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1. Summary and introduction

We consider the class C(a) of asymptotic tests proposed by Neyman [6]. The
term of order n 1/2 in the normal approximation for the distributions of the test
statistics is obtained. Moreover several theorems on conditional distributions are
proved. They are used in deriving the main result but they also seem to be of
independent interest.
Neyman [6] proposed a class of asymptotic tests called C(a) for the following

statistical problem. Let a random variable (r.v.) X have a distribution depending
on parameters 0 = (O., , O.) and 4 which take their values in open sets
O c RS and - R1 respectively. (We denote by Rs. s = 1. 2. , the space of
real row vectors x = (x1,l , x5) with the Euclidean norm ||x|| = (xx')"I2, a
prime denoting the transposition.) The hypothesis H: = 0, where OCE is
a specified value, is to be tested on the basis of n independent observations
X1, *-, Xn of the r.v. (In the sequel, we put '0 = 0.) The distribution of X is
assumed to have a density f(x; 0, 4) (with respect to an appropriate measure)
which satisfies certain regularity conditions. The C(a) tests are constructed as
follows. Let a function g(x, 0) be such that

(1.1) E0,, 0g(X, 0) 0, E0,0g2(X. 0) = 72 < )C. OEO.

(The first assumption can always be satisfied by considering g(x, 0) - E9 0 g(X, 0)
instead of g(x. 0).) Form the function

I n

(1.2) Z.(0) = 1 g(xi 0)
a (0),/ i=

and let On be a locally root n consistent estimator of 0 (which means that
n(O0 - 0O) is bounded in probability where Oo is the true value of 0; for a

precise definition see [6]). It was shown in [6] that Zn(On) is asymptotically
(0, 1) normally distributed whatever be the true value of 0 if and only if g(x, 0)
is orthogonal to the logarithmic derivatives

(1.3) hj(x 0) = a logf(x; 0, 0), j = 1, , s,
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in the sense that

(1.4) Eq, 0 g(X, 0)hi(X, 0) =- O, 0 E- 0, j =1***,s.

This implies that the test with the critical region { Z,(O,)l > Z./2}, where Z,/2
is defined by .K(zal2) = 1 - a/2, X(z) being the (0, 1) normal distribution
function (d.f.), has the limiting significance level a whatever be the true value
of 0. The class of tests of this form was called C(a).
A further result of [6] gives a rule for constructing an asymptotically optimal

test of class C(a). Namely, let

(1.5) ho(x, 0) = logf(x; 0, 4)Ie=o

and let g(x, 0) be obtained from ho(x, 0) by the orthogonalization process,
s

(1.6) g(x, 0) = ho(x, 0)-E aj(O)hj(x, 0)

to satisfy (1.4). Then the test of class C(a) with this g(x, 0) is an asymptotically
optimal one.

Several examples of the use of C((a) tests in applied problems are given in [7].
When applying an asymptotic test one always encounters the question of

the accuracy of the normal approximation. The standard methods related to the
sums of independent random variables are inapplicable for the C(a) test statistics
since the use of an estimate instead of 0 in (1.2) makes the terms of the sum
dependent. In the present paper the correction term of order n-'/2 to the
normal approximation under the hypothesis H is obtained when g(X, 0) and
some related random variables have densities with respect to the Lebesgue
measure. This result is contained in Theorem 2.1 stated in Section 2.

In Section 3, we give two theorems on conditional distributions. Namely, the
normalized sum ofindependent random vectors is considered. Each ofthe vectors
consists of two subvectors and hence so does their sum. The theorems concern
the conditional distribution of the first subvector of the sum given the second
one. The only paper which we know to deal with the conditional distributions
of this kind is that of Steck [8]. In this paper some theorems on the convergence
of conditional distributions to the normal have been proved.

In the theorems of Section 3 we restrict ourselves to the case of identically
distributed summands with a one dimensional conditioning subvector which is
sufficient for the proof of Theorem 2.1. Theorem 3.1 establishes a Lipschitz
property for the dependence in variation of the conditional distribution on the
value of the conditioning variable.
Theorem 3.2 gives an asymptotic estimate for tail probabilities of conditional

distributions.
The proofs of theorems of Sections 2 and 3 are given in Sections 4 to 6.

Section 7 contains some concluding remarks.
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2. The main theorem

Let the hypothesis H be true and 00 E 0 be the true value of 0. Thus we have
n independent random variables X1, * X,, with a common d.f., F(x) =
F(x: 00. 0). (Since the values 0 = 00 and 4 = 40 will be fixed we shall omit them
in our notations.) Denote

g(x) = g(x. Oo). gj(x) = (OX. 6
aoj 0=0

2g(X, 0)
(2.1) gi j z(X 0) = ( gij(x) = gi j(, 00),a0 ao0

g~~1(x. 0) = a3g(X. 0)9i j t'(X 0) = ro °o i.J.jt = 1, 2, , s.

We shall state now the assumptions to be used in the theorem.
ASSUMPTION 1. Eg(X) = 0, Eg2(X) = 1, Elg(X)13 < oo
ASSUMPTION 2. Egj(X) = Oforj = 1, 2, - s.
REMARK. The variance of g(X) may be taken equal to 1 by considering

g(x. 0)/a(0) instead of g(x, 0). Under certain regularity conditions Assumption 2
is equivalent to (1.4) in view of the equation

(2.2) 0 =
a g(x O)f (x, 0) dx = g dF + laogf dF.0)f(, ,fdo aoi

WX'e prefer to use Assumption 2 directly because it does not refer to the
dependence of the distribution on 0.
ASSUMPTION 3. E|gj(X)I3 < xc, j = 1, ,.
ASSUMPTION 4. EJgi j(X)J26 < oo for some 6 > 0: i, j = I,., s.
ASSUMPTION 5. There exist a neighborhood U E0 of 00 and a function K(x)

such that Igi j {(x, 0)| _ K(x)for all 0 E U, i,j, = 1, , s; E(K(x))'+6 < oo

for some 6 > 0.
For the convenience of notation, we introduce the following symbol.
DEFINITION 2.1. Let C, C2, * * * be a sequence of random variables. We shall

write n= co(a) if for any c > 0, P{t,,J > cna} = o(n-112) as n +ooc.
Now we assume that the estimator 0,, is expressible in the form

(2.3) n (0o - 00) = - h(Xi) + i1n
where h(x) = (h1 (x), ,h(x)), 1,, = (1n, I,a

ASSUMPTION 6. Ehj(X) = 0, Elhj(X)13 < oo, j = 1, *
ASSUMPTION 7. ?1n j = O)(-6) forsome 6 > 0;j = 1, * , s.
Note that 6 in Assumptions 4, 5 and 7 need not be the same.
The remaining assumptions concern the joint distribution of the (2s + 1)

dimensional random vector (YO, Y) = (YO, Y1, , Y2,) where
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(2.4) Yo = g(X), Yj = gj(X), Ys+j = hj(X), j = 1, * *s.
Let q(T, t) be the characteristic function (c.f.) of (Y0, Y),

(2.5) p(T, t) = E exp {TYO + tY'}, T e R', t e R2s.

ASSUMPTION 8. For some y > 0, p)(T, t) = O( 11z, t||Y) as ||T, t || 00 (we
write |T, t|| = (IT12 + I|tII2)1/2).
ASSUMPTION 9. E(H21s= I Yjlj) < 00 for any combination of Ej = 0 or 1, j=

1, * ,2s.
ASSUMPTION 10. Put xj(T) = E[IYj13 exp {iTYO }]. There exists an n1 such

that the Xj4 (T) are absolutely integrable on R', j = 1, * , 2s.
Denote by B the matrix with elements bi j = Egi, j(X), i, j = 1, s, S, and by

I the covariance matrix of (Y0, Y) with elements

(2.6) i j = EYIYJ. i,j=0,1, ,2s.

Note that (Y0, Y) has zero mean.

Let (VO, V1, , V2,) be a normally distributed random vector with zero
mean and covariance matrix E. Put

(2.7) S = (VI, , Vs), T = (Vs+l. V2s).
W = ST' + ITBT', pi(x) = E[WI VO = x].

Since ao 0 = 1 (see Assumption 1) we have by the well-known formulae

(2.8) E( Vj Vo = x) = ao0,jx

(2.9) Cov (Vi, Vj Vo = x) = ai, j-aO, io,, ij =,1 2s.

Therefore one can easily derive that
S S

(2.10) P(x) = Z uj,s+j + 2 E bjea,5+j_,5+
j=1 j=I

- 1-X2) [_Z 0ja0,s+ + 1 Z bi,eYo,s+ijs+1
Denote by 4n(x) the d.f. of Zn(O,) where Zn(O) is defined by (1.2). We shall

write .4/(x) and w(x) for the (0, 1) normal d.f. and its density respectively.
THEOREM 2.1. Let the Assumptions 1 through 10 be satisfied. Then

(2.11) 4(x) = 4¢.(x) + e.(x)
where

(2.12) On(X) = /(x) + n- 1/2 n(X)[(X 3/6) (1 - x2) -_lt(X)],
with IA3 = EYo and n" 2S"(x) -O 0 as n -- o uniformly in x e A for any bounded
A BR1.
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3. Some theorems on conditional distributions

Let YO i, Yi), Yi = (Yi1,1. i = 1, , n, be n independently identi-
cally distributed random vectors in Rkl+1 and

(3.1) 9(pr, t) = E exp {TYo, 1 + tY'}, t E Rk,

their common c.f. Let

(3.2) Zn = E Yo,j Sn = (Sn,1,1 Sn,k) EYi.
fln i=1 A/; i= 1

In the following theorem the distribution of (Yo,i. Yi) will be assumed to
satisfy Assumptions 8 and 9 (which should be read in this case with 2s replaced
by k). The c.f. of (Zn. Sn) is

(3.3) q(pn(n 1/2T n- 1/2t) = Pn(z. t).

say. Under Assumption 8, for n sufficiently large, this c.f. is absolutely integrable
and (Zn, Sn) has a joint (k + 1) dimensional density. Denote this density by
Pn(Z, x) and the marginal density of Zn by Pn(z). Then

(3.4) pn(xz) P(Z, X)
P.(z)

is the conditional density of Sn given Zn.
THEOREM 3.1. Let the Assumptions 8 and 9 (with k instead of 2s) be satisfied.

Then for any bounded A c R1 there exist a K > 0 and a finite N such that

(3.5) PRpn(XIZI) - Pn(XIZ2) dx . KIzI - z21

for all z1, Z2 E A and n > N.

For the next theorem, consider n independent identically distributed two
dimensional random vectors (X1, Y1), * * , (Xn, Yn). Denote their joint d.f. by
P(x, y) and their marginal distribution function by P(x) and Q(y), respectively.
Let

n in
(3.6) Zn = -EXi, Sn=_,Y

,/n 1 7n Y1
Y

Denote

(3.7) Mr = EIYi Jr, Mr(x) = E(I1YrIX1 = x).

For two absolutely integrable functions f, (x) and f2 (x), denote by f *f2 (x)
their convolution.

(3.8) fl * f2 (x) = ff(x - v)f2 (v) dv,

and by fl* (x) an n fold convolution of f, (x) with itself.
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THEOREM 3.2. Assume that (i) EX1 = EY, = 0, (ii) P(x) has a density p(x),
(iii) M, < x for some r > 2, and (iv) the functions pV*(x) and [Mr(x)p(x)]v*
are bounded for some finite v. Then

(3.9) P|SnJ > XlZn = z} = O(Xrn r/2)
as n - oo, x/log n -x 0 uniformly in z E A for any bounded A c R'.
For an unconditional counterpart of this theorem see Lemma 4.2 (iv) below.

4. Proof of Theorem 2.1

We establish first several lemmas. Denote

I n i n 1n
(4.1) Z.,0 = E g(Xi), Zn, = E gj(Xi), Zns+j = Ehj(Xi)7n 1 1n I

7 1'
j= .l..s,

(4.2) Sn = (Zn,i, Zn,s), Tn = (Zn,s+I Zn,2s)
Let Pn(Z) and Pn(Z, x), xE R2S, denote the marginal density of Zn0 and the
joint density of (Zn,0, Zn,, v Zn, 2s) respectively. Under Assumption 8 they
exist for n sufficiently large. Denote by (Pn(T, t) = (n(n-l1/2T n-1"2t) the c.f.
Of (Zn,0, Zn,i, e Zn,2s) and by (Pn(T) = n((T 0) the c.f. of Zn,0.
LEMMA 4.1. Under Assumption 8
(i) Pn(Z) - (Z) as n - oo uniformnly in z E R1, and
(ii) Pn(Z) has a derivative p'(z) for n sufficiently large and lim supn,- supZeRl

jpn(Z)I < xo.
PROOF. For part (i) see, for example, Feller [2]. Theorem 2 in Chapter XV.5.

Since

(4.3) SUP lp,(Z)I -<. fIJ (Tz)I dT,
one can get the proof of (ii) from (5.12), (5.17), (5.18) and (5.19) below.
(Actually, p'(z) converges to ;n'(z) but we state in the lemma only what we need
in the proof of the theorem.)
LEMMA 4.2. Let Yi, , Yn be independent identically distributed random

variables and Sn = n - 1/2 y, Yi. Assume that ElYilr < oo for some r > 0. Then

(4.4) P{ISnI > X} = o(x-rnl-r/2) asn x oo,

provided one of the following conditions is satisfied: (i) 0 < r < 1, (ii) 1 _ r < 2,
EY1 = 0, (iii) r = 2, EY1 = 0, x -X o, (iv) r > 2, EY1 = 0, x/log n - oco.

PROOF. For the parts (i) and (ii) see Binmore and Stratton [1] (note that
EIY, Jr< x implies P{IY1I > x} = o(x-') as x -x o). Let Fn(x) be the d.f. of
Sn. Part (iii) follows from the inequality

(4.5) X2P{ISnI > X} - r' y2 dFn(y)
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and the uniform integrability of y2 in F"(y) (see Loeve [4], Theorem 11.4.A (iii)).
Part (iv) follows from Theorem 1 of Nagaev [5]. This theorem actually provides
an inequality which implies (4.4) only with 0 instead of o. However we shall
indicate below (see 6.25) and the subsequent paragraph) a modification of
Nagaev's proof which gives o in (4.4).

In terms of the symbol co (Definition 2.1) we have,
COROLLARY 4.1. Under the conditions of Lemma 4.2

(i) S" =c(2 ) if r < 3,

(ii) S. = co(e) for any E > 0 if r > 3.

With the notation (4.1), (4.2), let

W. = S.T' + IT.BT., M.(x) = E[W.IZ.,o = x],
(4.6) P{Wn < x} = G0(X), P{Wn < xjZ,,o = z} = Gn(xIZ).

Denote G(x|z) = P{W < xIVo = z} (see (2.7)).
LEMMA 4.3. Let Assumptions 8 and 9 be satisfied. Then, for any bounded

A cR1

(i) there exist a K > 0 and a finite N such that

(4.7) SupjGn(xIzI) - G0(xIz2)1 < Kjz, - Z21
x

for all zl, Z2 E A and n > N;

(ii) supIGn(x Iz) - G(x I z)I - 0 uniformly in zE A;
xeR'

(iii) /A.(z) - t(z) uniformly in z EA.

PROOF. Since the inequality { W. < x} determines a Borel set in the sample
space of (Sn, Tn), assertion (i) follows from Theorem 3.1. The convergence in
assertion (ii) for any fixed z follows directly from Theorem 2.4 of Steck [8];
together with (i), this implies the asserted uniform convergence. Otherwise one
could find an £ > 0, a subsequence {m} c {n} and a sequence {Zm} approaching
a finite limit z0, say, such that

(4.8) sUpIGm(xjzm) - G(xlZm)l > s for all m.

Then supIGI, (x Zm) -Gm (x zo ) would not tend to zero which would contra-
x

dict (i).
Denote by a(z) and 1(z) the conditional mean and covariance matrix of

(V1, **, V2.) given V0 = z (see (2.7) above) and by an(z) and En(Z) those of
(Zn, 1 *, Zn, 2s) given Zn, = z. Then (iii) follows from the convergence

(4.9) a"(z) - a(z), E n(Z) -* (Z) as n -+ oo
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uniformly in z E A. This latter convergence can be proved by taking the first
and second derivatives of f e it p(T, t) dT
(4.10) On(t, z) =

T e -zTn(T, 0) dT

the conditional c.f. of (Sn, Tn), given Zn, o = z, at t = 0. The technique is quite
similar to that used in [8]. It is easily verified that the derivatives of T.n(T, t) =
p(n-112T, n-112t) at t = 0 and any fixed T converge to the corresponding
derivatives of the limiting normal c.f. Then the passage to the limit under the
integral sign which is justified by the bounded convergence theorem in the same
way as in [8] leads to (4.9).
REMARK. The assertions (ii) and (iii) are valid actually under the conditions

of Theorem 2.4 in [8] which are weaker than those used here. The proof of (iii)
sketched above remains valid in this case; the proof of (ii) requires some
standard but rather cumbersome technique.
The following lemma states some properties of the symbol co (Definition 2.1).

The proof is obvious and will be omitted.
LEMMA 4.4.

(i) If n = c)(a) then n = co(a')for any a' > a.
(ii) If Cn = co(a) and 1n = c(b) then Cn + an = cO(max (a, b)).

(iii) If Cn = co(a) and 1n = a)(b) then Cn1n = Co(a + b).
Now we proceed to the proof of the theorem. For notational convenience, let

00 = 0. Expanding g(Xi, In) by the Taylor formula, we have
I n I s n

(4.11) Zn(On) = E 9(Xi) + 6n,j E gi(Xi)>/i= 1 V/ j= 1 i= 1

1 1n n

+ E on,jl E gj,?,(Xi) + E o Z gj,k,{(X1 tn,iOn),
n>/;j, i=1 6 j,k,C i=

where 0 _ tn,i _ 1. Denote by Bn the matrix with elements

(4.12) bn,j,. =- E g1.e(Xi), j, ( = 1, * *, s.
n i=

Then using also (4.6) we can write

(4.13) Zn(On) = Zn,,0 + n 12 Wn + n-1/2Rn
where

(4.14) Rn = ?1nSn + 2(Tn + ?ln)(Bn - B)(Tn + tn) + (TnB?1n + ThnBtlg)
n

+ ion, 0kOn, E gj,k,{(Xi, tn,iOn) = Rn,I + jRn,2 + Rn,3 + 6Rn,4,
j, k,e i=1

say. We shall show now that Rn = co(0). By Lemma 5.2 (ii), it is sufficient to
show that Rn, i = co(0), i = 1, * * *, 4.
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By Assumptions 4, 5 and 7 we can find an a, 0 < a < 3, such that

(4.15) Elgi j(X)13/2(1l-) < 00, E(K(X))"('-') < 00, a 2

We have R, 1 = I 'n, j Zn,j By Assumption 3 and Corollary 4.1 (ii), we
have Zn, j = cs(a/2). Therefore. qn j Zn j = c1(0) by Lemma 4.4, and Rn, 1 = o(0).

Consider a term RJ 2 = (bn j - bj, )(T., j + Un j) (T ±e + of R.2 By
Assumption 4 and Corollary 4.1 (i)

(4.16) bn j,-bje = n 112._1 Z (gj,(Xi) - bJ,() = 1-- + 2 )

with r = 3/2(1 -a) (see (4.15)). Thus bn j 6-bj t = w( -x). By Assumption 6
Tn j = co(a/2) and by Lemma 4.4 Tn j + qnj = w(o(/2). Rj,'f = ao(0), and

Rn,2 =Co(O)
In a similar way we obtain Rn 3 = 3(O).
Now consider a term

n

(4.17) Ri'4"k' = On, jOn,kOn, e gj,k,e(Xi, tn,iOn)
n= 1

ofRn4.WehaveOt,n;-= 12(T + ?I) = o((o - 1)/2)and,byLemma4.4.
Onj = o-)((c. - 1)/2). Take a 3 > 0 such that {0: 101 _ } U (see Assumption
5). Then

(4.18) P{IRn |'l > c} < P{IR:, ,I > c, On e U} + P{IlnI > }
n

. P{ |0n, jOn,kOn,,In K(Xi) > c} + o(n 11)
i= 1

We have

(4.19) n/nIOn, jOn,kOn,, = (O1 + 3 2 (O)= - 1).

Hence it remains to show that

n o

(4.20) n- 12 Y K(Xi) =
j=1

Denote K = EK(X). By Assumption 5 (see (4.15)) and Corollary 4.1 (i),

(4.21) n Z K(Xi) - K/ = n (K(Xi) - K) = C) I -

Since a was chosen to be less than 1/3, K/n = (1(I - 3a/2). Therefore (4.21)
implies (4.20).
We shall show now that the term n- 1/2Rn in (4.13) may be neglected. Denote

(4.22) Zn = Zn,0 + nf/ Wn, 4)¢>(x) = P{Z* < x}.
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Let (2.11) hold for 0*(x). Then for an arbitrary 3 > 0,

(4.23) 4,(x) = P{Zn + n"112Rn < x}
. P{Zn < x + n1123} + P{IRnl > 3}
= 0.(x + n-1126) + E,(x + n-'123) + o(n-"12).

A similar estimate from below gives

(4.24) 4>n(X) - 0.(x - n 1/23) + gn(X - n- 1/23) + o(n- 1/2)
The function 4n(x) hasaderivative bounded uniformly inn andx, 4 (x) < C, say.
Therefore

(4.25) Pkn(X) - 0n(X)I _ n 2 Cb + En(x) + o(n 12)
where zn(x) = sup [icEn(X + U)|; IU . 3]. Since 3 > 0 is arbitrary, (4.25)implies
the assertion of Theorem 2.1 for On(x).

Writing Pn(x) for the d.f. of Zn, 0 we have from (4.6) and (4.22)

(4.26) on*(x) = J Gn((x - z) /niz) dPn(z).
The next step of the proof will be to show that 4*(x) may be replaced by

(4.27) n**() = f Gn((X - z) nx) dP (z),
that is, for any a > 0

(4.28) sup1 4(x) *(x)l = o(n-1/2) as n oc.xef - a,a] nn

Put 3 = n-3/8 and write the difference of (4.26) and (4.27) as

(4.29) on*(X) - On (X)

= (7-a + + f)[Gn((x -z) nIz) - Gn((x - z)/ Ix)]dP,(z)
I1(x) + I2(x) + I3(x),

say. Applying Lemma 4.3 (i) with A = a- 1, a + 1] and using the fact
that p.(z) is bounded (Lemma 4.1 (i) ), we obtain

(4.30) max II,(x)I < K max pn(x)_ ix - zldz = 0(32) =o(n--1/2
XE-[-a, a]x-

Further, II2 (x) I < I2, 1 (x) + I2, 2 (X) where

(4.31) I2, (x) = fx [1 - G,((x - Z)/nIx)] pn(z) dz.

(4.32) I2,2(x) = f - G ((x - z)/nIz)]pn(z)dz.
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Using the inequality

(4.33) 1 - G.((x - z) /ly) _ P{Wn > nI81Zo = y} forx - z > 6

with y = x, we obtain

(4.34) I2, 1(X) _ P{ Wn > n118 Zn, 0 = X}.

Assumptions 3,6,8, and 10 assure the fulfillment ofthe conditions of Theorem
3.2 for the vectors (gj(Xi), g(Xi)) and (hj(Xi), g(Xi)),j = 1, *.**, s, with r = 3.
(One should only note that Xj(r) in Assumption 10 is the Fourier transform of
M3 (x)p(x), and the integrability of XI1 (T) implies the boundedness of
[M3(y)p(y)]nl*.) Therefore

(4.35) P{|Zn,jl > n I Zng = x} = o(n-12+3/16)) = o(n-112), j= 1," ,2s.

(In relations of this kind we mean that o(n-112) is uniform in x E [-a, a]
without stating it explicitly.) Now we obtain from the definition of Wn (see (4.6))
and Lemma 4.4 (applied to conditional probabilities) that

(4.36) P{| W,| > n1/ JZn = x} = o(n- 1/2)
In view of (4.34) this implies

(4.37) I2, 1 (X) = O (n -1/2

Using (4.33) with y = z, we have

(4.38) I2, 2(X) .< r P{Wn > n118 IZ, , = z} dP.(z)

< j -ooP{Wn> n18 1Z,,, = z} dPn(z) = P{Wn > n,/8}.
This probability is estimated in the same way as (4.34) but Lemma 4.2 is used,
rather than Theorem 3.2, which gives

(4.39) I2,2(X) = o(n- /2).
The relations (4.29), (4.30), (4.37) and (4.39) together with a similar estimate
for I3 (x) prove (4.28).
Thus we are to prove the theorem for X"*(x) defined by (4.27). Rewrite it in

the form

(4.40) n (x) = fPn(x - z) dGn(z/nlx).
Using (4.36) we have

(4.41) r >n-3/8 Pn(x - z) dGn(z Ix) < P{W> nI"8 I Z_ 0 = x} = o(n-/2
Therefore (writingagain3 = n- 3/8)

(4.42) On (x) = Pn(x - z)dGn(z nx) + o(n112).
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By Taylor's formula we obtain

(4.43) 0**(x) = J' P.(x - n"'2p(x))dG"(z nIx)

+ f: (n-12(X) - Z)pn(X - n- y2 (x)) dG.(z,/ Ix)

+ f (-l1/2 n(X) - z)[P( - Z*) -p.(x - n-/2ii(x))] dG.(z nix)
+ o(n 1/2)

= J1(X) + 12(X) + J3(X) + o(n112

say, where z* lies between z and n- 1/22t(x). By virtue of (4.36)

(4.44) J1 (x) = P,(x - n 112yiL(X))[1 - P{| W"I > n"/81|ZnO = x}]
= P.(X - n 112yt(X)) + o(n-1/2 ).

Now we shall show that J2(x) and J3(x) are o(n-1/2). First, by Theorem
11.4.A (iii) of Loeve [4], the assertions (ii) and (iii) of Lemma 4.3 imply

(4.45) z dGz(z/nIx) = n 1/2 ydG(ylx) =o(n--12).

Up to the factor pn(x -n- /2It(x)), which is bounded by Lemma 4.1 (i),
J2 (X) is equal to

(4.46) n"- /2 un(X)[1 -j dGn(z nIx)]

- [n-1/2 jli (x) -f z dGn(z,/ Ix)],

andby (4.36) and (4.45) wegetJ2(x) O(n- - /2

Finally,
(-47/2)un(x) z = (n-3/8
7n -1/2 JU (X) -Z* = 0(n - 3/8)for z e [-6,5],

and making use of Lemma 4.1 (ii) we obtain J3(X) = O(n-314) o(n-1- 2

Thus

(4.48) 0**(x) = Pn(x - n" 1/2 n(X)) + o(n-1/2),
or since p1 (x) -, Li(x) and pn(x) is bounded,

(4.49) 0**(x) = P.(x - n 112P(X)) + o(n-1/2).
By virtue of the well known expansion

(4.50) P.(x) = AX(x) + n1-2* 13(1 - x2)n(x) + o(n-12)
(see, for example, [2], Ch. XVI, § 4), the assertion of the theorem follows from
(4.49).
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5. Proof of Theorem 3.1

We have

(5.1) | (p.(xIzI) - p.(xIz2) dx Pp.(Z1,X) P_p(Z2,X) dX .I +I2,.JRk~~~~~~d Jkp.(z1) P.(Z2)
where

I, = | P.(ZI,x)IP.(Z2) -Pn(ZJ)Idx = IP.(Z2) -Pn(ZI)l
Rk P.(Z1)Pn(Z2) Pn(Z2)

(5.2) ' I2 = | p (Z1 x) -Pn(Z2, X)IPn(Zl) dx
Rk P.(zI ) Pn(Z2)

1 - I
p=(z2)JRkIPn(Z1 x) P.(Z2, X) dx =

say. By Lemma 4.1, IP.(Z2) - P.(Z1) CCIz2 - zII and pA(z2) is bounded away
from zero for Z2 e A and n sufficiently large. Thus we need only to obtain an
inequality forI similar to (3.5). This will be based on the following lemma, which
is an immediate multidimensional extension of Lemma 1.5.1 from Ibragimov
and Linnik [3].
LEMMA 5.1. Let a function f(x), x e Rk, be absolutely integrable in Rk, with

Fourier transform

(5.3) fRk(t)= e f(x) dx, te-Rk,

which has derivatives

DE 1 + *- +£k

(5.4) -9- ,£k ti(t) = a (t), j = 0 or 1,j = 1, , k,

with these derivatives (including 90,...,o /(t) = 0(t)) being square integrable in
Rk. Then

(5.5) Rk If(x)I dx . 2k/2 ( IRk PE.. E-k II(t)12 dt)
where the summation is over all possible combinations Of l, * Sk = 0 or 1.
Now let 0/i (z, -) denote the Fourier transform of p.(z, -). We have

(5.6) {ei Z , t) dz = Jeiz( eitx' pn(z, x) dx) dz = p, (z, t).

Therefore, for sufficiently large n,

(5.7) n(Z' t) = 2- {e- 0,,(T, t) dT,
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the application of the inversion formula being justified by Assumption 8. Let g
stand for one of the operators 9 ... from (5.4). Then

(5.8) .9 0. (z. t) = - e 9n(T. t) dT.
27r

(The differentiation under the integral sign is justified by Assumption 9 and
relations (5.23), (5.24) below.) Furthermore, (5.8) implies

(5.9) J-9(0.(Z1, t) - 0.(Z2, t) . IZI - Z21 IT'9IP,,(T, t)J dT,

and in order to obtain the required inequality for I we need by Lemma 5.1 to
show that

(5.10) a ... (t) dt _ K for all el, k= 0 or 1,

where

(5.11) a,,Ek (t) = J 9E (p,(T, t) I d

and K is a constant which does not depend on n. T and t.

Consider first a(t) = aO,..., 0 (t),

(5.12) a(t) = f ITPn(T, t)I dT.

In view of (3.3) we need an estimate for p(T, t). By Assumption 8 we can find
C > 0 and B > 0 such that

(5.13) 1P(T, t)J _ C||T, tl -Y for |T. tl . B.

We take B large enough to satisfy the inequality

(5.14) CB-7 < 1.

Furthermore, it follows from Assumption 8 that Y, the covariance matrix of
(Yo, 1, Y1), is nondegenerate (otherwise there would exist (TO, to) 7& (0, 0) such
that E(TOYO 1 + toY,)2 = 0 and ((UTO,ut0)1,U- x < U < 0o). Since
E(Yo 1, Y1) = 0, one can find A > 0 and 3 > 0 such that

(5.15) (p(T, t) I < e--11Tr,tII2 for |1,| t || <

Moreover, sup11T,tJJ>,15Jp(z, t)J < 1. Therefore, reducing A if necessary, we get

(5.16) 1(z, t)| _e01 IttI for 11z, t || < B.

Setting z(t) = max [(B2n- IItI2)1/2, 0], write a(t) as

(5.17) a(t) = (J' + ) o(, t)I dT = a(')(t) + a(2)(t)
|r| _< r(t) ||> T(t)
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say. Then we have from (3.3), (5.13) and (5.16)

(5.18) a(1)(t) . 2 r° e-All'ttII2 dT < 2 Te-All"11' d(5.18 ae11fo '1o1d
(5.19) a(2)f(t) < 2 T

Cnnny/2 2dT= 2Cnnn;/2
a~2~(t). 2 (x2 + IltI2)ny'2 x ny -2) [T2(t) + jltjj2](ny/2)-1

2C;n -2 for _B n,

2CnnnY/2 fo21t1 2>B2n
(ny - 2) 11 t i ny -2t2 B2n

We can estimate the integrals I [a(i)(t)]2 dt, i = 1, 2. From (5.18),

(5.20) f [a(l)(t)]2 dt

<-4TR-J{O fO T12exp{-( || l, t | 2 + 1lT2, t ll2))}dT1 dd2 dt < OO.

Let Vn(B) denote the volume of the k dimensional sphere l| t 11 2 < B2n; then for
B fixed, Vn(B) = 0(nkI2). Hence we obtain from (5.19)

(5.21) |[ (2)(t)]2 dt < 4C2nn2 V (B) + 4C2nn fy dtJia~~~;i ~(ny - 2)2B2ny-4 " (ny - 2)2 jjtjjkBn112 jjtjj2I

= O(nk2(CB-y)2n) -O0

in view of (5.14). Now (5.17), (5.20) and (5.21) imply (5.10) for a(t) = ao,..., 0 (t)-
Consider now the general case of (5.10). Suppose without loss of generality

that s1 = ... = et = 1, St+1= ... =6k = , 0 < t < k, that is, that
= a /tlt - *te in (5.11). Let T = {J1, * ,j}bea subset of{ 1, .,

Denote

(5.22) OT (T, t) = .t (J (Tx t).

As is easily seen, (De/at1 ...*t)(Pn(x, t) is the sum of the following terms

(5.23) n(n - 1)'. . .(n - m + 1) (n_mQ(T t)(T t)

(5.23)~~~~~~~ ~ ~n_ 1PT\
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where T1, , Tm is a partition of the set {1, , (} into nonempty disjoint
subsets, and the summation is over all possible partitions. Every term (5.23)
is estimated as in the case of a(t) above, and we shall only indicate the distinctions
which arise.

Split the integral of T times (5.23) into two parts as in (5.17) and call them
again a(1) (t) and a(2) (t). We have for T = {ji . 'jr}

(5.24) JqT(- t)| _ EIYI,j. - Y* j,l = MT,
say, which is finite by Assumption 9. Hence the modulus of (5.23) is bounded
from above by

(5.25) n MT-k ... MT-

This enables us to estimate a(2)(t) just as above. The only difference from (5.21)
occurs in the factor of order of nm-k/2. This does not matter in the presence of
a geometric series term.

Concerning a(l)(t), (5.25) is sufficient when m < k/2. Consider the case
m > k/2. We have

(5.26) -t9(O, t) =iEY1, j = 0, j = 1. * *,k,

and, writing for a moment to instead of r,

(5.27) a a, (to, t) < ElY1,iY1,J i,j = 0, 1 k.

Hence we can find a constant L such that, for all T. t

a
(5.28) e q(T, t) < L || T t, j = 1, .k.

Note now that there are at least 2m - k sets among T1, Tm containing just
one element. In fact, if r is the number of such sets, then the remaining m - r
sets contain not less than 2(m - r) elements, that is, k - r . 2(m - r) whence
r > 2m - k. Suppose, to be definite, that T1. T2m-k contain one element
each. Then by (5.28)

(5.29) (r.( - )- L|T, t||n I, j = 1,*, 2m - k.

Applying (5.24) to the remaining (PT in (5.23), we obtain for (5.23), up to a
constant factor, an upper bound IIT, til2m-kn-m(tf-1T2 tn 12) Therefore,
proceeding as in (5.16), (5.18) and (5.20), we arrive at an inequality whose right
side differs from that of (5.20) by some power of jj T,, t |T2, t under the
integral sign, which does not affect the convergence of the integral. The proof
is thus completed.
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6. Proof of Theorem 3.2

Without loss of generality assume Var X1 = Var Y1 = 1. Put u = xn' 2*
All limits will be taken as n -+ a, x/log n -- o (or. equivalently. as n -a ox.
u/n/ log n x,) unless otherwise stated. We shall prove (3.8) with Sn rather
than IjS,nI. Since the same will be true for -Sn. this will imply (3.8). WNe take and
fix an arbitrary bounded A c= R' for reference when dealing with the uniformity
of convergence.

Let An . denote the event

(6.1) {Y, < u for all i = 1, . n}.

Writing A,,, for its complement, we have

(6.2) P{Sn > XIZn = z} < P{Sn > x, A,,,.ZI = z} + P{AJ, IZn = z}.
Estimate first the last term in (6.2). We have obviously

(6.3) P{Tn,,JZn = Z} < nP{Y, > ulZn = z}.

We show now that

(6.4) sup P{Yn > U Zn = Z}Pn(Z) < anP{Yn > u}

where an - (27r) 1/2 and hence is bounded. Let A c R' be an arbitrary bounded
Borel set. Then

(6.5) f{P{Yn > uIZn = z}pn(z)dz = P{Yn >u, Zn-A}

= f r P{Z, E AIX, = x, Y,, = y} dP(x. y)

= f_ wP{Z, [(n 1)ln-A -(n1/2A
x

=x. Yn = y} dP(x, y)

< SupP{Zn-I(C- A t}P{Yn > u}
t { n-I)}

< Al ( I maxpn(Z) P{Yn > u}.

where AlI is the Lebesgue measure of A. With an = [n/(n - 1)]1/2 maxzpn(z)
this implies (6.4). The assumption that pv*(z) is bounded assures the convergence

(6.6) Pn(Z) - -(z) uniformly in z E R'.

This implies that an -- (27t)- 1/2 and moreover that pn(Z) is bounded away from
zero on A for n large enough. Since P{Yn > u} = o(u-r) we obtain from (6.3)
and (6.4) that
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(6.7) P{Aj,UIZn = z} = o(nu-') uniformly in z A.

that is, this term has the required order.
Consider now the first term in the right side of (6.2). We shall write S,, Z,

for S,n Zn./n (nonnormalized sums). For an event B. let IB denote the
indicator function; instead of IA, . we shall write I, , Then for any h > 0,

(6.8) P{Sn > x,AA IZn = z} = P{Sn > u. A, n= z}
< e hu E[exp {ln}InuIZn = z]

Put

(6.9) dr(V) = f yr dQ(y).

(6.10) cn= max (n l2. dr( n)).
(6.11) hn,= - u1 log (cnnu-r).

Writing u = 2 n log n where 2 oo. we see that

(6.12) h _ - log c,n + r log 2 + r log (n 1'2 log n) (n 1/2
2/I log n

Since cn -O 0. we have from (6.11)

(6.13) exp {- hn u} = o(nuf).

We shall show that

(6.14) E[exp {hn,u Sn} In,uI Z, = Z] Pn(z)
is bounded uniformly in z and sufficiently large n. Then the theorem will follow
from (6.1). (6.7), (6.8), (6.13) and (6.6).

Denote the density of Zn by fn(Z)jfn(Z n)/n = p,(z). We can rewrite
(6.14) as

(6.15) E[exp {hn, uSn} In, IZn = ZnPn](Zji n) ln
This expression will be estimated with the help of the following lemma.
LEMMA 6.1. Let (U1, V1), (U2. V2) be independent random vectors, Vi having

a density pi(v), i = 1, 2. and let p(v) be the density of V, + V2. Put

fi(v) = E[UiI Vi = v] pi(v). i = 1. 2,
(6.16) f(v) = E[U1 U21 V + V2 = v] p(v).

Then

(6.17) f(v) =fl*f2(v).
PROOF. For any Borel set B c R1, put

(6.18) 7ri(B) = E[UiIB(Vi)], i = 1, 2,
(6.18) r(B) = E[U,U2IB(V1 + V2)]
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Let Pi(u, v) be the d.f. of (Ui. Vi), i = 1, 2. Then

(6.19) it(B) = ulU2IB(Vl + v2)dPj(ul,vl)dP2(u2 v2)

= SR2 IB(V1 + V2) d7t 1 d92 = it1 * 72 (B).

On the other hand,

(B fi(v) dv = f E[Ui I17 = v] pi(v) dv
(6.20)

= E[U1IB(Vi)] = ni(B) i = 1, 2,

That is. fi(v) is the density of 7i with respect to the Lebesgue measure.
Similarly, f(v) is the density of it. Thus (6.19) implies (6.17).

This lemma can be extended in an obvious way to any finite number of
vectors (Ui. Vi). Denote

(6.21) f(z h. u) = E[exp {hY}I{y1<)}|X1 = Z].
Putting Ui = exp {hY1}{Yi<I}Ili = Xi for i = 1, , n. we obtain

(6.22) E[exp {h"Sn}IIn,u = Z] Pn(Z) = [f(z: h, U) p(Z)]n*.
Comparing this with (6.15), we see that all we need to show is

(6.23) sup [f(z; hn,u, U) p(Z)]n* = 0(n-112).

Note that

(6.24) f f(z; h, u) p(z) dz = E[exp {hY,}II1y, <u] = R(h. u),

say. The proof of Theorem 1 in [5] contains the following estimate

(6.25) R(h, u) = 1 + hm1 + 20jh2m2 + 02Krdr(h) ehu-r,

where Io,I < 1, 0 < 02 < 1, mk = EYk, k = 1, 2 and K, is a function of r
only. Actually in that proof Mr = EIY1,'r rather than d,(h) is used, but it
appears there in the inequality 1 - Q(x) _ Mrx-r (in our notation) which is
used only for x > 1/h and therefore holds true when M, is replaced by dr(h).
This is the modification of the proof we referred to in the proof of Lemma 4.2.
It follows from (6.10) and (6.12) that dr(hnu))-c,n for n large enough. In view
of (6.11). (6.12) and m1 = EY1 = 0, we obtain from (6.25)

(6.26) R(hn u,u) = 1 + O(n1).

Put

(6.27) rn u(Z) =fz R(hn )U)P()
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Since rn
,

is nonnegative and integrates to unity by (6.23), it is a probability
density. By virtue of (6.26), (6.23) is equivalent to

(6.28) sup [rn.,(z)]n* = 0(n-1/2

First we shall show that

(6.29) lim sup sup [rn, (Z)]2v* <
n, u z

On applying (6.25) to the conditional distribution of Y1 given Xl = z (see
(6.21) and (6.24)). we obtain

(6.30) f(z: h. u) = 1 + hm1 (z) + 201h22n2(z) + 02KrMr(Z) ehuu-r

where mi(z) = E[Y'JX, = z]. i = 1, 2. (Actually, (6.30) corresponds to the
version of (6.25) with Mr instead of dr(h).) It follows from (6.11) and (6.10) that

(6.31) exp {hn,u} ur = 1/cnn < n112.

Moreover,

(6.32) mi(z) < (Mr(Z))ilr _ 1 + M,(z), i = 1, 2.

Therefore

(6.33) f(z; h, u) _ 1 + h + 2h2 + (h + 2h2 + Krn-l12) Mr(Z) = f(z; h, u),

say.

Define rn, (z) by (6.27) withf replaced byf. Then we have from (6.12), (6.26)
and (6.33)

(6.34) rn,.(Z) - ri,,(Z) = X.,.P(Z) + /,3,Mr(Z)P(Z),

where Xnu u 1, fAn," 0. Denote by pn,(t), Pn,(t), (p(t) and (pr(t) the c.f. of

rn,u(Z), r,u(z), p(z) and Mr(z)p(z)lMr, respectively. Put

(6.35) L = sup pv*(z) Lr = sup [Mr(Z)p(Z)/Mr]v*.
z z

(This is finite by assumption (iv) of Theorem 3.2.) By the Plancherel identity (see,
for example, Feller [2], Chapter XV, equation (3.8)),

(6.36) { v(t)12v dt = [pv*(z)]2 dz < L pv*(z) dz = L.

Similarly

(6.37) 1, 9r(t)12V dt < L_
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Using Minkowski's inequality, we have from (6.34), (6.36) and (6.37)

(6.38) 2 J' In,u(t)I2v dt _ [e,uLl/2v + fn,uMrL2V]2V =Ln u

say, and ;",. -+ 1, fBn,- 0 imply Ln,u L. Furthermore

(6.39) SUp [r,(z)]2v* <
I
{-Ip,u(t)I2"2

Obviously, r*(z) _ n"k* (z) for any k = 1, 2, * whence supz [rn,u(z)]2v*
L, u which proves (6.29). Applying again the Plancherel identity we obtain

(6.40) v{ Pnu(t) 4' dt _ Ln

By virtue of the inequality

(6.41) sup [rn,u(Z)]n* -2 lPn,u(t)indt = 2Jn,u

say, in order to prove (6.28) we need to show that J,,, u = O(n -1/2). The relations
(6.26) and (6.30) give

(6.42) fIJr, u(z) - p(z) I dz - 0.

For any density r(z), we shall write r(2)(z) = r * r-(z) where r (z) = r(-z).
Then (6.42) implies

(6.43) jf rn,u(z) p2(z)I dz 0.

Take an arbitrary 6 > 0 and put

(6.44) bn,= z2r2(z) dz.

Then (6.43) implies

(6.45) bn, z2p(2(z) dz

Taking into account that the c.f. of r(2) (z) is Ipm u(t)12 and using the first of the
truncation inequalities [4], 12.4.B', we obtain for It . 6

(6.46) Pn ,u(t)I2 31 - bt2b", < exp {- bt2b",u}
or

(6.47) lPn,u(t)ln _ exp {_-Int2bn,u)-
Further, (6.42) implies that Pn, u(t) -+ 'p(t) uniformly in t E R1, whence

(6.48) sup Ip , (t)I -)supIT (t)I < 1.
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Split the integral Jn, in (6.41) into the integrals over {Itj . 5} and {It| > 3}
and use (6.47) in the first and the inequality

(6.49) IPn (t)I - [sU lPn.I(I Pn (t)1
ItI.e5

in the second of them. Then by virtue of (6.40)., (6.45) and (6.48) we obtain
Jn = O(n-1/2) which was to be proved.

7. Concluding remarks

After strengthening certain assumptions in Theorem 2.1, the same proof,
somewhat refined, could give for en(x) an estimate 0(n-fl) with' 2 < 1l < 1.
However it is impossible to obtain the naturally expected order n-' by the
present method. For this reason we restrict ourselves to the assertion that
En(x) = o(n-1/2).
Though it is not explicitly stated in (2.12), the function On (x) depends on 00

because Pi3 and M(x) do, thus On(x) = On(x, 00), say. There is no such dependence
(and the d.f. of Zn(0n) does not depend on 00 at all) when 0 is the location scale
parameter and has an appropriate invariance property. In the general case we
cannot determine the critical value Zn-,o from the equation On(Z, 00) = 1 -a
since 00 is unknown. It may be shown, however, that under certain smoothness
of the dependence of P3 and u(x) on 0 the critical value Zn,, determined from
the equation On(z, 0n) = I -a, has the property that

(7.1) P{Zn(on) > in,al = a + o(n 1l)2
that is, it provides the same order of approximation as with known 00.
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