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1. Introduction

Let X,, X;, - -+ be a sequence of independent randon variables, identically
distributed according to the continuous c.d.f. F. The null hypothesis is H,:
F(—x) =1 - F(x), 0 £ x < + o0; that is, the random variables are sym-
metrically distributed about zero. Sequential tests of this hypothesis which are
based on the signs and ranks of the X; are studied in this paper.

Sequential rank tests should be particularly useful in medical clinical trials.
The one sample case arises naturally when patients are paired for similarity of
influential physical traits, and are randomly assigned to one of two possible
treatments so that each treatment is given to one member of each pair. The vari-
able X, is the difference between the treatment effects measured on the ith patient
pair. Sequential binomial trials have been valuable in this context and will con-
tinue to be so. Rank tests, however, can take advantage of quantitative (non-
dichotomous) information in each treatment comparison while at the same time
making only minimal assumptions about the form of the distribution.

In 1969 Weed, Bradley, and Govindarajulu [4] proposed a sequential likeli-
hood ratio test for this problem. Let G(x) = P{|X| < z|X < 0} and H(z) =
P{X < x|X > 0}. They considered the family of distributions whose left and
right tails are related by 1 — H(x) = (1 — G(x))*,4 > 0,and F(0) = 4/(1 + 4).
For this family the null hypothesis becomes H,: A = 1, and an alternative hypo-
thesis is H,: 4 = B where B is a specified constant. The likelihood for the signs
and rank order of the absolute values of X, ---, X, is

(1) § S R n”lat!
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where 8; = 1 if the X; with the ith smallest absolute value is negative, §; = 0 if
it is positive. For Hy: A =1 and H,: 4 = B, the likelihood ratio simplifies to
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where n;” is the number of X; such that X; < 0 and |X;| 2 |X,| and n;" is the
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number of X; such that X; > 0 and X; = |X;|. The Wald type sequential test is
to continue sampling as long as @ < LR, < b, where 0 < a <1 < b. If LR,
exceeds the upper bound for some n, terminate sampling and decide in favor of
H,;if LR, crosses the lower bound, terminate the test and decide H,. Weed et al
proved that this test terminates with probability one so the bounds can be approxi-
matedbya = B/(1 — a)andb = (1 — B)/a, where x and § are the specified prob-
abilities of errors of the first and second kind, respectively.

Weed et al also considered another model with H(x) = G“(x) and F(0)
arbitrary, but in this paper attention will be restricted to the model cited above.

Also in 1969, Miller [3] proposed an ad hoc sequential test based on the
Wilcoxon signed rank statistic. Let B; < - -+ < R, - be the ranks of the negative
X;,and 8; < ‘- < §,+ the ranks of the positive X; in the ordered sequence of
the absolute values of the X;. The Wilcoxon signed rank statistic is SR, =
=18, — 2, R;. Under H, the first two moments of SR, are E(SR,) = 0
and Var (SR,) = n(n + 1)(2n + 1)/6. The fixed sample size test suggests samp-
ling as long as

(3a) |SR,| < |2[3[n(n + 1)(2n + 1)/6]"72
and
(3b) n<N.

If for some n prior or equal to N, |SR,| exceeds the bound in (3a), reject H,. If
n reaches N without (3a) being violated, accept H,. The investigator selects the
truncation point N and the probability of a type I error «, which determines the
critical constant |z|%. A table of |z|§ for a = 0.10, 0.05, 0.01, and N =
10(5)30(10)60 is given in [3]. The percentile points |z|% were estimated by Monte
Carlo simulation.

This test is computationally easy to perform since the SR, can be computed
sequentially.

4) SR, i i sgn (X; + X))

i=1j=1

= SRn—l + Z Sgn (X: + Xn)ﬁ
i=1

+1  if X, + X; >0,

. X)) =
) sgn (X + X)) {—1 if X, +X; <0

As the next observation X, is obtained, it is easy to compare it with the pre-
ceding observations in order to compute the term Xi_; sgn (X; + X,). The
addition of this sum and the previous SR, _, yields SR,.

Since Z. .., i = (N — #)(N + n + 1)/2, it is possible for the test to termi-
nate sampling prior to N with the acceptance of H,. If for any n

(6) ‘SR,,[ =< |z|§[N(N + 1)(2N + 1)/6]Y2 — (N — n)(N + n + 1)/2,
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then it will be impossible for |SR,| to reach the rejection boundary by time N,
and the test can stop with acceptance of H,. Expression (6) creates an inner
acceptance boundary inside the outer rejection boundary (3a).

An analogous one sided test would be to continue sampling as long as
SR, £ 2%[r(n + 1)(2n + 1)/6]'/? and = < N. However, the critical constants
2% have not been computed. For the one sided test the acceptance boundary
SR, £ 24[N(N + 1)(2N + 1)/6]Y? — (N — n)(N + n + 1)/2 is more apt to
create substantial savings in the number of observations than for the two sided
test.

In this paper a third test is presented. It is similar to the preceding test, but it
employs a linear barrier instead of a square root barrier. Namely, continue
sampling as long as .

(7a) |SB,| < |wl§n,
(7b) n<N

for the two sided test, or

(7a’) SR, £ win

for the one sided test. The investigator specifies N and «, which determine |w|%
(Table Ia, b) or w% (Table Ila, b). As in the previous test acceptance of H, can
occur prior to N if

(8) |SR,| < |w|§N — (N —n)(N +n + 1)/2
in the two sided case, or if
(8) SR, S u4N — (N —n)(N +n + 1)2

in the one sided case.

The linear barrier in (7a) or (7a’) can be motivated in two ways. Suppose that
the X; are independently, identically distributed according to F(x — A), which
has density f(x — A) symmetric about A. For Hy: A = Oversus H;: A = A, the
likelihood ratio for the signs and rank order of the absolute values of X,, - - -, X,
can be written

_ —fUs)\ _ % pf = Ue) 2
) LB, =1+ M [Z E( JUsy) ) i;E( fWy) )] + 0A4i)

as A; — 0, where Uy, < -+ - < Uy, are the order statistics from a sample gener-
ated by the density 2f(u) for u > 0. If F is chosen to be the logistic distribution,
then

(10) E(

_f'(U(s.-))> __ 5
f'(Usy) n+ 1
and similarly for ;. Thus,

an LR, =1+ A,8R,/(n + 1) + O(A?),
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and a linear barrier seems appropriate for local shift alternatives. This approach
is analogous to the one employed for the two sample problem by W. J. Hall in
unpublished work.

A second justification for a linear barrier arises from the approximate normal-
ity of SR,. For moderate or large values of n, SR, is approximately normally
distributed with mean u, = n(n — 1)0, + n0; and variance 67 = n(n — 1)
(n — 2)13 + n(n — 1)y, + nn,. The constants 8,. 8,.1,,7,.n; depend on F, but
not n. In particular, §; = P{X, > 0} — P{X, < 0},and 0, = [P{X, + X, > 0}
— P{X, + X, < 0}]/2. For translation alternatives F(x — A) the mean p,
under Hy: A = — A/ is the negative of the mean under H,: A = +A,; the vari-
ance g2 is the same under both H, and H,. Thus, if it is assumed that SR, is
approximately normally distributed, the likelihood ratio for SR, under H,:
A= —Ajand H: A = +A,is

1 1
(12) Ln = exp {? (SRn + Aun)z - 20__3 (SRn - Aun)z}v

n

and

2, SR,  (20,\ SR
(13) log L, = 22 "~< 2)—".

O_2

n M3

n

which again suggests a linear barrier.

2. Percentile points for linear barriers
Define Y, = SR,/n, and
(14) Wy = max {Y,, .Yy} |W|y = max {|¥,|. . |Yul}-

In order for the test defined by (7a), (7b) to have size «, the constant |w|7v must
be the upper a-percentile point of the distribution of |W|y: that is, P{{W|y >
|w|%} = o. Similarly, w} is defined by P{Wy > wi} = a.

Both Wy and |W|y have discrete distributions which have not been treated
analytically. However, their distributions can be estimated easily through Monte
Carlo simulation. Two thousand Wy and |W|y were randomly generated for
N = 10(5)30(10)50. The sample a-percentile points for a = 0.10, 0.50, 0.01 are
displayed in Table Ia and Table Ila. A pseudorandom number generator [2]
was used to generate sequences of uniform variables, which were transformed
into Wy or |W|y. Different sequences were used for different values of N.

The stochastic behavior of the signed ranks SR,. n =1, ---, N, can be
approximated by a Wiener process. It is well known that under H,

nn +1)2n +1) n

(15) E(Y,) =0, Var(Y,) = e = 3.

For m < n the covariance between Y, and Y, is
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HEem + 1 ,
(16) Cov (Y, ¥,) = Mt DEm+ 1) m
o6mn 3

which is easily proved using the representation
n j m J n j
7)Y Ysen(X;+X) =3 Ysgn(X;+ X))+ Y Y sen(X; + X))
j=1i=1 j=1i=1 jEm+1i=1
and the covariances
Cov [sgn (X; + X;). sgn (X, + X;)] =

(18) Cov [sgn (X; + X;). sgn (X; + XJ.)] =

Nf—=

fori.j. k. unequal. The approximate normality of Y, and the variance-covariance
in (15) and (16) suggest that the Y, are behaving like W(n)/\/I—i. where W (f) is a
standard Wiener process with zero mean and variance {.

This approximation gives

(19) P{Wy > ¢} = P{max_ W()//3 > ¢}
= 2P{W(N) > ¢./3}
= 2[1 — ©(c/3//N)].

where the second line follows from the reflection principle and @ is the unit
normal c.d.f. The approximation (19) implies wy = /N g“/z/\/g, where g%/ is
the upper a/2-percentile point of the unit normal c.d.f. Values of \/N g“/z/\/?;
appear in Table IIb.

If the probability of crossing both the positive and negative boundaries by
time N is negligible, then |w|} =~ \/N g"‘/"’/\/g. The latter values are presented in
Table Ib. The probability of a double crossing appears to be negligible for ¥ in
the range of the tables, but it will increase with increasing N.

Comparison of Table Ia with Ib and Table Ila with IIb reveals close agreement
between the Monte Carlo percentile points and the Wiener approximations. This
seems remarkable since a discrete process in discrete time is being approximated
by a continuous process in continuous time.

TABLE Ia

VALUES OF |w|} BY MONTE CARLO APPROXIMATION

T
Yoo 15 20 25 30 40 50

.01 5.00 6.23 6.90 7.59 8.50 10.05 11.08
.05 4.10 5.07 5.70 6.50 6.93 7.97 8.82
.10 3.50 4.36 5.06 5.64 6.15 6.90 7.75
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TABLE Ib

VaLues of |w|y BY WIENER APPROXIMATION

10 15 20 25 30 +0 50

.01 5.12 6.28 7.25 8.10 8.88 10.25 11.46
05 4.09 5.01 5.79 6.47 7.09 8.18 9.15
.10 3.58 4.38 5.06 5.66 6.20 7.16 8.00

TABLE Ila

VALUES OF w}y BY MONTE CARLO APPROXIMATION

10 15 20 25 30 40 50

.01 4.50 5.73 6.30 7.32 7.83 9.38 10.73
.05 3.70 4.30 5.00 5.50 5.96 7.00 7.82
.10 3.10 3.70 4.25 4.61 5.06 5.79 6.61

TABLE IIb

VALUES OF wy BY WIENER APPROXIMATION

“ 10 15 20 25 30 40 50
.01 4.70 5.76 6.65 7.44 8.15 941 10.52
.05 3.58 4.38 5.06 5.66 6.20 7.16 8.00
10 3.00 3.68 4.25 4.75 5.20 6.01 6.72

3. Power and expected sample size

The power and expected stopping time of the test using SR, with linear barriers
was investigated for shift alternatives in the double exponential distribution.
Let

(20) flx) = e x4l -0 <x < + 0.

This distribution has mean A, variance 2 (standard deviation 1.41). The tails of
(20), which are heavier than the normal, behave like the logistic distribution for
which the Wilcoxon statistic is known to have good local properties. In [3] this
distribution was used to examine the power and stopping time for SR, with
square root barriers.

For N = 20 the performance of the test was studied at A = 0,0.5. 1, 1.5; for
N = 50, at A = 0,0.25, 0.5, 0.75, 1. The error probability o was taken to be
either 0.05 or 0.01. For each combination of N, «, A, five hundred sequences of
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TABLE IIla

MonTE CARLO POWER AND EXPECTED SAMPLE
S1ze For Two SipeEp Test, N = 20

A

Power

0 5 1 1.5
a = .05 046 .39 .88 .99
o = .01 .014 .19 1 .96

Expected n

o= .05 19.8 18.5 14.8 13.0
o = .01 20.0 19.5 17.4 15.5

TABLE IVa

MoNTE CARLO POWER AND EXPECTED SAMPLE SizE
ror Two SipEp TEsT, N = 50

A

Power

0 .25 5 75 1
a=.05 .062 .30 .82 .98 1.0
o= .01 .010 A3 .59 .93 1.0

Expected n
o« = .05 494 46.6 37.2 29.0 24.2
a=.01 49.9 48.9 43.5 35.8 29.9
TABLE Va

MonTE CARLO POWER AND EXPECTED SAMPLE
S1ze For ONE SipED TEST, N = 20

A

Power

0 5 1 1.5
o= .05 052 51 94 .99
o =.01 020 32 .78 .98

Expected n

o = .05 14.7 16.1 13.3 11.5
o« =.01 13.5 16.3 15.7 14.0

double exponential random variables were substituted into the test. For the
two sided test the results are displayed in Tables IIla, IVa; the one sided test

results appear in Tables Va, Vla.
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TABLE Vla

MoNTE CaArRLO POWER AND EXPECTED SAMPLE SIZE
rOR ONE SipDED TEsT, N = 50

A
Power
0 25 i3 5 1
o= .05 .052 41 87 .99 1.0
a = .01 .006 14 .59 92 1.0
Expected n

a = .05 41.9 41.6 32.9 25.7 21.5
o = .01 38.8 43.3 41.6 34.3 29.5

For the two sided test the power is the probability of exceeding the rejection
boundary in the correct direction. Under these alternative hypotheses just one
Monte Carlo sequence ever crossed the rejection boundary in the wrong direc-
tion. This occurred for N = 50, o« = 0.05, A = 0.25.

For the two sided test the inner acceptance boundary was not used so that the
expected sample sizes could be compared with those in [3] for SR, with square
root boundaries. The power of the test is unaffected by the inclusion, or ex-
clusion, of the inner boundary, but the expected sample sizes would be slightly
smaller with the inner boundary included. The early acceptance boundary was
included for the one sided test.

Comparison of the entries in Tables I11a, IVa with the corresponding values in
[3] for SR, with square root boundaries leads to the following conclusion. The
test with linear barriers has slightly better power than the square root barrier
test, but the reverse holds for expected sample sizes. The square root barrier gives
expected sample sizes which are slightly smaller than those for the linear barrier.

This means that if a sequence X, X,, - - - is going to reject [, it will stop sooner
with the square root barrier than the linear one.
Asin the null case, the behaviorof SR,.n = 1.2, - -+ . N, can be approximated

by a Wiener process. Let W (t) be a Wiener process with drift pf and variance
o?t. Dinges [1] proved that

2
(21) P{ max W(t) > C} _ <e“‘/”2> CD(—uﬁ o )
0<t=T . aﬁ

+ cp(“ﬁ— ‘

C- )
For the distribution (20)
(22) E(Y,) = nE[sgn (X; + X;)] + O(1),
=141 = (1 + Ae **]n + 0Q1),
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TABLE IIIb

WieNER PowEir For Two SipeEp TEst, N = 20

A
Power
0 .5 1 1.5
a = .05 .055 .37 .86 1.00
a = .01 015 .19 .64 .95

TABLE I1Vb

WIENER PowERr FOR Two SipEDp TEsT, N = 50

A
Power
0 25 .5 15 1
a = .05 .061 32 .80 .98 1.0
o= .01 .013 .14 .58 .92 1.0

TABLE Vb

WIENER POoWER FOR ONE SipeEp TEsT, N = 20

A
Power
0 5 1 1.5
a = .05 .053 .50 93 1.00
o = .01 015 27 .76 .98

TABLE VIb

WIENER POWER FOR ONE SipED TEsT, N = 50

A
Power
0 .25 5 15 1
a = .05 055 42 .87 .99 1.0
a = .01 .009 .16 .62 .92 1.0

(23) Var (Y,)

= n Cov [sgn (X; + X)), sgn (X, + X;)] + O(1),
= 3[6e72* — (4 + 6A + 3A%)e **]n + O(1).

105

If 1 and ¢ are taken to be the coefficients of # in (22) and (23), expression (21)
gives the entries in Tables IIIb, IVb, Vb, VIb.

Comparison of the a and b parts of Tables III, IV, V, VI reveals a remarkable
agreement between the Monte Carlo approximation to the power and the Wiener

approximation.
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4. Comparison of tests

An interesting question is how to compare the three tests mentioned in Section
1. One approach is to adjust the structures of the tests so that they have the same
power at a fixed alternative. The expected sample sizes can then be directly
compared. This cannot be done analytically because workable expressions for
the power are not available for the SR, tests (except for Wiener approximation
in the linear case) and for the expected sample sizes nothing is available for any
of the tests. However, the comparison can be carried out by Monte Carlo simu-
lation.

Let A .

. <0,
T+a4°¢ TS0
y

(24) flx) =

e x> 0.

1+ 4

This family of unsymmetric double exponential distributions constitutes Leh-
mann alternatives to which the likelihood ratio test (2) applies. For N = 20,
o = 0.05 five hundred sequences of random variables from the distribution (24)
with 4 = 1.0.75. 0.5. 0.25 were substituted into the one sided SR, test with
linear barrier. The resulting Monte Carlo power and expected sample sizes appear
in Table Vlla in the M (Miller) linear line. For B = 0.5 the error probability
is 0.432. These constants were then used to define the sequential likelihood ratio
test based on (2). An identical number of Monte Carlo sequences were sub-
stituted into this test. and the results appear in the W-B-G (Weed-Bradley-
Govindarajulu) lines of the table.

TABLE VIla

ComparisoN OF THE MILLER TEsTs
(N = 20. 2 = 0.05) with THE WEED-BRADLEY-
GoviNparaIvLe TesT (2 = 0.048. f = 0.432.
B = 0.5) FOrR LEHMANN ALTERNATIVES

A
Power

1 B D 25

M square root 048 18 Sl 95

M linear 048 8 DT 97
W-B-G 048 21 .61 94

Expected n

M square root 13.4 14.3 13.9 10.1
M linear 14.7 15.9 15.9 12.9
W-B-G 8.4 12.9 14.5 11.3

To prevent unlimited sampling the W-B-G test was truncated at fifty observa-
tions. Just a few sequences needed to be truncated. For 4 = 1 there were three
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out of five hundred, 4 = 0.75 nine, and A = 0.5 six. For shift alternatives with
A = 0 there were two, and with A = 0.5 eight.

The critical constant z% for the one sided SR, test with square root barrier
when N = 20, « = 0.05 was simulated in a special run so that this type of test
could be compared with the previous two. (Complete tables of z§ have not been
computed.) The estimated percentile point was 2.17. The Monte Carlo results
for the square root barrier test appear in the M square root line. Both tests based
on SR, used the early acceptance boundary for H,.

Since the likelihood ratio test is designed for Lehmann alternatives, it seemed
fair to evaluate how it performs for shift alternatives where the Wilcoxon statistic
is better adapted. Monte Carlo sequences from the distribution (20) were sub-
stituted into the three tests, and the outcome is displayed in Table VIIb.

Table VIIb

CoMPARISON OF THE MILLER TESTS
(N = 20. o = 0.05) witH THE WEED-BRADLEY—
GoviNnparasuLt TesT (a0 = 0.048, f = 0.432,
B = 0.5) FOR SHIFT ALTERNATIVES

A
Power
0 b 1 1.5
M square root 048 48 .90 98
M linear 052 .51 .94 99
W-B-G 034 .51 .87 .96

Expected »

M square root 13.5 13.9 10.2 8.3
M linear 14.7 16.1 13.3 11.5
W-B-G 8.0 14.3 12.8 10.5

Examination of the values in the tables leads to the following conclusions.
The M linear test has slightly better power than the M square root, but the M
square root has smaller expected sample sizes. This agrees with the conclusion
reached earlier in the two sided case. For both power and expected sample size
the W-B—-G test performs better than the M square root test for near alternatives
whereas the M square root is better for far alternatives. The expected sample
size under H , is very much smaller for the W-B-G test. The choice of alternative
distribution, Lehmann or shift, appears to have little effect.

These conclusions are also reflected in the smallest value of » for which accept-
ance of H, or H, can occur. For M square root the earliest time at which accept-
ance of H, can happen is 10 and for H, it is 6. With M linear the values are 10
for both Hy and H ;, and the W-B-G test needs only 2 for H, but 9 for H,. Thus.
the square root boundary allows earlier rejection of H, than the other two, and
the likelihood ratio test permits earlier acceptance of H,.
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Which test should be used? The SR, tests are much simpler computationally,
and they are very simple to explain to the investigator. In medical applications
selection of an alternative hypothesis and its associated power is often difficult
or extremely arbitrary. A bound on the amount of sampling is usually easier to
determine due to limitations of money, time, and so forth. The likelihood ratio
test stops very early when H is true, but in a medical setting the far alternatives
seem more important. If there is little or no difference between treatments, then
continuation of the trial is relatively unimportant from the ethical point of view,
but if one treatment is much better than the other, you want to stop the trial as
soon as possible.

SR VR O

The author would like to thank Elizabeth Hinkley for expertly programming
the Monte Carlo computations. She proposed the use of the pseudorandom
generator [2], which produces better sequences than other generators familiar
to the author.
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