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1. Summary and introduction

We consider the class C(a) of asymptotic tests proposed by Neyman [6]. The
term of order n~ 12 in the normal approximation for the distributions of the test
statistics is obtained. Moreover several theorems on conditional distributions are
proved. They are used in deriving the main result but they also seem to be of
independent interest.

Neyman [6] proposed a class of asymptotic tests called C(x) for the following
statistical problem. Let a random variable (r.v.) X have a distribution depending

on parameters 6 = (8,,---, 6,) and ¢ which take their values in open sets
©® c R* and = < R! respectively. (We denote by R®. s = 1.2, - - - | the space of
real row vectors x = (x,, - -, x,) with the Euclidean norm |z| = (xx')'%. a

prime denoting the transposition.) The hypothesis H: { = &,, where £y € Z is
a specified value, is to be tested on the basis of » independent observations
X,. -, X, of the r.v. (In the sequel, we put £, = 0.) The distribution of X is
assumed to have a density f(x; 6, &) (with respect to an appropriate measure)
which satisfies certain regularity conditions. The C(x) tests are constructed as
follows. Let a function g(x, 8) be such that

(1.1) Ey 09X, 0) =0, Eo 09*(X.0) = 6° < . fe®.

(The first assumption can always be satisfied by consideringg(x, 8) — Ey o g(X, 0)
instead of g(x. 0).) Form the function

1 n
Z g(X;. 0)

a(B)ﬂ i=1

and let 0, be a locally root n consistent estimator of 6 (which means that

n(0, — 0,) is bounded in probability where 0, is the true value of 6: for a
precise definition see [6]). It was shown in [6] that Z,(0,) is asymptotically
(0, 1) normally distributed whatever be the true value of 6 if and only if g(x, 0)
is orthogonal to the logarithmic derivatives

(1.2) Zn(0) =

(1.3) hi(x. 0) :ilogf(xgﬂ, 0), j=1"s
00;
153
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in the sense that

(1.4) Eoo9(X,0h;(X,0) =0, 0€0O, j=1,"",s

This implies that the test with the critical region {|Z,(8,)| > 2,2}, Where z,,
is defined by A'(2,,) = 1 — @/2, A#(z) being the (0, 1) normal distribution
function (d.f.), has the limiting significance level o whatever be the true value
of 0. The class of tests of this form was called C(a).

A further result of [6] gives a rule for constructing an asymptotically optimal
test of class C(«). Namely, let

(1.5) ho(x, 0) = ;%logf(x; 0, Ols=o

and let g(x, 0) be obtained from kg (x, 6) by the orthogonalization process,

to satisfy (1.4). Then the test of class C(a) with this g(x, 0) is an asymptotically
optimal one.

Several examples of the use of C(«) tests in applied problems are given in [7].

When applying an asymptotic test one always encounters the question of
the accuracy of the normal approximation. The standard methods related to the
sums of independent random variables are inapplicable for the C(«) test statistics
since the use of an estimate instead of 0 in (1.2) makes the terms of the sum
dependent. In the present paper the correction term of order n~'/2 to the
normal approximation under the hypothesis H is obtained when g(X, ) and
some related random variables have densities with respect to the Lebesgue
measure. This result is contained in Theorem 2.1 stated in Section 2.

In Section 3, we give two theorems on conditional distributions. Namely, the
normalized sum of independent random vectors is considered. Each of the vectors
consists of two subvectors and hence so does their sum. The theorems concern
the conditional distribution of the first subvector of the sum given the second
one. The only paper which we know to deal with the conditional distributions
of this kind is that of Steck [8]. In this paper some theorems on the convergence
of conditional distributions to the normal have been proved.

In the theorems of Section 3 we restrict ourselves to the case of identically
distributed summands with a one dimensional conditioning subvector which is
sufficient for the proof of Theorem 2.1. Theorem 3.1 establishes a Lipschitz
property for the dependence in variation of the conditional distribution on the
value of the conditioning variable.

Theorem 3.2 gives an asymptotic estimate for tail probabilities of conditional
distributions.

The proofs of theorems of Sections 2 and 3 are given in Sections 4 to 6.
Section 7 contains some concluding remarks.
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2. The main theorem

Let the hypothesis H be true and 6, € © be the true value of 0. Thus we have
n independent random variables X,,---, X, with a common d.f., F(x) =
F(x: 04.0). (Since the values § = 0y and & = £, will be fixed we shall omit them
in our notations.) Denote

dg(x. 0
0@ = gl B gyl = T
J 6=100
, d%g(x, 0)
(2.1) Gi,j.e(x. 0) = —iﬁGi 36, . gi,j(x) = g; (@, 0,),
S3g(x. 0)
) = 9O il =1,2. s
gl._].((‘r 0) 80, 60J 60/. () y &y S

We shall state now the assumptions to be used in the theorem.

Assumprion 1. Eg(X) = 0, Eg*(X) = 1, Elg(X)]® < o0.

AsstmpTiON 2. Eg;(X) =O0forj=1,2,--,s.

REMARK. The variance of g(X) may be taken equal to 1 by considering
g(x. 0)/a(0) instead of g(x, 6). Under certain regularity conditions Assumption 2
is equivalent to (1.4) in view of the equation

0 Og 0log f
“ . = — —— F.
(2.2) 0 6, Jg(x, 0)f(x, 0) dx J@Gi dF + Jg 3, d

We prefer to use Assumption 2 directly because it does not refer to the
dependence of the distribution on 6.

Assumprion 3. Elg;(X)]? < 0, j=1,""".s.

AssumprioN 4. Elg; ;(X)|*?"° < oo for some s > 0:4,j =1, ,s.

AsSuMPTION 5. There exist a neighborhood U < © of 0, and a function K (x)
such that |g; ; ,(x, 0)] < K(x) forall 0e U.i,j. ¢ =1, -, s; BE(K(x))' " < o

for some 6 > 0.
For the convenience of notation, we introduce the following symbol.

DeFiNtTION 2.1, Let {;, {,, * - - be a sequence of random variables. We shall
write {, = w(a) if for any ¢ > 0, P{|{,] > en*} = o(n""*)as n - .
Now we assume that the estimator 8, is expressible in the form

N |
(2.3) Jn @, — 0,) = \—ﬁz h(X)) + 1,
1

where h(x) = (kl(x)v T, hs(x))v nn = (nn.l’ T, nn,s)'

AssumpTION 6. ERy(X) =0, E[l(X)]? <o, j=1"",s

ASSUMPTION 7. 1, ; = w(—0) for somed > 0;j =1,-",s.

Note that 6 in Assumptions 4, 5 and 7 need not be the same.

The remaining assumptions concern the joint distribution of the (2s + 1)
dimensional random vector (Y, Y) = (Y,, Yy, -+, Y,) where
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(24) YO =g(X)7 YJ =gj(X)~ Ys+j = hJ(X)z ] = 1»“'a8'
Let (1, t) be the characteristic function (c.f.) of (¥Y,, V),

(2.5) @(t,t) = Eexp {1¥, + tY'}, te R', te R*.

AssuMPTION 8. For some y > 0, ¢(t,t) = O(| . t]|77) as |z, t| > oo (we
write ||, ¢ = ([t]* + |[¢]|*)"?).

Assumption 9. E(IT3L,|Y;|¥) < o for any combination of €; = 0 or 1, j =

1, , 28.

AssumpTION 10.  Put x;(t) = E[|Y,|® exp {itY,}]. There exists an n, such
that the y}' (1) are absolutely integrable on R',j = 1, -, 2s.

Denote by B the matrix with elements b, ; = Eg; ;(X),i,j =1, -, s, and by
Y the covariance matrix of (Y,, Y) with elements
(2.6) o;,; = EY,Y;, .j=0,1,---,2s.
Note that (Y, Y') has zero mean.

Let (Vo, V.-, V) be a normally distributed random vector with zero
mean and covariance matrix . Put
(2.7) S=(V17”"Vs)5 T = (Vs+1"”-VZs)’

W = 8T + 4TBT’, ulx) = E[W|V, = x].
Since gy, o = 1 (see Assumption 1) we have by the well-known formulae
(2.8) E(Vj| Vo = x) = 04 ;x,
(2.9) Cov (Vi, Vi|Vy =) = 6, ; — 09,60, &.j=1-"",2s

Therefore one can easily derive that

Mrn

(210)  plx) =

i

1
Gjs+j T2
Js

bjtas+j.s+'t

N

J =1

4 s
2 1
-l -z )|: o,i00,5+j + 3 2. bj,tao,s+jo.0,s+l:|'
=1

J j.¢=1

Denote by @,(x) the d.f. of Z,(f,) where Z,(0) is defined by (1.2). We shall
write A (x) and #(x) for the (0, 1) normal d.f. and its density respectively.
THEOREM 2.1. Let the Assumptions 1 through 10 be satisfied. Then

(2.11) Fu(x) = Pulx) + &4(x)
where
(2.12) Pulx) = N (@) + 02 n(@)[(1s/6) (1 — x?) — ()],

with py = EY 3 and n'?¢,(x) - 0 as n —> oo uniformly in x € A for any bounded
AeR".
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3. Some theorems on conditional distributions
Let Yo ;. V). Y= (¥Y; .-+ . Y;4).s = 1,- -+, n be n independently identi-
cally distributed random vectors in R**! and
(3.1) @(t,t) = Eexp {t¥, { + tY1}, t € R,
their common c.f. Let
1
N

In the following theorem the distribution of (Y, ;. Y;) will be assumed to
satisfy Assumptions 8 and 9 (which should be read in this case with 2s replaced
by k). The c.f. of (Z,.S,) is

M=

32 Z,=

1

l n
Yo,i: Sn=(Sn,l’.“=Sn,k)=—ZYi'
\/;i=1

(3.3) e"(n" 27, 07 V2) = @, (1. 1).

say. Under Assumption 8, for n sufficiently large, this c.f. is absolutely integrable
and (Z,, S,) has a joint (k + 1) dimensional density. Denote this density by
P.(2, ) and the marginal density of Z, by p,(z). Then

Pa(2; X)
(3.4) n(@|z) = ————
mll) =)
is the conditional density of S, given Z,.
THEOREM 3.1. Let the Assumptions 8 and 9 (with k instead of 23) be satisfied.
Then for any bounded A = R' there exist a K > 0 and a finite N such that

(3.5) J
Rk

forallz,,z,eAandn = N.

For the next theorem, consider n independent identically distributed two
dimensional random vectors (X,, Y,), - - -, (X,, Y,). Denote their joint d.f. by
P(x, y) and their marginal distribution function by P(x) and Q(y), respectively.
Let

Pn(x|21) - pn(xlzZ) dx < K|zl - Zzl

1 n l n
(36) Zn = —= Xi’ S" = —F Yi'
N Tk
Denote
(3.7) M, = E|Y,[, M, (x) = E(|]Y | X, = x).

For two absolutely integrable functions f, (x) and f,(x), denote by f; * f,(x)
their convolution,

(3.8) fief@) = [filx = 0fa0)do,

and by fi*(x) an n fold convolution of f, (x) with itself.
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THEOREM 3.2. Assume that (i) EX, = EY| = 0, (ii) P(x) has a density p(x),
(i) M, < o for some r > 2, and (iv) the functions p**(x) and [ M,(x)p(x)]"*
are bounded for some finite v. Then

(39) P{!S"1 > le" = z} = o(x_"nl_’/z)

as n — o0, x/log n > o uniformly in z € A for any bounded A = R".
For an unconditional counterpart of this theorem see Lemma 4.2 (iv) below.

4. Proof of Theorem 2.1

We establish first several lemmas. Denote

1 n 1 n l n
(41) Zn, = -7 g(Xt)v Zn, i = — g(Xl)’ Zn.s i = h(Xl)
v =R 5 et
j=1.-.s

(42) Sn = (Zn,l"”7Zn,s)f Tn = (Zn,s+1*".?Zn,2s)'
Let p,(z) and p,(z, x), x € R*, denote the marginal density of Z, , and the
joint density of (Z, o, Z, 1., Z,, 5,) respectively. Under Assumption 8 they
exist for n sufficiently large. Denote by ¢,(t,t) = ¢@"(n~ 21, n~1/2¢) the c.f.
of (Z, 0, Zy 1, "+ Zy, 25} and by @,(1) = @,(t, 0) the c.f. of Z, ,.

LemmA 4.1, Under Assumption 8

(1) pa(z) = =(2z) as n — o0 uniformly in z € R, and

(ii) p,(2) has a derivative p,(z) for n sufficiently large and lim sup,_, ,, SUP,cg!
lpn(2)] < 0.

Proor. For part (i) see, for example, Feller [2], Theorem 2 in Chapter XV 5.
Since

(4.3) sup [, (2)] < o [ [ron(0)] d.

one can get the proof of (ii) from (5.12), (5.17), (5.18) and (5.19) below.
(Actually, p,(z) converges to »'(z) but we state in the lemma only what we need
in the proof of the theorem.)

LEmMA 4.2. Let Y,,---.Y, be independent identically distributed random
variables and S, = n~ "2 Z7 Y,. Assume that E|Y;|" < o for some r > 0. Then

(4.4) P{|8,| > x} = o(@™"n'""?) asn — o0,

provided one of the following conditions is satisfied: (i) 0 <r < 1,(ii)]1 £r <2,
EY, =0, (iii))r = 2,EY, = 0,x = 0, (iv)r > 2, EY, = 0,x/log n » 0.

Proor. For the parts (i) and (ii) see Binmore and Stratton [1] (note that
E|Y," < o implies P{|Y,| > 2} = o(x™") as x — o). Let F,(x) be the d.f. of
S,. Part (iii) follows from the inequality

(4.5) @?P{|S,| > z} < fl y? dF,(y)

yizx
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and the uniform integrability of y? in F,(y) (see Loéve [4], Theorem 11.4.A (iii)).
Part (iv) follows from Theorem 1 of Nagaev [5]. This theorem actually provides
an inequality which implies (4.4) only with O instead of 0. However we shall
indicate below (see 6.25) and the subsequent paragraph) a modification of
Nagaev’s proof which gives o in (4.4).

In terms of the symbol @ (Definition 2.1) we have,

CoROLLARY 4.1. Under the conditions of Lemma 4.2

w<3 2_; T) ifr <3,
(ii) S, = w(g) foranye > 0ifr = 3.
With the notation (4.1), (4.2), let
W, = 8,1, + 3T,BT,, Ha(x) = E[W,|Z, o = ],
P{W, < z} = G,(x), P{W, <zx|Z,, =z} = G,(x|2).

(i) S,

(4.6)

Denote G(z|z) = P{W < x|V, = z} (see (2.7)).
LemMA 4.3. Let Assumptions 8 and 9 be satisfied. Then, for any bounded
AcR!

(i) there exist a K > 0 and a finite N such that
(4.7) sup|G,(z|2,) — Gy(@|22)| < K21 — 2,

forallz,,z,edandn = N;

(ii) sup|G,,(:c|z) - G(xlz)l -0 uniformly in z€ A ;
xeR!

(iii) p,(z) = u(z) uniformly in z € A.

Proor. Since the inequality {W, < x} determines a Borel set in the sample
space of (S,, T,), assertion (i) follows from Theorem 3.1. The convergence in
assertion (ii) for any fixed z follows directly from Theorem 2.4 of Steck [8];
together with (i), this implies the asserted uniform convergence. Otherwise one
could find an ¢ > 0, a subsequence {m} < {n} and a sequence {z,,} approaching
a finite limit z,, say, such that

(4.8) sup| G (x|2,) — G(x|2,)| > ¢  forallm.

Then sup|G,,(x|2,) — Gm(x|20)| would not tend to zero which would contra-

dict (i).

Denote by a(z) and Z(z) the conditional mean and covariance matrix of
(Vy, -+, Vy) given V, = z (see (2.7) above) and by a,(z) and Z,(z) those of
(Zp, 1, s Zy, 25) given Z, o = z. Then (iii) follows from the convergence

4.9) a,(z) = a(z), Z.(z) = Z(2) asn — o
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uniformly in z € A. This latter convergence can be proved by taking the first
and second derivatives of —itz
f e "ot t)dT

(4.10) w,(t, 2) = ,
f e g, (1,0)dr

the conditional c.f. of (8,, T,), given Z, , = 2, at t = 0. The technique is quite
similar to that used in [8]. It is easily verified that the derivatives of @,(t, t) =
@"(n" Y27, n"12¢) at t = 0 and any fixed T converge to the corresponding
derivatives of the limiting normal c.f. Then the passage to the limit under the
integral sign which is justified by the bounded convergence theorem in the same
way as in [8] leads to (4.9).

REMARK. The assertions (ii) and (iii) are valid actually under the conditions
of Theorem 2.4 in [8] which are weaker than those used here. The proof of (iii)
sketched above remains valid in this case; the proof of (ii) requires some
standard but rather cumbersome technique.

The following lemma states some properties of the symbol @ (Definition 2.1).
The proof is obvious and will be omitted.

Lemma 4.4.

@) If ¢, = w(a) then {, = w(a') for any o’ > a.

(i) If {, = w(a) and n, = w(b) then {, + n, = w(max(a, b)).

(i) If ¢, = w(a) and n, = w(b) then {,n, = w(a + b).

Now we proceed to the proof of the theorem. For notational convenience, let
6, = 0. Expanding g(X;, 9 ) by the Taylor formula, we have

n 1 S .
@11)  Z,0, = —z (X..>+—zen,,-z g9;(X;)
VA

i=1 i=1
~ 1 A A oA i ~
Z On. Z 9j,¢(Xi) + Y 0000ibnc X 9k c(Xis ta,i00),
it 6./ n ik i=1
where 0 < £, ; < 1. Denote by B, the matrix with elements
12 )

(4.12) bnsue = L GielXa), Gt=1s
Then using also (4.6) we can write
(4.13) Z(0,) = Zyo + n” 2 W, + n" V2R,

where
(4.14) R, =n,S, + 3(T, + n,) (B, — B)(T, + n,)' + (T.Bn, + 3n,Bn,)
+ Zgnjgnkgntzg]kl i nze)_Rnl+2Rn2+Rn3+6Rn.4’
Jk, ¢

say. We shall show now that R, = @(0). By Lemma 5.2 (ii), it is sufficient to
show that R, ; = w(0),i =1, -+, 4.
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By Assumptions 4, 5 and 7 we can find an o, 0 < a < J, such that

x
(4.15) Elg,-,,-(X)P/Z“_“) < o0, E(K(X))I/(l—a) < 00, Hnj = (,0(—--2->

We have R, ; = Z5-y 7, j Z, ;- By Assumption 3 and Corollary 4.1 (ii), we
have Z, ; = w(a/2). Therefore nn’jZ,,'j = w(0) by Lemma 4.4, and R, ; = w(0).
Con31der a term Rn 2= (bnje — b5 0)(Tnj + Nnj)(Tn + Nne) of R, ;. By
Assumption 4 and Corollary 4.1 (i)
- 1 ¢ 1 3 -
(4.16) b, ;,—bj,=n 1/272 g}t ) — b, )=w<—§+ 5 >
ni=1

with r = 3/2(1 — «) (see (4.15)). Thus b, ; , — b; , = w(—a). By Assumption 6
T,; = w(q/2 ) and by Lemma 44 T,; + 1,,; = o(®/2). R;5 = »(0), and
R, , = 0(0).

In a similar way we obtain R, ; = w(0).

Now consider a term

(4.17) Ri% =0, Gnkenzzg,uxi.t i0,)

of R, ;. Wehave 0, ; = n~V*(T, ; + 11”) = of(« — 1)/2) and. by Lemma 4 .4,
16,] = o« — 1)/2) Take ad > O such that {0:]0] < 6} = U (see Assumption
5). Then

(4.18) P{|RI%‘| > ¢} < P{Ri%‘| > ¢, 0,e U} + P{|6,| > &}

< P{/n|0, 0,0, n 1" Z K(X;) > ¢} + o(n™1?2).
i=1

We have
A A A 1 a— 1 3a
(4.19) 00, ;0,:0,..] = o1 + 3 )=l 1)
Hence it remains to show that
—12 " 3a
(4.20) n" 12 Y K(X)) 1-5)-
i=1

Denote k = EK(X). By Assumption 5 (see (4.15)) and Corollary 4.1 (i),
3a

421) 2712 Y K(X;) — ky/n=n"12) (KX;) — x) = co<1 - ?>.

Since o was chosen to be less than 1/3, K\/;b = w(l — 3u/2). Therefore (4.21)
implies (4.20).
We shall show now that the term »~ /2R, in (4.13) may be neglected. Denote

(4.22) Zy=Zpo+n"V2W, u(x) = P{Z, < x}.
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Let (2.11) hold for ¢,(x). Then for an arbitrary 6 > 0,
(4.23) bu(x) = P{Z, + n 2R, < x}
< P{Z, <x + n" Y28} + P{|R,| > 5}
= ¢ulx + n”128) + g, (x + nV26) + o(n” V2.

A similar estimate from below gives

(4.24) Pal@) = Pplx — n~V28) + g,(x — n”V2) + o(n_”z).
The function ¢, (x) hasa derivative bounded uniformly in nand x, ¢, (x) < C,say.
Therefore
(4.25) | (x W@)] S n7V2C + &, (x) + o(n” )
where g,(x) = sup [| (@ + u); |u Lg 5] Since & > 0is arbitrary, (4.25) implies
the assertion of Theorem 2.1 for ¢,(x
Writing P,(x) for the d.f. of Z, , we have from (4.6) and (4.22)
(4.26) bu@) = [ 6,(@ — 21/nl2) aPyi2)
The next step of the proof will be to show that ¢ (x) may be replaced by
(4.27) o7 (@) = [ Gl = 21/nle) dPy(2)
that is, for any a > 0
(4.28) <Sup |pn(x) — ¢ ()| = o(n™1/2) asn — 00,

Put & = n~ 3/ and write the difference of (4.26) and (4.27) as
(429)  ¢,(x) — ¢, ()

x+é x—é ©
B (f LT f * f ) [Gal(@ = 2V/nl2) = 6@ = 2 /n|2)] dPo(2)
=I1,(x) + L(x) + I;(x),

say. Applying Lemma 4.3 (i) with 4 = [— a — 1,a + 1] and using the fact
that p,(z) is bounded (Lemma 4.1 (i)), we obtain

(4.30) max |/, (x)| < Kmaxp,,(ac)fxﬂs | — z|dz = O(8%) = o(n™1/?).
xe[—a, d] x—é

Further, |12(x)| 1, (x) + I, ,(x) where
(4.31) I, (x) = ff: [1 — G.((x — 2)/n|2)] pa(2) dz

(4.32) I, ,(x =f [1 - G, ((x = 2)/n|2)] pa(2)
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Using the inequality
(4.33) 1 - G, ((x — z)\/;a|y) < P{W,>n'%Z, o =y} forx — 2> 6
with y = x, we obtain
(4.34) I, (x) £ P{W, > n'®|Z, , = x}.

Assumptions 3, 6, 8, and 10 assure the fulfillment of the conditions of Theorem
3.2 for the vectors (g;(X;), g(X;)) and (k;(X;), g(X;)),j =1, -+, s, with r = 3.
(One should only note that x;(t) in Assumption 10 is the Fourier transform of
M;(x)p(x), and the integrability of xj'(r) implies the boundedness of
[M5(y)p(y)]™".) Therefore
4.35) P{Z,;|>n'"%|Z, o =xa} =o0n 23O = o 1?), j=1,--,2s.
(In relations of this kind we mean that o(r~'/?) is uniform in z € [—a,a]
without stating it explicitly.) Now we obtain from the definition of W, (see (4.6))
and Lemma 4.4 (applied to conditional probabilities) that

(4.36) P{W,| > n'8|Z, o = x} = o(n™'/?).
In view of (4.34) this implies

(4.37) I ,(x) = o(n~ 12,
Using (4.33) with y = 2, we have

4.38) I,(x) < IHP{W, > 0'8|Z, o = 2} dP,(2)

< f‘” P{W, > n'/®|Z, o = 2} dP,(z) = P{W, > !/},
This probability is estimated in the same way as (4.34) but Lemma 4.2 is used,
rather than Theorem 3.2, which gives
(4.39) I, 5 (x) = o(n™'?).

The relations (4.29), (4.30), (4.37) and (4.39) together with a similar estimate
for I5(x) prove (4.28).

Thus we are to prove the theorem for ¢, (x) defined by (4.27). Rewrite it in
the form

(4.40) o () = f Pox — 2) dGy(2/n|2).

Using (4.36) we have

(4.41) f P(x — 2)dG,(z/n]|x) < P{W, > n'®| Z, , = z} = o(n™*?).
Jzl>n-3/8

Therefore (writingagaind = n~%8)

(4.42) én'(x) = f:P,,(a: — 2) dG,(2/n|x) + o(n™112).
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By Taylor’s formula we obtain

(443) $i(@) = f " Pfx — n"V2p,(@)) d6,(z/n| )

# [0 @) = ) e — 172 @) dGu(ey/ale)
[0 @) = e - 2) = ple — 07 V20,@)] 46,2 /0]2)
+o(n™1?)

= Jy(@) + Jy(x) + J3(x) + o),
say, where z* lies between z and n~ /2 y (x). By virtue of (4.36)
(444)  J (@) = Py(x — o Pp,(x)[1 — P{W,| > n'8|Z, , = «}]
= Py(x — n”p,(x)) + o(n™'?).

Now we shall show that J,(x) and J5(x) are o(n~*/?). First, by Theorem
11.4.A (iii) of Loeve [4], the assertions (ii) and (iii) of Lemma 4.3 imply

(4.45) fH 2 dG,(2/n|x) = n-wa Y0, y|z) = o).

z|>é y|>nt
Up to the factor p,(x — n~"?p,(x)), which is bounded by Lemma 4.1 (i),
J,(x) is equal to

@a6)  aTu@ - [ G e/al]
- [n—”z”’n(x) - J‘l | aszn(z\/;/lx)]v

and by (4.36)and (4.45) weget J,(x) = o(n~'/?).

Finally,

n” 2 (x) — 2 = O(n~38),

n~ 2 x) — 2" = Om~ %) forze [ -4, d],

and making use of Lemma 4.1 (ii) we obtain J;(x) = O(n~%%) = o(n™'/2).

Thus

(4.47)

(4.48) $r'(x) = Py — 0~ p,()) + o(n™12),
or since g, (x) = p(x) and p,(x) is bounded,
(4.49) (@) = Pylx — n~ "2 p(x)) + o(n™V3).

By virtue of the well known expansion
(4.50) Pyx) = N (@) + n "2 fu3(1 — 2%)n(@) + o(n™11%)

(see, for example, [2], Ch. XVI, § 4), the assertion of the theorem follows from
(4.49).
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5. Proof of Theorem 3.1

We have
5.1) J Palz|21) — pala|2y)| de =J Plen2) _ PalE2 D) g < p 4,
Rk re | PalZ1) Palz2)
where
I = j (20, 2)Pa(z2) = Pz, _ [Pa(z2) — Pa(z)]
R* Pn(z1) Da(22) Pa(22)
(52) ’IZ - f |pn(zlax) - pn(zZ’x)Ipn(zl)dx
Rk Pn(21) Da(z2)

1
pn(zZ)’

_ 1
pn(zZ)

ka |pn(zl’ x) — Da(Z2, .’L‘)l dx =

say. By Lemma 4.1, |p,(2,) — pa(21)] £ C|z, — 2| and p,(2,) is bounded away
from zero for z, € A and » sufficiently large. Thus we need only to obtain an
inequality for I similar to (3.5). This will be based on the following lemma, which
is an immediate multidimensional extension of Lemma 1.5.1 from Ibragimov
and Linnik [3].

LeEMMA 5.1.  Let a function f(x), x € R¥, be absolutely integrable in R*, with
Fourier transform

(5.3) Y(t) = ka e f(x) dx, te R,
which has derivatives

g1+ e+
5.4 D,,, ... t) = ———————Y(2), =0Qorl,j=1,-- k,
( ) €1, &k lﬁ( ) atil .. at’?‘ lp( ) 8" or ]

with these derivatives (including D ... o Y(t) = Y(t)) being square integrable in
R*. Then

; 1 1/2
(5.5) Lk |f(x)| dx < pep (2 Lk |De,, . ()| dt) ,

where the summation is over all possible combinations of €,,- -+, &, = 0 or 1.
Now let ¥,(z, -) denote the Fourier transform of p,(z, -). We have

(5.6) e Y (z, t)dz = Je“’(j e p,(z, x) dx> dz = @,(1, t).
Rk
Therefore, for sufficiently large =,

1 .
(57) '//n(z’ t) = Q;J‘e_“z (P,,(T, t) dt:
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the application of the inversion formula being justified by Assumption 8. Let 2
stand for one of the operators %, ... , from (5.4). Then

(5.8) DYp(z. t) = %Je“’” D, (1. t) dr.

(The differentiation under the integral sign is justified by Assumption 9 and
relations (5.23), (5.24) below.) Furthermore, (5.8) implies

(5.9) |2(Wn(z1, 8) = Yulz,, )| < V‘;—nzﬂjlr@mr, t)| dr,

and in order to obtain the required inequality for I we need by Lemma 5.1 to
show that

(5.10) faz ()dt <K  foralle,, -+, g = 0Oorl,
R

where

(5.11) Qs (0 = [ [0, -, a5 0] d

and K is a constant which does not depend on ». T and ¢.

Consider first a(t) = aq ... o(t),

(5.12) alt) = f 2@, (1. t)] dx.

In view of (3.3) we need an estimate for ¢(t, ¢). By Assumption 8 we can find
C > 0 and B > 0 such that

(5.13) lo(z, t)| < C|w t|~7  for|z.t| = B.

We take B large enough to satisfy the inequality

(5.14) CB™" < 1.

Furthermore, it follows from Assumption 8 that £, the covariance matrix of
(Yo,1, Y1), is nondegenerate (otherwise there would exist (14, ty) # (0, 0) such
that E(toYo , + toY()> =0 and ¢(uty, uty) =1, — 0 < u < ). Since
E(Yy 1,Y;) =0, 0ne can find A > 0 and § > 0 such that

(5.15) lo(t, )] < e M=1*  for ||, t]| < 6.
Moreover, supy.,;25|@(7, )| < 1. Therefore, reducing 4 if necessary, we get
(5.16) |q0(1', t)] < e Al for ||z, ¢t| < B.

Setting 7(t) = max [(B*n — ||¢]|*)!/2 0], write a(t) as

(5.17) a(t) = (J + J‘ )[‘c(p,,(‘r, H| dr = a'V(t) + aP(t),
[t] =) Jt|> (0
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say. Then we have from (3.3), (5.13) and (5.16)

(5.18) aV(t) £ 2 [ re M ge < 9 [RES
V] 0

@ Cnnny/z 20nnn7/2
5.19 a®t) S 2| t5—Trremdt =
610 a0 52 [ e = e

2C"n

= (WY——_E)-BM—_?' for “t"z § an,
20" ™2

Smogppr T I£]* =z B*».

We can estimate the integrals | [a®(¢)]? d¢, i = 1, 2. From (5.18),
(5.20) f [ ()]? dt
saf [7[ umesp = Mle, ol + o, t]2) dry dey dt < o,

Let V,(B) denote the volume of the k dimensional sphere | ¢]|> < B?n; then for

B fixed, V,(B) = O(n*'?). Hence we obtain from (5.19)

40%mn? 4C*" ™ J‘ dt
I

(B) + ———— TiZm =4
(ny — 2)2B* 4 ®) (ny = 2)* Jyzmmre £ 2" 7%

(5.21) j[a‘z)(t)]z dt <
= O(n¥*(CB™7)*") > 0
in view of (5.14). Now (5.17), (5.20) and (5.21) imply (5.10) for a(t) = a,, ..., o ().

Consider now the general case of (5.10). Suppose without loss of generality
that 81="'=65=1, 8{+1="'=8k=0, O</§k, tha:t iS, tha/t

D,,..... = 0°/0ty -+ 0t,in(5.11). Let T = {jy, -, j,} beasubsetof {1, ---, /}.
Denote
(5.22) (., t) = —ar— (z, t)

' prie a1y, ot O

As is easily seen, (6%/0t, - - - 8t;)@,(t, t) is the sum of the following terms

N (L _t_>,,—k/2
IAVONE
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where T,, -, T, is a partition of the set {1, -/} into nonempty disjoint
subsets, and the summation is over all possible partitions. Every term (5.23)
is estimated as in the case of a(t) above, and we shall only indicate the distinctions
which arise.

Split the integral of 7 times (5.23) into two parts as in (5.17) and call them

again a'V(¢) and a®(¢t). We have for T = {j;, - --.j,}
(5.24) lor(t. ] S E|Yyj, - ¥y | = My,

say, which is finite by Assumption 9. Hence the modulus of (5.23) is bounded
from above by

n—m

(5.25) WM My s My,

T t
ol —
This enables us to estimate a‘'®(¢) just as above. The only difference from (5.21)
occurs in the factor of order of #™ %2, This does not matter in the presence of
a geometric series term.

Concerning aM(¢), (5.25) is sufficient when m < k/2. Consider the case
m > k/2. We have
(5.26)

@0, t) =iEY1'j=0, j=1-k,

t=0

6t

and, writing for a moment ¢, instead of T,

0* o
(5.27) mﬁ%WQJ)gEWMYML ij=0,1," k.
Hence we can find a constant L such that, for all 7, ¢
(5.28) a0, 9@ 0| = Llw . j=1-.k
Note now that there are at least 2m — k sets among Ty, - - -, T, containing just

one element. In fact, if » is the number of such sets. then the remaining m — r
sets contain not less than 2(m — r) elements, that is, k. — r = 2(m — r) whence
r = 2m — k. Suppose, to be definite, that 7. - - -. T,,,_, contain one element
each. Then by (5.28)

-1/2

(5.29)

j=1,,2m — k.

(7 =

Applying (5.24) to the remaining ¢ in (5.23), we obtain for (5.23), up to a
constant factor, “kerm(tn~ Y2, tn~12). Therefore,
proceeding as in (5.16), (5.18) and (5.20), we arrive at an inequality whose right
side differs from that of (5.20) by some power of |1, t| |1, t| under the
integral sign, which does not affect the convergence of the integral. The proof
is thus completed.
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6. Proof of Theorem 3.2

Without loss of generality assume Var X, = Var ¥, = 1. Put u = an'/2.
All limits will be taken as n - o, a/log n — o0 (or, equivalently. as n — o0.
u/\/;t log » — oc) unless otherwise stated. We shall prove (3.8) with S, rather
than |S,|. Since the same will be true for —,,. this will imply (3.8). We take and
fix an arbitrary bounded 4 = R for reference when dealing with the uniformity
of convergence.

Let 4, , denote the event

(6.1) {Y;, < u foralli =1, ---.na}.

Writing 4, , for its complement, we have

(6.2) P{S,>x|Z, =z} < P{S, >, 4,,|2, =z + P{4,,|Z, = z}.
Estimate first the last term in (6.2). We have obviously

(6.3) P{A, .2, = z} < nP{Y, > u|Z, = 2}.

We show now that

(6.4) sup P{Y, > u|Z, = 2} p,(z) < a,P{Y, > u}

where a, — (27) " '/? and hence is bounded. Let A = R! be an arbitrary bounded
Borel set. Then

(6.5) fA P{Y, > u|Z, = 2} p,(z)dz = P{Y, > u, Z, e A}

- f‘” f‘” P{Z,cA|X, = x. Y, = y} dP(x. y)

Cre e n \172 x
- f—wL P2y, e|:<n - ]) A- (n — 1)1/2:|

n 1/2
< sup P{Z,,_1 e( 1> A — t}P{Y,, > u}
t n —

0 \1/2
|A| ( 1) max pn(z) P{Y, > u},

n —

Xn

lIA

where |A| is the Lebesgue measure of A. With a, = [n/(n — 1)]'/? max, p,(2)
this implies (6.4). The assumption that p**(z) is bounded assures the convergence
(6.6) Pa(2) = 2(2) uniformly in z € R'.

This implies that a, = (2n)~ !> and moreover that p,(z) is bounded away from
zero on A for n large enough. Since P{Y, > u} = o(u~") we obtain from (6.3)
and (6.4) that
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(6.7) P{A,.\Z, =z} = o(nu™") uniformly in z € 4.

that is, this term has the required order.

Consider now the first term in the right side of (6.2). We shall write S,. Z,
for S,,\/—n, Z,,ﬁ (nonnormalized sums). For an event B. let I denote the
indicator function; instead of I, . we shall write /, ,. Then for any A > 0,

(6.8) P{S, > x,A,,|2, =2} = P{S, > u. 4, ,|Z, = 2}
< e ™ Elexp {hS,} 1, .| Z, = 2].
Put
(6.9) d.(v) = l/yy' dQ(y).
(6.10) ¢, = max (n~ "2 d,(/n)).
(6.11) by = —u"'log (c,nu™").

Writing u = /l\/; log n where 4 — o0, we see that

(6.12) oo~ log ¢,n + rlog A + rlog (n''* log n) — o),

" lﬁ log n

Since ¢, — 0, we have from (6.11)

(6.13) exp { — h,  u} = o(nu™").
We shall show that
(6.14) Elexp {hnu S} Inul Zy = 2] pa(2)

is bounded uniformly in z and sufficiently large n. Then the theorem will follow
from (6.1). (6.7), (6.8), (6.13) and (6.6).

Denote the density of Z, by [),,(z);[),,(z\/;)\/; = p,(z). We can rewrite
(6.14) as

(6.15) Elexp {hy uSu} In.u| Zy = 23/0] pulz/n) /0.

This expression will be estimated with the help of the following lemma.
Lemma 6.1.  Let (Uy, Vy). (U,. V,) be independent random vectors, V; having

a density p;(v), 1 = 1, 2, and let p(v) be the density of V, + V,. Put

6.16 filv)y = E[Ui V= 'U] p;(v), i =12,
(6.16) f@) = B[U UV, + V;, = v] p(v).
Then
(6.17) fw) = fiafa(v).
Proor. For any Borel set B = R, put
n;(B) = E[LTiIB(Vi)]y i=1,2,
(6.18)

n(B) = E[U,U,I5(Vy + V;3)].
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Let P;(u, v) be the d.f. of (U;, V;),i = 1, 2. Then

©19) B = [ wwls + 02 dPy(us. i) dPa (g vs)

= J‘Rz IB(vl + vz) d‘ltl dnz = nl *nz(B).
On the other hand,

fﬂf,.(v)dv = fB E[U,|V

o= v] pi(v) dv

= E[UIIB(VI)] = ﬂi(B), Z = 1, 2,
That is. f;(v) is the density of m; with respect to the Lebesgue measure.
Similarly, f(v) is the density of #. Thus (6.19) implies (6.17).

This lemma can be extended in an obvious way to any finite number of
vectors (U;. V;). Denote

(6.20)

(6.21) fzih.u) = E[exp {RY,} Ly, <u| X, = 2].
Putting U; = exp {hY;} Iy,<,y. Vi = X;fori = 1,--- n, we obtain
(6.22) Elexp {kS,} I, ,| Z, = 2] Pu(2) = [f(z: h. u) p(2)]™.
Comparing this with (6.15), we see that all we need to show is
(6.23) sup [f(2: hn,ur w) P)]™ = O™ 12,

Note that
(6.24) ffz h,u) p(z) dz = E[exp {kY,} Iy, <] = R(h. w),

say. The proof of Theorem 1 in [5] contains the following estimate

(6.25) Rh,w) =1 + km, + 20,h*m, + 0,K,d,(h) e™u"",

where |0, < 1,0 <8, <1, m = EYY k = 1,2 and K, is a function of r
only. Actually in that proof M, = E|Y1| rather than d,(h) is used, but it
appears there in the inequality 1 — Q(x) < M,xz™" (in our notation) which is
used only for x > 1/h and therefore holds true when M, is replaced by d,(h).
This is the modification of the proof we referred to in the proof of Lemma 4.2.
It follows from (6.10) and (6.12) that d, (%, ,) £ c, for n large enough. In view
of (6.11), (6.12) and m; = EY; = 0, we obtain from (6.25)

(6.26) Rhyu) =1+ 0O@n™").
Put

(6.27) Tuu(2) = Rh, . w)
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Since r, , is nonnegative and integrates to unity by (6.23), it is a probability
density. By virtue of (6.26), (6.23) is equivalent to

(6.28) sup [7,..(2)]™* = O(n~1?).

First we shall show that

(6.29) lim sup sup [r, ,(2)]*"* < .

On applying (6.25) to the conditional distribution of Y, given X, = z (see
(6.21) and (6.24)), we obtain

(6.30) fzihou) =1 4+ km,(2) + 20,h*m,(z) + 0,K,M,(z) ™u™"

where m;(z) = E[Y{|X, = z].i = 1,2. (Actually, (6.30) corresponds to the
version of (6.25) with M, instead of d,(h).) It follows from (6.11) and (6.10) that

(6.31) exp {hy u} u™" = Yem < 0”2

Moreover,

(6.32) mi(z) < (M, (2))" £ 1 + M,(2), i=1,2.
Therefore

(6.33)  f(z;hou) <1 4+ h + 282 + (B + 2B + K.n™ V%) M, (2) = f(z; h, u),
say.

Define 7, ,(2) by (6.27) with f replaced by f. Then we have from (6.12), (6.26)
and (6.33)

(6.34) Tuu(2) S Tpu(2) = 0P (2) + BuuM,(2)p(2).

where a, , = 1, B, , = 0. Denote by p, ,(t), p,.,(t), @(t) and @,(t) the c.f. of
Tn u(2), Tn,u(2), p(z) and M, (2) p(z)/M,, respectively. Put

(6.35) L =supp™(z), L, = sup [M,(2)p(z)/M,]"*.

(This is finite by assumption (iv) of Theorem 3.2.) By the Plancherel identity (see,
for example, Feller [2], Chapter XV, equation (3.8)),

IA

1
(6.36) ﬁj lo(t)|* dt = J [p(2)]* dz

Similarly

L J p'*(z)dz = L.

3 1 2
v d < ]
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Using Minkowski’s inequality, we have from (6.34), (6.36) and (6.37)
1

(638) _Q;f |ﬁn,u(t)|2v di é [an,uLllzv + ﬂn,quLnl'/zv]zv = Ln,u’

say,and «, , = 1, B, , = 0 imply L, , = L. Furthermore

1
(6.39) sup [, (2)]* < EJ |Pn.u ) dt < Ly,

Obviously, 7% (z) < 7* (z) for any k = 1,2, - - -, whence sup, [, .(2)]*"* <
L, , which proves (6.29). Applying again the Plancherel identity we obtain

1 4
v <

By virtue of the inequality

(641) sup [’rn,u(z "* = _J Ipn ul l dt = n,u:

say, in order to prove (6.28) we need to show that J, , = O(n~'/2). The relations
(6.26) and (6.30) give

(6.42) f |ro.u(2) — p(2)| dz = 0.

For any density r(z), we shall write #?(z) = r * r"(z) where r™(2) = r(—2).
Then (6.42) implies

(6.43) f r2(2) — p?(2)| dz — 0.
Take an arbitrary 6 > 0 and put
(6.44) b, , = f 2219, (2) de.
’ Izl £1/8
Then (6.43) implies
(6.45) bau = f 2 (2) dz
|| S1/6

Taking into account that the c.f. of 7% (2) is | p,,, (t)|* and using the first of the
truncation inequalities [4], 12.4.B’, we obtain for |¢| < &

(6.46) lonu®)]* £ 1 — 5825, , < exp {—1£%b,,.}
or
(647) |pn u(t)l exp {_ 6nt2bn u}

Further, (6.42) implies that p, ,(t) - @(¢) uniformly in ¢ € R!, whence
4 .
(6.48) sup |Pn,u ()| = sup lot)] < 1
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Split the integral J, , in (6.41) into the integrals over {|t| < 8} and {|t| > &}
and use (6.47) in the first and the inequality

(6.49) om0 = [sup |pn w100 (0]

in the second of them. Then by virtue of (6.40), (6.45) and (6.48) we obtain
J, . = O(n~"?) which was to be proved.

n,u

7. Concluding remarks

After strengthening certain assumptions in Theorem 2.1, the same proof,
somewhat refined, could give for ¢,(x) an estimate O(n~#) with'{ < g < 1.
However it is impossible to obtain the naturally expected order n~' by the
present method. For this reason we restrict ourselves to the assertion that
g,(x) = o(n~12).

Though it is not explicitly stated in (2.12), the function ¢,(x) depends on 6,
because yy and p(x) do, thus ¢, (x) = ¢,(x. 8,), say. There is no such dependence
(and the d.f. of Z,(f,) does not depend on 0, at all) when 0 is the location scale
parameter and has an appropriate invariance property. In the general case we
cannot determine the critical value z, , from the equation ¢,(z,0,) = 1 — a
since 6, is unknown. It may be shown, however, that under certain smoothness
of the dependence of u;y and u(x) on 6 the critical value %, ,, determined from
the equation ¢,(z, §,) = 1 — o, has the property that

(7.1) P{Z,6,) > 2,,} = a + o(n~1/?),

that is, it provides the same order of approximation as with known 6,,.
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