we change h(n - 1)
and we can thus insure that for each integer oa < 4, there are infinitely many n
such that more than half of the h(n - 1) + a(i, n) are not congruent to 0 mod ac.

4. A proof that nothing commutes with the transformation constructed in the
previous section

THEOREM 4.1. Let T be a mixing transformation in Class 1. Let S be a
measure preserving transformation of (0, 1) onto itself such that ST(x) = TS(x)
for a.e. x in (0, 1). Then there is an integer i (possibly negative or 0) such that
S(x) = T'(x) a.e. (All we use is that T is approximable by periodic trans-
formations.)

NOTATION. Pick K disjoint sets A, B ... in (0, 1) each of measure (K) l.
Let A' = S-1A, . Let An and A' be sequences of sets whereA, (A') is a union
of ,Ji and An -+ A (A' -nA') as in Lemma 3.5. By Tn(E) we will mean Tt applied
to the part of E on which Tn' is defined.
REMARK. It is no loss of generality to assume that TS(x) = ST(x) for all x.
LEMMA 4.1. Assume K is already given as above. We can then choose N such

that if n > N and lte > N, then (i) IA - S-'AnI < 10-1K-; (ii) m(TnA)n
A) < 2K-2. Furthermore, (i) and (ii) still hold if we substitute any of the other
K sets for A. (By IA - BI we mean m(A uB -A n B).)
The proof is obvious.
DEFINITION. If X E Xn r S -X", define nf(x) to be an integer such that

T(nf(x))(x) and S(x) are in the same nJi
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LEMMA 4.2. Let x be a point in nJi n S 1X-n. Let j be an integer (not neces-
sarily positive) such that 1 _ i + j _ k(n) and 1 _ j + i + f(x) _ h(n). Then
Jf(x) = J[TA()]

PROOF. This follows immediately from the definition of Jf and the fact that
ST = TS.
LEMMA 4.3. Let K and N be defined as in Lemma 4.1. Assume that the set

where I.f(x)I < N has measure < m(X.). Then, for all n large enough, we canfind
an 1, -h(n) < e <_ h(n) such that if we let E be the subset of nJt on which
I.f(x)I > N, then m(E) > 2-3m(nj).

Proof. (1) As n - oo, the measure of the set where Jf is not defined tends
to 0. We can, therefore, find an t, 1h(n) < e < 3 h(n) such that if E' is the part
of ,,J, on which Jf is defined, then m(E') > (99/100)m(.Je).

(2) Let E be the part of E' where IJfI > N. Now IJfI < N on E' - E, and if
m(E) < 2-3m(3JM), then m(E' - E) > 3m("J).

(3) We can now apply Lemma 4.2 and (2) to show that If < N on more than
3/4 of each Ji where N < i < h(n) - N. If n is large enough, with respect to N,
this contradicts the assumption of Lemma 4.3.
The following lemma contains the whole idea of the proof of Theorem 4.1.
LEMMA 4.4. Let K and N be defined as in Lemma 4.1. Then for n large enough,

the set where Jnf(x)I < N has measure > jm(Xn).
PROOF. We will start by assuming that Lemma 4.4 is false.
(1) We can therefore apply Lemma 4.3 to get 1h(n) < e <_ h(n) such that

the subset E, of nJt where Jnf(x)l > N, has measure > 2 3m(nJ). Let E' be
the part of E where nf(x) _ -N. We can assume m(E') > 1m(E) > 24m("J).
(The other case, where the part of E in which nf(x) _ N has measure > 2m(E),
will follow by exactly the same argument.)

(2) One of the sets, A, B, C, and so forth, (we will call it A for the sake of
notation) has the following property. Let 1A'" be the union of those nJi such that
nJi c A' and t < i _ h(n). Then m(1An) > 2-3m(A') = 2-3K-1.

(3) Let 2A' be the part of 1A' on which nf < -N. Let Ei,j be the part of
2An ,nJj where nf= -i-

(4) E' = UiXi and Eij = Tni-`(Ei). (The first statement is just the
definition of E' and the second comes immediately from Lemma 4.2. This holds
for those j such that nJi n7A ° )

(5) m(2A') > 2-7K-1. This comes from (1), (2) and (4). We are now ready
to get (a) the part of 2An not in S- 1An has measure < 10 10K-1 < 10-3m(2A).
(The first inequality comes from Lemma 4.1 (a) and the second from (5).) The
rest of this proof will de devoted to proving (b) the part of 2A' not in S 1An
has measure > 2M(2A').

(6) If a > N, then Lemma 4.1 (ii) implies

(4.1) m(sAlt r omTn"A2)< aKw-i2< 2u34[2K-em(1tA)].
(The last inequality comes from (2).) We will now use (4.1) to get: if a > N,
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(4.2) m(U Ei,j nSAS-'A) < 24K 'm(U Ei

To get (4.2) note that (4) implies m(Ea,j)/m(nJj) does not depend on j if
,,Jjc ,A'. We also have Ea,j c S-'A, or Ea,,j r AS-'A = 0, and that the
former occurs if and only if jj c TnAn. These two statements combined with
(4.1) give (4.2).

IfK were chosen so that 24K-' < I, (4.2) would imply (ii) by summing over ct.
PROOF OF THEOREM 4.1. Lemma 4.4 implies that for all n large enough, the

part of X where jf(x)I < N has measure > I. This implies that there is a set
F c X, m(F) > I such that if x E F, then I.f(x)I . N for infinitely many n. This
implies that there is an |M(x)I . N such that nf(x) = M(x) for infinitely many
n, and all x E F' c F where m(F') * 0. We therefore have that S(x) and TM(x)(x)
are in the same ,Ji for infinitely many n, for x E F'. But the Ji are intervals
whose lengths are tending to zero which implies that S(x) = TM(x)(x) for x E F'.
For fixed M, the set of x such that S(x) = TM(x) is invariant under T. Since

T is ergodic, this proves Theorem 4.1.
REMARK. It is not necessary to assume that S is measure preserving and

onto. It is enough to assume that S- 'A is measurable if A is measurable, that
there is no set A such that m(A) = 0 and m(S-'A) = 1, and that the range of
S is a measurable set of nonzero measure. It is then easy to see that the
assumption that S commutes with an ergodic measure preserving transformation
forces S to be measure preserving and onto.
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