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1. Summary

Let us consider a complex system consisting of a set of interacting subsystems,
Let x:(t) represent the state vector for the ¢-th subsystem, and suppose that the
behavior over time of these vectors is determined by a set of coupled functional
equations

dx; .
(11) W = gi(xl) Ly **°, XN, ai): t=12--- :N)
where the a; are parameters determining both the structure of the subsystems
and the linkage between these subsystems.

Much of classical analysis is devoted to the qualitative and quantitative
analysis of the z,(t) as functions of ¢ and of the structural parameters. Important
as this effort is, it represents only a part of the principal objective, which is that
of the identifieation of physical systems. By the “identification of systems,” we
mean the task of determining the structural parameters on the basis of obser-
vations over time and position of the inputs and outputs. This is an essential part
of the validations of hypotheses and theories.

2. Introduction

Let us consider a complex system consisting of a set of interacting subsystems:
Let z.(t) represent the state vector for the 7-th subsystem, and suppose that.the
behavior over time of these vectors is determined by a set of coupled functional
equations

dx,- .
(21) Et_ = g"(xly L2y = 5 TN, a'i)) t=12 -, N’

where the a; are parameters determining both the structure of the subsystems
and the linkage between these subsystems.
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Much of classical analysis is devoted to the qualitative and quantitative analy-
sis of the z;(t) as functions of ¢ and of the structural parameters. Important as
this effort is, it represents only a part of the principal objective, which is that of
the identification of physical systems.

There are many levels to this identification process. Let us cite some of the
problems encountered at the lowest level:

1. Given a set of observations, {(z:(t;), ¢iy)},1=1,2,---,M,j=1,2,--- N,
to what extent are the a; determined, and how do we construct algorithms for
their determination?

2. Where should the inputs to the system be applied and the outputs meas-
ured? How does one do this so as to minimize the disturbance both to behavior
of the system and to the calculated values caused by the testing process?

3. At what times should the observations be made?

4. What accuracy is required in measurement to obtain a desired accuracy
for the a;?

5. What kinds of measuring instruments should be used and what types of
stimuli applied? Analytically, this may be considered to be a determination of
the functions ¢ in the observations ¢x(x:(t;)).

6. What data are desired? Analytically, this may be considered to be a de-
termination of functions ¥;(a;).

These questions, difficult as they are, are only preliminary to the study of
enveloping problems of identification and control. These, in turn, introduce
interesting and recondite stochastic and adaptive aspects (see [1]).

All of this in its turn is prolegomena to the construction of a meaningful theory
of information, and finally, an embracing theory of instrumentation and experi-
mentation.

In what follows, we wish to describe briefly some mathematical techniques we
have employed to treat the first of the problems posed above, and to indicate
some of the applications we have made. As the reader will see, the mathematical
level is not very high. What we have been particularly concerned with is an
examination of how far one can penetrate into this domain with relatively simple
analytic techniques tailored to the use of a contemporary digital computer.
Essentially, we have attempted to construct a handbook of soluble problems [2],
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and also to carry out systematic mathematical experimentation in this most
important scientific area. What is remarkable is that many significant questions
can be resolved using the ideas sketched below.

3. A fundamental problem

Consider a vector differential equation

(3.1 i=yg(,a), z0)=c¢
where z is N-dimensional and a is M-dimensional. Suppose that we are given a
set of observations {(z(t:), b.)}, 7 = 1,2, ---, R, and are asked to determine a

and c on this basis.

There are several distinet classes of problems that may be distinguished here.
The first is that where we suppose that z(f) does indeed satisfy an equation such
as (3.1) and that a and ¢ exist. The second is a design problem where a and ¢ are
to be determined so that (x(¢.), b;) = d;, i = 1,2, ---, N. The third is where we
know in advance that z(¢) does not satisfy an equation of as simple a type as
(3.1), but where we want to find the best approximate equation of this structure.
This gets us into the area of differential approximation [2], [3], [4].

Let us write d; for the actual observation at time 7 and determine a and ¢
by the condition that the quantity

(32) £ (@, b) —

be minimized. This analytic problem, which can be handled in various ways, as
we shall indicate below, is common to all three classes of questions.

4. Search techniques

As an indication of a simple and direct approach, let us consider the problem
determining A in the Van der Pol equation

“.1) w4+ ANu? — Du' +u =0,

on the basis of observations, u(t;)) = d;, 7 = 1,2, -- -, R. Letting u(¢, \) denote
the unique periodic solution of (4.1), A > 0, we wish to minimize

2 O = £ ) - d?

over A > 0.

Choosing a value of A, the determination of the set of values {u(t; \)} for R
of the order of magnitude of 10, 100, 1000, consumes a few seconds of computer
time—at most. Consequently, we can begin by evaluating f(0.1), f(0.2), - -,
f(),f@), ---,f(10), and thereby determine an interval within which the cor-
rect value of A lies. Having obtained this interval, we can subdivide it into ten
parts, and so on. In this way, by means of a few minutes of computer time, we
can determine X accurately to several significant figures.
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In more complex, multidimensional minimization problems, it will pay to use
sophisticated search methods of the Kiefer-Johnson variety [5].

The point we wish to emphasize is that the capabilities of modern computers
frequently permit us to approach problems of this nature in a simple and direct
fashion.

6. Quasilinearization

A systematic approach to the multidimensional minimization problem de-
seribed in (3.2) is supplied by the theory of quasilinearization [2], which in a
number of cases yields techniques which can be considered to be extensions of
the Newton-Raphson-Kantorovich approximation method [6].

The basic idea in this case is quite simple. Let a‘®, ¢(® be initial guesses as to
the values of a and ¢ and let ¢® be computed as the solution of

(5.1) 30 = g@®, a®),  2O(0) = ¢,

These values are obtained either on the basis of experience and intuition, through
the use of simpler models, or by way of search techniques of the type described
above, or a combination of all three.

The next approximations are obtained in the following fashion. Expand g(z, a)
around z‘9, a(®, keeping zero and first-order terms, and let z™ be determined as
the solution of

(5.2) iV = g(z®, g®) + Jy(z® — zO) + Jy(a® — a®),

z®(0) = ¢V, Here J; and J, are Jacobian matrices. The vectors a‘? and ¢V
are now obtained by way of the minimization of the quadratic form

53) . (@00, b) —

We have thus reduced the original optimization problem to a succession of oper-
ations involving the numerical solution of linear differential equations and the
numerical solution of linear algebraic equations. These operations can be carried
out accurately and quickly for systems of quite high dimension. A detailed dis-
cussion of this method, with numerous applications, will be found in [2].

6. Use of transform techniques

Functional equations of a more complex type, such as the heat equation,
(6.1) E(@)u: = Uz,
where k(x) = k(z, a), and a is an unknown parameter, or a differential-difference
equation
(6.2) u'(t) = au(t — 7),
where both a and the time-lag 7 are unknown, may be handled directly by
means of the techniques described above, or by use of Laplace transform tech-
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niques. In this latter case, we use the foregoing method as applied to the resulting
differential equations in the transform space [7], [8].

7. Basic uncertainties of on-line identification and control

Let us consider briefly some measurement and data processing aspects of large
systems. Systems with stochastic effects exhibit similar properties. Suppose we
are attempting to implement a policy at time ¢ which depends upon a knowledge
of the components of the state vector x(¢). If the dimension of x is large, we must
accept the fact that an appreciable time will be involved in the measurement of
all the components and the transmission of the required information to the de-
cision maker. During this time the system is uncontrolled, which means that the
system is not operating in its optimal fashion. It follows then that there are two
extremes: act instantaneously on the basis of a minimum of information; act
on the basis of a maximum information at a later time. Both extreme policies
will introduce errors and associated costs. Various simple models of control and
decision processes of this type will yield analytic estimates which are similar in
structure to the classical uncertainty principles of quantum mechanics.

The multistage nature of the identification and control process enables us to
diminish considerably the effect described above. One might expect that similar
multistage measurement techniques applied in physics would reduce the un-
certainties in quantum mechanies. In any case, there are a number of fascinating
questions in these areas associated with the allocation of time, energy, and other
resources to most effective identification, which we shall discuss at another time.

8. Decomposition into subsystems

In many cases of interest, the problem is that of determining the structural
properties of a system in position or time, or both. Thus, for example, both in
geophysics and in astrophysics, we wish to determine the stratification of a
medium on the basis of observations made at one interface. The theory of invari-
ant imbedding can be applied in these cases (see [2], [9]).
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In the study of metabolic processes, and in certain areas of neurophysiology,
we encounter a stratification in time. We know that the time history of the
system is governed by equations of the following form,

dx

(81) E = g(x: ai): L. <t< iy, T = O) 1,2, .-

and the problem is to determine the structural vectors a, and the transition times
t; on the basis of a set of observations {(z(t,), b;)}. A discussion of how dynamic
programming may be applied to problems of this and the foregoing type will be
found in [2], [10], [11]. Discussions of the application of a combination of
dynamic programming and quasilinearization will be found in [12], [13], [14],
[15].

9. Pattern recognition

It is clear that the problem of decomposition into subsystems is a special case
of the general problem of pattern recognition. In turn, pattern recognition can
be viewed as a dynamic programming process, and particular problems can be
handled by means of the functional equation technique (see [16], [17], [18],
[19]).

10. Concluding remarks

We hope that the foregoing has made it clear that the general problem of the
identification of systems is one of the most important and challenging in modern
science. Many new types of mathematical problems arise. Some we have stated
explicitly, some we have hinted at, but most have been passed over in silence for
want of precise statement or formulation. With practically no past, and a glori-
ous future, this is an ideal field for the young mathematician.
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