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1. Introduction

Let X1, X2, * be a sequence of independent randon variables, identically
distributed according to the continuous c.d.f. F. The null hypothesis is Ho:
F(-x) = 1 - F(x), 0 _ x < + oo; that is, the random variables are sym-
metrically distributed about zero. Sequential tests of this hypothesis which are
based on the signs and ranks of the Xi are studied in this paper.

Sequential rank tests should be particularly useful in medical clinical trials.
The one sample case arises naturally when patients are paired for similarity of
influential physical traits, and are randomly assigned to one of two possible
treatments so that each treatment is given to one member of each pair. The vari-
able Xi is the difference between the treatment effects measured on the ith patient
pair. Sequential binomial trials have been valuable in this context and will con-
tinue to be so. Rank tests, however, can take advantage of quantitative (non-
dichotomous) information in each treatment comparison while at the same time
making only minimal assumptions about the form of the distribution.

In 1969 Weed, Bradley, and Govindarajulu [4] proposed a sequential likeli-
hood ratio test for this problem. Let G(x) = P{IX| < xiX < 0} and H(x) =
P{X < xiX > 01. They considered the family of distributions whose left and
right tails are related byI - H(x) = (1 - G(x))A,A > 0, andF(0) = A/(1 + A).
For this family the null hypothesis becomes Ho: A = 1, and an alternative hypo-
thesis is H1: A = B where B is a specified constant. The likelihood for the signs
and rank order of the absolute values of X1,I , X. is

(1) ($)(ln) A )A) n+! r r nf j' H {dG(xi)}i{dH(xi)}'-i,
O<xl< ._. <Xn 1

where bi = 1 if the Xi with the ith smallest absolute value is negative, bi = 0 if
it is positive. For Ho: A = 1 and H1: A = B, the likelihood ratio simplifies to

(2) LR (B/i +B)121n!
Hl [n- + Bnt]

where nr is the number of Xj such that Xj < 0 and jXj| _ lXii and n:+ is the
97



98 SIXTH BERKELEY SYMPOSIUM: MILLER

number of Xj such that Xj > 0 and Xj > IXil. The Wald type sequential test is
to continue sampling as long as a < LRn < b, where 0 < a < 1 < b. If LRn
exceeds the upper bound for some n, terminate sampling and decide in favor of
H1; if LRn crosses the lower bound, terminate the test and decide Ho. Weed et al
proved that this test terminates with probability one so the bounds can be approxi-
mated by a = #/(1 -a) and b = (1 -,)/a, where a and , are the specified prob-
abilities of errors of the first and second kind, respectively.
Weed et al also considered another model with H(x) = GA(x) and F(0)

arbitrary, but in this paper attention will be restricted to the model cited above.
Also in 1969, Miller [3] proposed an ad hoc sequential test based on the

Wilcoxon signed rank statistic. Let R1 < ... < Rn- be the ranks of the negative
Xi, and S1 < ... < S,+ the ranks of the positive Xi in the ordered sequence of
the absolute values of the Xi. The Wilcoxon signed rank statistic is SR, =
Ei ,1 Si- Yn_1 Ri. Under Ho the first two moments of SR, are E(SRn) = 0
and Var (SRJ) = n (n + 1) (2n + 1)/6. The fixed sample size test suggests samp-
ling as long as

(3a) ISRnl IzI"[n(n + 1)(2n + 1)/6]112

and

(3b) n < N.

If for some n prior or equal to N, |SRnl exceeds the bound in (3a), reject Ho. If
n reaches N without (3a) being violated, accept Ho. The investigator selects the
truncation point N and the probability of a type I error a, which determines the
critical constant Izl'. A table of lz|K for a = 0.10, 0.05, 0.01, and N =
10 (5) 30 (10)60 is given in [3]. The percentile points |zI" were estimated by Monte
Carlo simulation.

This test is computationally easy to perform since the SR, can be computed
sequentially.

n i
(4) SRn = I E sgn (Xi + Xi)

i=1 j=1
n

= SRn-1 + E sgn (Xi + Xn),
where

(5) sgn (Xi + Xi) ={_I if Xi + X > 0,

As the next observation X,, is obtained, it is easy to compare it with the pre-
ceding observations in order to compute the term E%, sgn (Xi + X"). The
addition of this sum and the previous SRn -1 yields SR,.

Since Viv=n+I i = (N - n)(N + n + 1)/2, it is possible for the test to termi-
nate sampling prior to N with the acceptance of Ho. If for any n

(6) ISRnI _ IzI[N(N + 1)(2N + 1)/6]1/2 - (N - n)(N + n + 1)/2,
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then it will be impossible for ISR.1 to reach the rejection boundary by time N,
and the test can stop with acceptance of Ho. Expression (6) creates an inner
acceptance boundary inside the outer rejection boundary (3a).
An analogous one sided test would be to continue sampling as long as

SR. _ z' [n(n + 1) (2n + 1)/6]1/2 and n < N. However, the critical constants
zN have not been computed. For the one sided test the acceptance boundary
SR. _ z [N(N + 1)(2N + 1)/6]1/2 - (N - n)(N + n + 1)/2 is more apt to
create substantial savings in the number of observations than for the two sided
test.

In this paper a third test is presented. It is similar to the preceding test, but it
employs a linear barrier instead of a square root barrier. Namely, continue
sampling as long as

(7a) JSR.|_ |wl^n,
(7b) n<N

for the two sided test, or

(7a') SR, _ w n

for the one sided test. The investigator specifies N and a, which determine IWIN
(Table Ia, b) or wN (Table Ila, b). As in the previous test acceptance of Ho can
occur prior to N if

(8) ISR,,I _ IwIN - (N - n)(N + n + 1)/2
in the two sided case, or if

(8') SR, _ w'N- (N-n)(N + n + 1)/2

in the one sided case.
The linear barrier in (7a) or (7a') can be motivated in two ways. Suppose that

the Xi are independently, identically distributed according to F(x - A), which
has densityf(x - A) symmetric about A. For Ho: A = 0 versus H1: A = A1 the
likelihood ratio for the signs and rank order of the absolute values ofX ,**,Xn
can be written

(9) LRn = (+AfEEt (Ui)) EE f(U(,))) + O(A2)LR~= 1 +
=1 fu.) = uI)

as A1 - 0, where U(I) < ... < U(n) are the order statistics from a sample gener-
ated by the density 2f(u) for u > 0. IfF is chosen to be the logistic distribution,
then

(10) E(j7
Si

-n1(lo)~~~~~~~Et- (U(S;))) = +i
and similarly for ri. Thus,

(11) LRn = 1 + AISR"/(n + 1) + O(A2),
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and a linear barrier seems appropriate for local shift alternatives. This approach
is analogous to the one employed for the two sample problem by W. J. Hall in
unpublished work.
A second justification for a linear barrier arises from the approximate normal-

ity of SR,. For moderate or large values of n. SR, is approximately normally
distributed with mean U,, = n(n - 1)02 + nOl and variance a,n = n(n - 1)
(n - 2)q3 + n(n - 1)12 + nl. The constants 01. 02.?l1, 72, q3 depend onF, but
not n. In particular, 0, = P{X1 > 0} - P{X1 < 0}, and 02 = [P{X1 + X2 > 0}
- P{X1 + X2 < 0}]/2. For translation alternatives F(x -A) the mean yn
under HO: A = -A1 is the negative of the mean under H1: A = + A1; the vari-
ance an is the same under both HO and H1. Thus, if it is assumed that SRn is
approximately normally distributed, the likelihood ratio for SRn under Ho:
A = -A1 and H1: A = +A, is

f1 12)(12) n= exp 22 (SRn + U)2n -2 (SRn -in)2}

and

2Pn SRn (202\ SRn
(13) log Ln = 2

which again suggests a linear barrier.

2. Percentile points for linear barriers

Define Yn = SRn/n, and

(14) WN = max {Y1. , Y, |WIN = max {Y1Y,*.I,YNI}
In order for the test defined by (7a), (7b) to have size oa, the constant Iw|K must
be the upper a-percentile point of the distribution of IWIN that is, P{l WIN >

I'W} = oc. Similarly, wN is defined by P{WN > wN} = a.
Both WN and WIN have discrete distributions which have not been treated

analytically. However, their distributions can be estimated easily through Monte
Carlo simulation. Two thousand WN and WIN were randomly generated for
N = 10(5)30(10)50. The sample a-percentile points for ca = 0.10, 0.50, 0.01 are

displayed in Table Ia and Table Ila. A pseudorandom number generator [2]
was used to generate sequences of uniform variables, which were transformed
into WN or WIN. Different sequences were used for different values of N.
The stochastic behavior of the signed ranks SRn, n = 1, , N, can be

approximated by a Wiener process. It is well known that under Ho

(15) E(Yn) = 0. Var (Yn) n(n + 1)(2n + 1) n
3

For m < n the covariance between Ym and Yn is
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m(n + 1)(2m + 1) m
(16) Cov (Yin Y.) = 6mn 3
which is easily proved using the representation

n j m j n j

(17) Y E sgn (Xi + Xj) = Y Y sgn (Xi + Xj) + sgn (Xi + Xj)j=1 i=1 j=1 i=1 j=m+1 i=1

and the covariances

Cov [sgn (Xi + Xj). sgn (Xk + Xj)] = 3.
(18) Cov [sgn (Xj + Xj). sgn (Xi + Xj)] = 12
for i.j. k. unequal. The approximate normality of Yn and the variance-covariance
in (15) and (16) suggest that the Yn are behaving like XIW(n)/ 3. where W(t) is a
standard Wiener process with zero mean and variance t.

This approximation gives

(19) P{'"'N > c} P{Imax l/'(t)l/.3 > c}

= 2P{W(N) > c }

= 2[1 -l I(c/ AT)],

where the second line follows from the reflection principle and D is the unit
normal c.d.f. The approximation (19) implies wN IN g2/2/1T3. where g,/2 iS
the upper a/2-percentile point of the unit normal c.d.f. Values of -A g/2/3/3
appear in Table Ilb.

If the probability of crossing both the positive and negative boundaries by
time N is negligible, then IwK - N g-/4/ '3. The latter values are presented in
Table lb. The probability of a double crossing appears to be negligible for N in
the range of the tables, but it will increase with increasing N.
Comparison of Table Ia with lb and Table Ila with Ilb reveals close agreement

between the Monte Carlo percentile points and the Wiener approximations. This
seems remarkable since a discrete process in discrete time is being approximated
by a continuous process in continuous time.

TABLE la

VALIUES OF |WN BY MONTE CARLO APPROXIMATION

A
10 15 20 25 30 40 50

.01 5.00 6.23 6.90 7.59 8.50 10.05 11.08
.05 4.10 5.07 5.70 6.50 6.93 7.97 8.82
.10 3.50 4.36 5.06 5.64 6.15 6.90 7.75
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TABLE lb

VALUES OF |uK, BY WXIENER APrROXIM¶ATION

W10 15 20 25 :30 40 50

.01 5.12 6.28 7.25 8.1() 8.88 10.25 11.46

.(5 4.09 5.01 5.79 6.47 7.09) 8.18 9.1,5

.10 3.58 4.38 5.06 5).66 6.20( 7.16 8.00

TABLE Ila

VALUES OF ?V' BY MONTE CARLO APPROXIMATION

10 15 20 2:5 30 40 50

.01 4.50 5.73 6.30 7.32 7.83 9.38 10.73

.05 3.70 4.30 5.0(0 5.50 5.96 7.00 7.82

.10 3.10 3.70 4.25 4.61 5.06 5.79 6.61

TABLE 11)

VALUES OF W", BY WIENER APPROXIMATION

N 10 15 20 25 :30 40 -50

.(1 4.70 5.76 6.65 7.44 8. 15 9.41 10.52

.05 :3.58 4.38 ,5.06 5.66 6.20 7.16 8.00

.10 3.00 3.68 4.25 4.7;5 5.20 6.01 6.72

3. Power and expected sample size

The power and expected stopping time of the test using SRn with linear barriers
was investigated for shift alternatives in the double exponential distribution.
Let

(20) f(x) = e-IxA

This distribution has mean A, variance 2 (standard deviation 1.41). The tails of
(20), which are heavier than the normal, behave like the logistic distribution for
which the Wilcoxon statistic is known to have good local properties. In [3] this
distribution was used to examine the power and stopping time for SR, with
square root barriers.
For N = 20 the performance of the test was studied at A = 0, 0.5. 1, 1.5; for

N = 50, at A = 0, 0.25, 0.5, 0.75, 1. The error probability oa was taken to be
either 0.05 or 0.01. For each combination of N, a, A, five hundred sequences of
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TABLE IlIa

MONTE CARLO POWER AND EXPECTED SAMPLE
SIZE FOR Two SIDED TEST, N = 20

Power
0 .5 1 1.5

*= .05 .046 .39 .88 .99
*= .01 .014 .19 .71 .96

Expected n

=.05 19.8 18.5 14.8 13.0
=.01 20.0 19.5 17.4 15.5

TABLE IVa

MONTE CARLO POWER AND EXPECTED SAMPLE SIZE
FOR Two SIDED TEST, N = 50

_~~~~
Power

0 .25 .5 .75 1

=.05 .062 .30 .82 .98 1.0
=.01 .010 .13 .59 .93 1.0

Expected n

= .05 49.4 46.6 37.2 29.0 24.2
= .01 49.9 48.9 43.5 35.8 29.9

TABLE Va

MONTE CARLO POWER AND EXPECTED SAMPLE
SIZE FOR ONE SIDED TEST, N = 20

A
Power

0 .5 1 1.5

a = .05 .052 .51 .94 .99
a = .01 .020 .32 .78 .98

Expected n

a = .05 14.7 16.1 13.3 11.5
a= .01 13.5 16.3 15.7 14.0

double exponential random variables were substituted into the test. For the
two sided test the results are displayed in Tables IlIa, IVa; the one sided test
results appear in Tables Va, VIa.
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TABI,E Vla

MONTE CARLO POWER AND EXPECTED SAMPLE SIZE
FOR ONE SIDED TEST, N = 50

A
Power

0 .25 .5 .75 1

a= .05 .052 .41 .87 .99 1.(
a= .01 .006 .14 .59 .92 1.0

Expected n

a= .05 41.9 41.6 32.9 25.7 21.5
a= .01 38.8 43.3 41.6 34.3 29.5

For the two sided test the power is the probability of exceeding the rejection
boundary in the correct direction. Under these alternative hypotheses just one
Monte Carlo sequence ever crossed the rejection boundary in the wrong direc-
tion. This occurred for N = 50, x = 0.05, A = 0.25.
For the two sided test the inner acceptance boundary was not used so that the

expected sample sizes could be compared with those in [3] for SR, with square
root boundaries. The power of the test is unaffected by the inclusion. or ex-
clusion, of the inner boundary, but the expected sample sizes would be slightly
smaller with the inner boundary included. The early acceptance boundary was
included for the one sided test.
Comparison of the entries in Tables Illa, IVa with the corresponding values in

[3] for SR, with square root boundaries leads to the following conclusion. The
test with linear barriers has slightly better power than the square root barrier
test, but the reverse holds for expected sample sizes. The square root barrier gives
expected sample sizes which are slightly smaller than those for the linear barrier.
This means that if a sequence X1, X2, is going to reject Ho, it will stop sooner
with the square root barrier than the linear one.

As in the null case, the behavior of SR,. n = 1. 2, N. can be approximated
by a Wiener process. Let W(t) be a Wiener process with drift ,ut and variance
a2t. Dinges [1] proved that

(21) PI max W(t) > c} = (ec A)c (I T)
O.t. T o1fTI

+~(~ T -Ta)

For the distribution (20)

(22) E(Y.) = nE[sgn (Xi + Xj)] + 0(1),
= H[I - (1 + A)e-2A]n + 0(1),
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TABLE IlIb

WIENER POWER FOR Two SIDED TEST, N = 20

A
Power

0 .5 1 1.5

a=.05 .055 .37 .86 1.00
= .01 .015 .19 .64 .95

TABLE IVb

WIENER POWER FOR Two SIDED TEST, N = 50

A
Power

0 .25 .5 .75 1

=.05 .061 .32 .80 .98 1.0
=.01 .013 .14 .58 .92 1.0

TABLE Vb

WIENER POWER FOR ONE SIDED TEST, N = 20

A
Power

0 .5 1 1.5

= .05 .053 .50 .93 1.00
a = .01 .015 .27 .76 .98

TABLE VIb

WIENER POWER FOR ONE SIDED TEST, N = 50

A
Power

0} .25 .5 .75 1

= .05 .055 .42 .87 .99 1.0
a= .01 .009 .16 .62 .92 1.0

(23) Var (Ye) = n Cov [sgn (Xi + Xj), sgn (Xk + Xi)] + 0(1),
- -[5e-2-(4 + 6A + 3A2)e 4A]n + 0(1).

If p and U2 are taken to be the coefficients of n in (22) and (23), expression (21)
gives the entries in Tables IlIb, IVb, Vb, VIb.
Comparison of the a and b parts of Tables III, IV, V, VI reveals a remarkable

agreement between the Monte Carlo approximation to the power and the Wiener
approximation.
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4. Comparison of tests

An interesting question is how to compare the three tests mentioned in Section
1. One approach is to adjust the structures of the tests so that they have the same
power at a fixed alternative. The expected sample sizes can then be directly
compared. This cannot be done analytically because workable expressions for
the power are not available for the SR, tests (except for Wiener approximation
in the linear case) and for the expected sample sizes nothing is available for any
of the tests. However, the comparison can be carried out by Monte Carlo simu-
lation.

LetALet l~~~~~~~~~+ A el x < 0,

(24) f (x) = A
e-X x > O.

I + -A

This family of unsymmetric double exponential distributions constitutes Leh-
mann alternatives to which the likelihood ratio test (2) applies. For N = 20.
a = 0.05 five hundred sequences of random variables from the distribution (24)
with A = 1. 0.75. 0.5. 0.2.5 were substituted into the one sided SR, test with
lineal barrier. I'he resulting Monte Carlo power and expeeted sample sizes appear
in Table Vlla in the M (Miller) linear line. For B = 0.5 the error probability ,B
is 0.432. These constants were then used to define the sequential likelihood ratio
test lhased on (2). An identical number of Monte Carlo sequences were sub-
stituted into this test. an(d the results appear in the W-B-G (Weed-Bradley-
Govindcarajulu) lines of the table.

TA131,E VIla

C)MPARISO)N (OF TIIE MI1I.I.ER 'IESTS
(A' = 20. a = 0.05) WITII THE \\ FEI)-13RAI).EY-
CGVINDA)A.A.11.1' TIEST (2 = 0.048. /3 = 0.432.

K = 0.5) FOI) l,EHMANN .ALTERNATIVES

A
'ower -

1 .75 .5 .25

NM square rIoot .048 18 .51 .)5
M linea .048 .18 .57 .97
\V-B-CG .048 .21 .(61 .94

Expected1 a

M Square iloot 13.4 14.3 13.9) 1.1
M linear 14.7 15.9 15.9 12.9
W-B-G 8.4 12.9 14.5 11.3

To prevent unlimited sampling the W-B-G test was truncated at fifty observa-
tions. Just a few sequences needed to be truncated. For A = 1 there were three
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out of five hundred, A = 0.75 nine, and A = 0.5 six. For shift alternatives with
A = 0 there were two, and with A = 0.5 eight.
The critical constant ZN for the one sided SR,, test with square root barrier

when N = 20, a = 0.05 was simulated in a special run so that this type of test
could be compared with the previous two. (Complete tables of ZN have not been
computed.) The estimated percentile point was 2.17. The Monte Carlo results
for the square root barrier test appear in the M square root line. Both tests based
on SR,, used the early acceptance boundary for Ho.

Since the likelihood ratio test is designed for Lehmann alternatives, it seemed
fair to evaluate how it performs for shift alternatives where the Wilcoxon statistic
is better adapted. Monte Carlo sequences from the distribution (20) were sub-
stituted into the three tests, and the outcome is displayed in Table VIIb.

Table VIlb

COMPARISON OF THE MILLER TESTS
(N = 20. X = 0.05) WITH THE WEED-BRAI)LEY-
GON INDARAJui,x TEST (a = 0.048. ,B = 0.432.

B = 0.5) FOR SHIFT ALTERNATIV ES

A
Power _

0 .5 1 1.5

Nl square root .048 .48 .90 .98
M linear .052 .51 .94 .99
W-B-G .034 .51 .87 .96

Expected n

M square root 13.5 13.9 10.2 8.3
M linear 14.7 16.1 13.3 11.5
W-B-G 8.0 14.3 12.8 10.5

Examination of the values in the tables leads to the following conclusions.
The M linear test has slightly better power than the M square root, but the M
square root has smaller expected sample sizes. This agrees with the conclusion
reached earlier in the two sided case. For both power and expected sample size
the W-B-G test performs better than the M square root test for near alternatives
whereas the M square root is better for far alternatives. The expected sample
size under Ho is very much smaller for the W-B-G test. The choice of alternative
distribution, Lehmann or shift, appears to have little effect.

These conclusions are also reflected in the smallest value of n for which accept-
ance of Ho or H1 can occur. For M square root the earliest time at which accept-
ance of Ho can happen is 10 and for H1 it is 6. With M linear the values are 10
for both Ho and H1, and the W-B-G test needs only 2 for Ho but 9 for HI. Thus.
the square root boundary allows earlier rejection of Ho than the other two. and
the likelihood ratio test permits earlier acceptance of Ho.
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Which test should be used? The SR, tests are much simpler computationally,
and they are very simple to explain to the investigator. In medical applications
selection of an alternative hypothesis and its associated power is often difficult
or extremely arbitrary. A bound on the amount of sampling is usually easier to
determine due to limitations of money, time, and so forth. The likelihood ratio
test stops very early when Ho is true, but in a medical setting the far alternatives
seem more important. If there is little or no difference between treatments, then
continuation of the trial is relatively unimportant from the ethical point of view,
but if one treatment is much better than the other, you want to stop the trial as
soon as possible.

The author would like to thank Elizabeth Hinkley for expertly programming
the Monte Carlo computations. She proposed the use of the pseudorandom
generator [2], which produces better sequences than other generators familiar
to the author.
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