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1. Introduction

One of the unsolved problems in ergodic theory is the following. Let T be a1
invertible measure preserving transformation on the unit interval. When does T
have a square root? When can 7T be imbedded in a flow? In his book on ergodic
theory, Halmos asked, (1) if every weakly mixing transformation had a square
root, (2) if every Bernoulli shift had a square root, and (3) if every Bernoulli shift
could be imbedded in a flow. Chacon [1] showed that the answer to (1) was
negative. We showed [5], [6] that the answer to (2) and (3) was yes. These results
seem to indicate that ‘“‘enough mixing” forces T to have a square root or to be
imbeddable in a flow.

It is the purpose of this paper to give an example of a mixing transformation
that has no square root. (T is mixing if and only if
(1.1) nl&ng} m(T"A N B) = m(4)m(B)
where m(4) denotes the measure of the set 4.) The transformation T that we will
construct will not only lack a square root but will have the property that if § is
a measure preserving transformation of the unit interval such that ST = TS,
then § = T' for some integer i (possibly negative or 0).

It is still not known if every K automorphism has a square root. (K auto-
morphisms have a stronger mixing property than “mixing.” It was once con-
jectured that all K automorphisms were Bernoulli shifts but this is now known
to be false [7].)

Before starting the construction of our example we shall prove the following
theorem which we believe is of independent interest.

TueoreM 1.1. If T is a measure preserving invertible transformation of (0, 1)
such that every power of T is ergodic, and if T has the property that there is a
constant K, K > 1, and lim sup,_, , m(T"4A n B) < Km(A)m(B) for all measur-
able sets A and B, then T is mixing.

We could construct our example without the help of the above theorem but
only at the cost of considerable additional complication.

The main motivation for proving Theorem 1.1, however, comes from the
following conjecture of Kakutani. If there is a constant K, with 0 < K < 1, such
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348 SIXTH BERKELEY SYMPOSIUM: ORNSTEIN

that lim inf,_ , m(T"4 N"B) = Km(A)m(B), then T is mixing. (Clearly, all
powers of T must be ergodic.) This conjecture was shown to be false [3].

Theorem 1.1 falls into a general group of theorems to the effect that if a
transformation comes at all close to having a certain property, then it must have
that property. Here are some examples. (1) The Birkhoff ergodic theorem implies
that if for all 4, B

1 3 ;
1.2 _ i
(1.2) sgpn+1§m(TAnB)>0,
then
(1.3) lim — Y. m(T'4 A B) = m(4)m(B).
nron + 1 0

(2) England and Martin show that Von Neumann’s mixing theorem implies the

following. If for any two sets 4 and B there is a sequence of integers n; of density 1

(depending on 4 and B) such that

(1.4) lim inf m(T™4 N B) > 0,

then for any two sets 4 and B there is a sequence m; of density 1 (depending on A4
" and B) such that

(1.5) lim m(T™4 N B) = m(4)m(B).

j= o

2. A general theorem

THEOREM 2.1. Let T be a 1-1, invertible measure preserving transformation of
(0, 1) onto itself, and let m be Lebesgue measure. If (a) every power of T is ergodic,
and (b) there is a K such that lim sup,_, , m(T"A N B) < Km(A)m(B) for all
measurable sets A and B, then T is mixing.

LemMma 2.1. If T satisfies the hypothesis of Theorem 2.1, then T is weakly
mixing.

ProoF. Let T be the unitary operator on L, given by Tf(x) = f[T(x)]. If T
were not weakly mixing, then (by Von Neumann’s theorem, see [4]) there would
be a complex valued function g and a complex number a such that Tg = ag.
Since 7' is unitary, |«| = 1. Since T is ergodie, |g| is constant a.e. Since every
power of 7 is ergodic, we have (%) any set on which g is constant has measure zero.

Let F be the set of x such that ®, > arg[g(x)] = ©,. Then, given ¢ > 0, we
can find arbitrarily large n such that 7"F is the set of x, ®; + na = arg[g(z)] >
©, + na, and |na| < & This and (*) imply that given & > 0, we can find an
arbitrary large # such that [T"F-F| < ¢'. Since m(F) can be chosen as small as
we want (by properly choosing ®, and ©,), we have contradicted condition (b).

Proor oF TuEOREM 2.1. (1) We can pick a sequence of integers n; such that
if C and D are intervals with rational end points, then lim,_, , m[(T"C) n D]
exists. This follows from a standard diagonal procedure since there are only a
countable number of such C, D.
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(2) If 7 is not mixing, then n; can be chosen so that, in addition to satisfying
(1), there is one pair of intervals with rational end points C;, D; and

(2.1) }Hg m[(T™Cy) " Dy] # m(Cy)m(D,).

(3) There is a measure % on (0, 1) x (0, 1) such that  is absolutely continuous
with respect to Lebesgue measure on (0, 1) x (0, 1), and if C and D are intervals
with rational end points, then

(2.2) u(C x D) = lim m[(T™C) n D].

This requires some proof. Order the pairs C, D and let F, be the field of sets in
(0, 1) x (0, 1) generated by the first n, C x D. Define f, to be the function on
(0, 1) x (0, 1) that is constant on each atom of F, and such that if C x D isin
F,, then

2.3) f f £, dmdm = lim m[(T™C) A D].
&p [ ndl> ]

Also, 0 £ f, £ K by (b). The f, form a Martingale, and hence f, — f a.e. and f
will be the derivative of u. (It is not really necessary to use the Martingale con-
vergence theorem here. We could have defined u on the algebra generated by the
C x D with rational end points, used (b) to show that u is countably additive
when restricted to this algebra, and hence, by a theorem in [8], shown that u can
be extended to a measure on (0, 1) x (0, 1).)

(4) If A and B are any measurable sets in (0, 1), then

(2.4) u(d x B) = lim m[(T™4) " B].

This holds if 4 and B are each the union of a finite number of intervals with
rational end points. Let 4, and B, be a sequence of such sets approaching 4 and
B, respectively. Then

u(d x B) = nl}}g u(d, x B,),
(2.5) u(d, x B,) = lim m[(T"4,) 0 B,].
However, condition (b) implies that
(2.8) lirlp_'s;lp m[(T"A,) nB,] — m[(T™A4) " B]
< K(m|4, — Alm(B) + m|B, — Blm(4) + m|B, — B|m|4, — A|)

where |4, — A| denotes the symmetric difference of 4, and 4.

(5) The transformation T induces another transformation 7 on (0, 1) x (0, 1)
by the relation T(x, y) = (Tx, Ty). The measure % is invariant under 7. To see
this, we need only check it on sets of the form 4 x B. This gives
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w(d x B) = lim m[(T"4) " B],
2.7) i~

100

u(T4 x TB) = lim m[(T"T4) A TB] = lim m[T([T"4]  B)].

(6) Since T is weakly mixing, 7 is ergodic (with respect to Lebesgue measure on
(0,1) x (0, 1)). Since  is invariant under 7' and since u is absolutely continuous
with respect to Lebesgue measure, v must be a multiple of Lebesgue measure.
This multiple is 1 since [ (0, 1) x (0, 1)] = 1. This gives a contradiction since
w(Cy x Dy) # m(Cy)m(D,), using (2).

3. Construction of a special mixing transformation

Definition of Class 1. This is simply an explicit construction for a trans-
formation that can be approximated by periodic transformations. The first
step in our construction will be to describe a class of transformations that we
will call Class 1. Each transformation 7 in Class 1 will be defined on (0, 1) and
will be obtained as a limit of a sequence of transformations 7, on subsets X, of
(0, 1). The transformations 7', will have the following form: X, will be the union
of h(n) disjoint intervals ,J;, with i = 1, ---, h(n); all of the ;i will have the
same length; and T, will map ,J;, with 1 < i < h(n), linearly onto ,J;.,. T,
will not be defined on ,J},.

The X, ., and 7,,, will be obtained from X, and 7, as follows. Divide ,J;
into p(n) disjoint intervals ,Ji, i = 1, -, p(n), of the same length. Let ,J; =
T¢ =Y Jh), with £ = 1, h(n). For each i, with 1 < i < p(n), we will pick an
integer a(i, n) with the property that a(i, n) < h(r — 1). For each a(i, n) we will
pick a(i, ) + h(n — 1) disjoint intervals of the same length as SJiin (0,1) —
U?_, X;. Call these intervals ,Jim+1, ", nlhm+ai, n+h(n—1)- These intervals
will be added to X, to get X,,;. Let T,,,; map ,J} linearly onto ,J}., if
j < h(n) + a(i,n) + h(n — 1), and let T}, , ; map J,',(,,H,,(, ) +h(n—1) linearly onto

Jirt fori < p(n). T4, will not be defined on JER 1 4, -

Let ,# = ,.J, where

j—1

3.1) £ =" alke,n) + (G — D[h(a) + hn — ] +i.
k=1

Then .

(3.2) hin + 1) = p(n)[h(n) + h(n + 1)] Z a(i, n),

and T,.,(,+1/;) = w+1Ji+1 for ¢ < h(n + 1). The transformation T, is not
defined on , 4 ;Jpn+1)-

TureoreM 3.1. Class 1 contains a mixing transformation.

The rest of this section will be devoted to a proof of this theorem. Lemma 2.1
will be the crucial lemma. Here we construct a sequence with certain properties.
It is hard to do this explicitly but we will show by a probability argument that
most sequences have these properties.
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We will start with a lemma which is a form of the law of large numbers. It is
well known (and easy), and we include it only for the sake of completeness.

Lemma 3.1. Fix a, with 0 < a < 1, and give each sequence of zeros and ones
of length n the measure a™(1 — a)"™™ where m is the number of zeros in the
sequence. This puts a probability measure on the space of such sequences. Let
P,(g) be the measure of the set of sequences of length n having more than (@ + €)n
zeros. Then for fixed ¢ > 0, lim sup, ., [P,(e)]'" < 1.

Proor. Let 7, be the probability that there are exactly m zeros.

(3.3) Ty = ne—1lcfe=m+ 1) [e™(1 — a)"™™].

m!

If m > ron, r > 1, then

(3.4) Tm+1§1—m( o )<l
T ra l1—-oa r

This follows from (3.3).
Ifﬁl > ﬂz > ro, then

1 (B1—B2)n 1 (B1—B2)7n
(3.5) Tipim = (;) Tigom = [(;) ] .

This follows from (3.4). Also

(3.6) mzml T S .Y igim-
This follows from (3.4).
Lemma 3.1 follows from (3.5) and (3.6).

LemMMA 3.2. Given ¢ > 0 and even positive integers N and K and o > 1, we
can find an m > N and a sequence {a;}, withi = 1, -, m, of integers such that

() |[Zi**a| S Kforalll Sj<j+ kS m.

(ii) Let H(¢, k) be the number of j such that Ti**a; = ¢ where 1 £ j <
j+EkSmIfk < (1 —¢m,then H((, k) < a(K)™" ' (m — k).

Proor. (1) Let Y be the space of all sequences of integers {s;(w)}, with
i=1,---,m;weY, where |s;(w)| < 3K. We can put a probability measure
on Y giving all sequences equal probability.

(2) For fixed i, k, and ¢,

3.7 Prob {s;. (w) — s;(w) = ¢}

IIA
| —

(3) Now consider a fixed k¥ < (1 — &)m. We can divide the pairs of integers
(3,4 + k) into two disjoint sets E (k) and E'(k) in such a way that no integer
occurs in more than one pair in E(k), and the same is true of E!(k). Further-
more, |E(k)| > tem and |E* (k)| > jem where |E(k)| denotes the number of
elements in E (k). (This is easy to see, and we omit the details.)
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(4) There exists a y, with 0 < y < 1, such that for all m large enough, all /,
and all k < (1 — &)m, we have

(3.8) Prob {(number of i such that (i, i + k) € E(k)
and s, (w) — si(w) = ¢) > a(K) "} E(K)|} < ™.

This follows because our choice of E (k) which makes all the s;,,(w) — s;(w),
where (i, ¢ + k) € E(k), independent and makes |E'(k)| > &m, allows us to apply
(2) and Lemma 3.1.

(5) Let a,0) = 5,(w) = 8,1 (1), (a300) = ;). Then s,.,() ~ ) =
Zi14 a;(w). If m is large enough, then (4) tells us that the probability that {a;(w)}
does not satisfy (ii) is < 2mKy™. (To see (5), we note that (ii) is automatically
true for l/ | > K, therefore, if (ii) fails, (4) fails for one of the (1 — &)mK pairs
k, ¢ and E(k) or E'(k).) Lemma 3.2 follows immediately from (5) since
lim,_, ., 2mKy™ =

Construction of T. The construction will be determined if we decide at the
nth stage what p(n) and the a(i, n) should be. Choose N > 10", K = h(n — 1),
¢ =10"""3 and a = 5/4. Apply Lemma 3.2 to get m > N and a sequence a;,
with i = 1,-:+,m. Let p(r) =m and let a; = a(i,n), i < m. The integer
a[ p(n), n] will be a positive integer < 5 and will be determined later.

LemmA 3.3.  Pick an integer M and intervals ,J, and ,_Jg. We will make the
Sfollowing assumptions. (i) h(n — 1) < a < h(n) — h(n — 1). (ii) Define r and k
as follows: let M = k[h(n) + h(n — 1)] + r where k and r are nonnegative
integers and r < [h(n) + h(n — 1)]. Then k < (1 — 10™")p(n). (iii) Hither (a)
holds, or (b) and (c) hold, where

(a) a + 7> h(n) + h(n — 1),

(b) a + 7 < h(n) — h(n — 1), and

(c) k= 1.

Let H be the part of ,J, on which T¥, , is defined. Then

(3.9) m[(TﬁlH) n- lJﬂ] m(H)m(, - 1Jp)

Proor. (1) If Ji = H, then T ,(,J}) = Jil3). If condition (a) holds, then
s(i,a) =i+ k + 1 and t(i,a) = « + 7 + itk a(Z, n). If conditions (b) and
(c) hold, then s(i,a) =i + k and t(i,a) = a« + r + Zitk" 1 a(Z, n). These
formulas follow from the definition of transformations in Class 1.

@) JicHifi<pn)—k—1and J. ¢ Hif i > p(n) — k. (One i is not
accounted for; to account for it, one would have to see which condition (a) or
(b) holds. It will not, however, be necessary to bother with this.)

(3) There are at most two numbers y; and y, such that

(3.10) a+r—hn—1)<ySa+r+hn-—1), i=1,2

and J, € ,_,Jg, with i = 1, 2. This follows easily from the description of the
construction of transformations in Class 1.
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(4) Let &€ be the number of integers i such that 1 £ 4 < p(n) — k and #(3, a) =
¥, or £(4, @) = y,. Using the formula for #(i, a) in (1) and Lemma 3.2 (i), we see
thatao + r — h(n — 1) S £, ) £ o + r + h(n — 1). Applying (3), hypothesis
(ii) and Lemma 3.2 (ii), we get

c 10

(3.11) o) — & < 8 - 1]

Rewriting (4) we get

m[T,fi (H)n, IJﬁ]
m(H)

LemMa 3.4. Let M beaninteger suchthath(n) + h(n — 1) S M < h(n + 1) +
h(n). Then the following sets D; all have measure <10~"*2,

D, is the union of the ,J, which fail to satisfy either (i) and (a) or (i) and (b) of
Lemma 3.3.

D, is the union of the . ,J, which fail to satisfy either (i) and (a) or (i) and (b) of
Lemma 3.3. By (i) we mean h(n) < a < h(n + 1) — h(n). Let M = k[h(n + 1) +
h(n)] + '; then k' =0, v = M, (a) says & + M > h(n + 1) + h(n), and (b)
says & + M < h{n + 1) — h(n).

D, is the part of X, ., on which T, , is not defined.

Proor. We have constructed 7 in such a way that k(r + 1) > 10"k(n). It
follows immediately from this that the measures of D, and D, are < 107"*2,

The transformation T, , is defined on ,,,J; if i £ k(n + 2) — M. Since
M < 2h(n + 1), this shows that m(D3) < 107"*2.

LeMMA 3.5. Let A be a measurable set in X. Then we can find a sequence of
sets A, such that each A, is a union of some of the ,J;, and |A,, - A| tends to 0 as
n tends to 0.

The proof is standard and will be omitted.

LeEmMMA 3.6. Let M be an integer such that h(n) + h(n — 1) = M <
h(n + 1) + h(n). Let A and B be measurable sets in X, and define 4, and B, as
in Lemma 3.5. Then m[(TMA,) nB,_] < 4m(4,)m(B,_,).

Proor. Let H be the union of the ,J; in A, which are not in D,. Note that
H can be regarded as a union of ,,,J;. Let H; be the union of the ,.,J; in H
on which TM_, is defined. If m(H,) > 10™"*!, then condition (ii) of Lemma 3.3
is also satisfied. Also (c) holds because h(n) + h(rn — 1) < M. We can then
apply Lemma 3.3 to get

(3.13) m[(Tys 1 Hy) N B, 1] < 3m(H)m(B, ).

(3.12)

<Lk — 1)]7! < 3m(,-Jp).

Let H} be the part of H — H, that is not in D,. Since T} ; is not defined on
H),, we have that for each ,,,J, < Hy, « + M > h(n + 1). If M = k'[h(n +
1) + k(n)] + ', then ¥’ = 0 and »' = M. Since either (b) or (a) holds, (a) must
hold and we do not have to worry about (c). Condition (ii) holds trivially. We
can therefore apply Lemma 3.3 again to get the following. Let H, be the part
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of H) on which T, , is defined; then
(3.14) m(Th4 2H,) 0 B;_1] < 3m(H,)m(B;_,).

(3.13) and (3.14) imply Lemma 3.6.

Proor or THEOREM 3.1. Lemma 3.5 says that, given 4, B and ¢, there is an
N such that if n > N, then |4, — A| < ¢and |B, — B| < &. If M > R(N), then
there is an #' = N such that Ah(n') + h{(n' — 1) < M < h(n’ + 1) + h(n').
Lemma 3.6 says that m[(T™4,)Nn B, _,] < 4m(4,)m(B, -;). We then get

(1) lim supy ., m[T™A4) " B] £ 4m(4)m(B). If we show that every power
of T is ergodic, we can then apply Theorem 1.1 to show that 7 is mixing.

(2) T is ergodic. If this were not true, there would be an invariant set 4,
m(d) < 1/2, and an n and ¢ such that m(,J; " 4) > (9/10)m(,J;). This implies
that m(,J;nA4) > (9/10)m(,J;) for 1 < j < h(n), contradicting m(4) < 1/2.

(3) Every power of 7T is ergodic. If this were false, we could use (1) to show
that there is a minimal set, 4, invariant under 7*. We would then get an a such
that 774 are disjoint for @ < j < « and A = T°4. Note that o must be < 4
by (1) andu T4 = X by (2). By the argument in (2), for n large enough, more
than 9/10 of each ,J; is in one of the 774, with 0. £ j < «, and ifi = k (mod a),
then 9/10 of both ,J; and ,J, are in the same 7YA. Since this is true for n and
n + 1, we get that more than half of the A(n — 1) + a(i, n), with 1 < i < p(n),
must be congruent to 0 mod a. Furthermore, the above statement must hold
for all n large enough. By changing a[p(n — 1),n — 1], we change h(n — 1)
and we can thus insure that for each integer a < 4, there are infinitely many »
such that more than half of the A(n — 1) + a(i, n) are not congruent to 0 mod a.

4. A proof that nothing commutes with the transformation constructed in the
previous section

THEOREM 4.1. Let T be a mixing transformation in Class 1. Let S be a
measure preserving transformation of (0, 1) onto itself such that ST(x) = TS(x)
for a.e. x in (0, 1). Then there is an integer i (possibly negative or 0) such that
S(x) = Tix) a.e. (All we use is that 7 is approximable by periodic trans-
formations.)

NorarioN. Pick K disjoint sets 4, B- - in (0, 1) each of measure (K)™'.
Let A’ = 874, - - . Let A, and 4, be sequences of sets where 4,, (4,) is a union
of J;and 4, - A (4, » A’) as in Lemma 3.5. By T%(E) we will mean T? applied
to the part of £ on which 7% is defined.

ReMARK. It is no loss of generality to assume that 78(x) = ST(x) for all .

LemMa 4.1. Assume K is already given as above. We can then choose N such
that if n > N and |¢| > N, then (i) |4, — 87'4,| < 1071°K~1; (i) m(T74,) N
A,) < 2K~ 2 Furthermore, (i) and (ii) still hold if we substitute any of the other
K sets for A. (By |4 — B| we mean m(AUB — AN B).)

The proof is obvious.

DeFiNITION. If x € X, n87'X,, define ,f(x) to be an integer such that
TS () and S(x) are in the same ,J;.
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LeMMA 4.2. Let x be a point in ,J; S~ 'X,. Let j be an integer (not neces-
sarily positive) such that 1 < i + j < k(n)and 1 £ j + i + ,f(x) < h(n). Then
f@) = o f[Ti)].

Proor. This follows immediately from the definition of ,f and the fact that
ST =T8.

Lemma 4.3. Let K and N be defined as in Lemma 4.1. Assume that the set
where I,, f (x)| < N has measure < ym(X,). Then, for all nlarge enough, we can find
an £, th(n) < ¢ < 3h(n) such that if we let E be the subset of ,J, on which
|nf(x)| > N, then m(E) > 27 3m(,J,).

Proof. (1) As n — 0, the measure of the set where , f is not defined tends
to 0. We can, therefore, find an ¢, h(n) £ ¢ < 3h(n) such that if E’ is the part
of ,J, on which ,f is defined, then m(E’) > (99/100)m(,J,).

(2) Let E be the part of E’ where |,f| > N. Now |,f| < N on E' — E, and if
m(B) < 273m(,J,), then m(E' — E) > 3m(,J,).

(3) We can now apply Lemma 4.2 and (2) to show that |, f| < N on more than
3/4 of each ,J; where N < i < h(n) — N.If  is large enough, with respect to N,
this contradicts the assumption of Lemma 4.3.

The following lemma contains the whole idea of the proof of Theorem 4.1.

LemMA 4.4. Let K and N be defined as in Lemma 4.1. Then for n large enough,
the set where |,f(x)| < N has measure > Im(X,).

Proor. We will start by assuming that Lemma 4.4 is false.

(1) We can therefore apply Lemma 4.3 to get 3h(n) < ¢ < 3h(n) such that
the subset E, of ,J, where |,f(x)| > N, has measure > 2~ >m(,J,). Let E' be
the part of E where ,f(x) < —N. We can assume m(E’) = im(E) > 2™ *m(,J,).
(The other case, where the part of E in which ,f(x) 2 N has measure > im(E),
will follow by exactly the same argument.)

(2) One of the sets, 4, B, C, and so forth, (we will call it 4 for the sake of
notation) has the following property. Let 4}, be the union of those ,J; such that
JicA,and £ < i £ h(n). Then m(;4,) > 273m(4’) = 273K

(3) Let ,A4, be the part of A, on which ,f < —N. Let E; ; be the part of
24,0 ,J; where ,f = —i.

4) E' = U,E;, and E;; = T)"%(E,,). (The first statement is just the
definition of E’ and the second comes immediately from Lemma 4.2. This holds
for those j such that ,J;n 4, # 0.)

(5) m(;4,) > 27K~ !. This comes from (1), (2) and (4). We are now ready
to get (a) the part of ,4, not in S~ '4, has measure < 107 '°K™! < 107 %m(,4,).
(The first inequality comes from Lemma 4.1 (a) and the second from (5).) The
rest of this proof will de devoted to proving (b) the part of ,4, not in §~'4,
has measure > m(,4}).

(6) If o > N, then Lemma 4.1 (ii} implies

4.1) m( A, "T?4,) < aK™? < 23[2K"'m(,4,)].

(The last inequality comes from (2).) We will now use (4.1) to get: if a > N,
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(4.2) m<U Ei,jms—‘A,,> < 24K"1m<U E,,j>.

To get (4.2) note that (4) implies m(E, ;)/m(,J;) does not depend on j if
WJ; = 14,. We also have B, ; =« S7'4, or E, ;nS™'4, = ¥, and that the
former occurs if and only if ,J; = T;4,. These two statements combined with
(4.1) give (4.2).

If K were chosen so that 2*K~! < 1, (4.2) would imply (ii) by summing over a.

Proor or THEOREM 4.1. Lemma 4.4 implies that for all » large enough, the
part of X where |,,f(x)] < N has measure > 4. This implies that there is a set
F < X, m(F) > %such that ifx € F, then |,f(x)| £ N for infinitely many n. This
implies that there is an | M(z)| < N such that ,f(x) = M(x) for infinitely many
n,and all z € F' = F where m(F’) # 0. We therefore have that S(x) and 7M™(x)
are in the same ,J; for infinitely many =, for x € F'. But the ,J; are intervals
whose lengths are tending to zero which implies that S(x) = TM®(x) forx € F".

For fixed M, the set of x such that S(x) = T¥(x) is invariant under 7'. Since
T is ergodic, this proves Theorem 4.1.

REMARK. It is not necessary to assume that S is measure preserving and
onto. It is enough to assume that S~ 'A4 is measurable if 4 is measurable, that
there is no set 4 such that m(4) = 0 and m(S~'4) = 1, and that the range of
S is a measurable set of nonzero measure. It is then easy to see that the
assumption that S commutes with an ergodic measure preserving transformation
forces S to be measure preserving and onto.
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