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1. Introduction

Random packing and random space-filling problems have received attention
in recent articles in the literature. Investigation of seemingly disparate topics
has produced the analyses and the results that are published, and there may be
other settings in which related work has been underway that is not available in
print. Writings on this subject appear in a wide variety of journals, and it is not
difficult to miss pertinent published papers.

In one dimension, this topic usually bears the label “parking problem,” and
this has been treated by several authors. Here, the packing, or space filling, is
achieved by automobiles of unit length which are parked at random, one at a
time, in the unfilled intervals remaining on the line until space for one car is no
longer available. The center of the interval representing the length of the auto-
mobile is assumed to follow a uniform distribution over the unfilled portions of
the line. The mean, variance, and distribution of the proportion of the line filled
by cars in this manner, as the length of the line becomes infinite, is the object of
the analysis. Rényi’s paper [13] is the first on this subject and it is followed by
Ney [10], and most recently by Mannion [9] and Dvoretzky and Robbins [7].
We will return to these in later sections.

Related one-dimensional problems for the discrete situation are analyzed by
Jackson and Montroll [8] and Page [11]. Page considers pairs of adjacent points
selected at random from 7 points on a straight line, one pair at a time, such that
neither point of a selected pair is allowed then to form a pair with its other
neighbor. The process of selection is repeated until the only points remaining
are isolated from one another by intervening pairs already selected. The propor-
tion of isolated points as n approaches infinity is a parameter of interest in some
physical models and we shall return to this study. Jackson and Montroll in-
vestigated the number of possible configurations for n points on a line, the total
number of vacancies in all these configurations, and then the average proportion
of vacancies in a configuration. In both papers, the actual physical problem is
two-dimensional, but this is very difficult to manage; therefore, resort is made
to one-dimensional analogues which are interesting in their own right and may
suggest approaches and approximations for the two-dimensional model. Both
sets of studies, namely the discrete and continuous models, differ from a large
class of studies on counter problems and renewal theory models because there
is a dependence of later random fillings on those previously registered.
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Whereas both the continuous random space-filling model and the discrete
random selection of pairs of points model arc one-dimensional versions of some
studies in geometrical probability, the geometrical aspects do not loom as large
as they do in higher dimensional analogues where, together with the dependent
probability aspects, they make a formal analysis most unmanageable. Each one-
dimensional situation relates specifically to a physical model-—Rényi was injected
into what is labeled the “parking problem’” by examining the one-dimensional
analogue of a three-dimensional model for an ideal liquid. For the discrete case,
Page is motivated by a model in physical chemistry which investigates the pro-
portion of hydrogen atoms trapped in a film of hydrogen which is later adsorbed
by mercury. Jackson and Montroll consider the same physical problem.

In two and three dimensions, mathematical analysis of the models becomes
more intractable, despite the ingenuity demonstrated by those who contributed
to the resolution of a large piece of the problem of random space filling in one
dimension. The geometry of the region to be filled and the geometry of the units
to be placed at random cause additional problems which do not emerge in the
one-dimensional case where intervals on a line present the only way to “fill”’ or
“pack’’ the line. However, there is interest and effort in three-dimensional ran-
dom packing since some proposed molecular models for liquids require a study
of this representation.

Work along these lines is indicated in the papers of several writers, notably
J. D. Bernal [1]-[4], who are concerned with geometrical models of liquid strue-
ture. For example, a random packing of equal spheres in three dimensions may
provide a useful model for an ideal liquid, ideal in the sense that all the distances
between closest neighbors are equal. Naturally, random and nonrandom packing
in two, three, and higher dimensions have an intellectual and mathematical
appeal which have engaged the attention of a number of scholars over the years.

Apart from questions of random packing, there are geometrical exercises in
packing which extend back in time to Newton’s era. We shall return to questions
of random packing and the results of our investigations, but some information
on the geometry of the situation from a deterministic point of view is pertinent
and will be useful in examining random packing. In fact, attempts at random
packing may be useful because there are difficulties inherent in obtaining maxi-
mum or minimum packing solely from geometrical approaches. Coxeter [5] has
suggested the use of random packing attempts to learn whether a random con-
figuration can provide a packing density higher than the best bound which is
attained from lattice packing. This paper and Coxeter’s book [6] also provide
interesting links between the geometry of polytopes, many of which occur in
nature as crystals, and questions of packing density. It is the relationship be-
tween structure in crystallography and liquid structure that engaged Bernal’s
attention in his papers.
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2. Previous results

Sphere packing is said to have density p, if the ratio of the volume of that part
of a cube covered by the spheres, where no two spheres have any inner point in
common, to the volume of the whole cube, tends to the limit p as the side of the
cube tends to infinity. Let p, denote the upper bound of this density in n-
dimensional space. Rogers [14], [15] then proves the following theorem.

THEOREM. Consider the regular simplex in n dimensions of side 2, and the sys-
tem of (n + 1) spheres of unit radius with their centers at the vertices of the simplez.
Let ., denote the ratio of the volume of thal part of the simplex covered by the spheres
to the volume of the whole simplex. Then p, < ., and o, < [(n + 2)/2](1/V2),

This bound had been known before, but not in the sharp way devecloped by
Rogers.

An asymptotic formula due to H. I. Danicls and given in Rogers [14], [15]
provides an upper bound for the packing density, p., of n-dimensional spheres
in an n-dimensional cube as n approaches infinity. Daniel’s result as n — « is

S

In fact,
A 1L I—

This suggests that as n increases, and consequently the upper bound deereases,
a random packing may yield a packing density greater than an arrangement ar-
rived at through the best lattice packing. However, the mean packing densities
and variances through n = 5 in table I, which arc obtained by random packing

TABLE 1
RANDOM PACKING OF SPHERES

Results of placing an n-dimensional sphere with radius equal .5 at
random into a larger n-dimensional sphere with radius equal 5.0.

Dimension \ 2 3 4 5

Sample Size (Replications) 20 10 4 2
Mean Packing Ratio 4756 280 .146 .075
St. Dev. of Packing Ratio .01964 .0049 .00408 .000453

of a large sphere with unit spheres, suggest that this is very much an open
problem when they are compared with the closest lattice packing densities for
cach dimensionality.

In table II, densities are given for random packing of spheres in cubes. Our
work indicates that present computer and programming technology both require
some forward advance before we can try cconomically for random packing densi-
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TABLE II
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DEeNsITY OF PACKING OF SPHERES IN A CUBE

Dimension
Source

2 3 4 5
2 2
Closest Lattice Packin I = 9069 | —— = .7404 |- = .6168 —— = .4652
& V12 V18 16 V450
Uniform Distribution 468 282 .146* .075*
Worst Lattice Packing 2% 5v5, 3t )
B = _ — =
(Best Lattice Covering) 21") (\/ 27 ) t ( 24 ) £= (5\/ 5/7°

.3023

1829

.1103**

* Packing spheres in a sphere.
** Less than value in cell, greater than .1036.

TABLE III
n+2 ( 1 )" Best Lattice (n + 1)letn/2-1
n In = 5 Packing _ n
no\V2 v (1 —) dn)ne
Value Decimal Form r + 2 (4n)
2 1.0000 -
. W .9069 3671
3 8839 —
. 5 7404 23902
.n.%
4 7500 1 6168 23679
6187 L
5 61 =
N 4652 3252
5 L
6 .5000 S A
Y3 3729 2759
18
7 3977 108 2952 2276
1.4
8 3125 354 2536 .1839
274
9 2431 > -
o15v5 > 1457 .1463
87 >
10 1875 > ~
190V3 > .0920 1150
6425
11 .1436 > — > )
187,110V3 2 0604 0894
6
12 .1094 Ll > .0494 .0690

>
= 19,440
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ties through n = 12—the largest value of n where a lattice packing solution is
available for comparison at present.

There are known results for best lattice packing of n-dimensional spheres in
n-dimensional space forn = 2, 3, -+, 11, 12. These are summarized and tabled
in Rogers [15]. These values are listed below in table III together with the
approximations obtained by Rogers and by Daniels.

Forn = 2, 3, 4, 5 they are given in table VIII to serve as anchors for the other
entries. In one dimension, the whole line can be filled and thus nonrandom pack-
ing is a trivial question. For n = 2, the maximum lattice packing density of
7/V'12 is attained for a hexagonal array of equal circles, each circle tangent to
six other circles of the array. For n = 3, the maximum lattice packing density

of 7/ V18 is attained by tangency of each sphere to twelve other spheres.

3. Random packing attempts

These geometrical results are of interest and most useful as bench marks in
examining the density due to random packing in both two and three dimensions.
In fact, we employ similar results on lattice covering (see Rogers [15]) of
n-dimensional space by n-dimensional spheres to obtain results of worst lattice
packing, which are given in table VIII. A strict probabilistic analysis for n > 2
appears to be intractable at present and so we are compelled to investigate and
employ monte carlo or machine simulation techniques to obtain results.

Ordinarily one would assume that the centroids of the space-filling units
follow a uniform distribution over the unfilled regions until packing is accom-
plished. We have done this for n = 2, 3, 4, 5 for spheres packed in a larger sphere.
In addition we have considered a “restricted’’ randomness situation for n = 1, 2
which was motivated by a physical model in three dimensions. This has produced
more packing density values and has provided some new theoretical results to
check on some simulation results for the modified or “restricted” random park-
ing problem. In fact, the original “parking problem’ is imbedded in this revised
one-dimensional model which produces solutions to additional problems of
interest. This is discussed in a later section.

These analytical results in one dimension, simulated results in two dimensions,
and physical results in three dimensions add to the mosaic of values for packing
density given in table VIII.

This paper had its beginnings in a query by Peter Ney. In attempting to extend
the parking problem results to higher dimensions, Ilona Palasti [12] conjectured
that if in two dimensions, a rectangle is filled at random by unit squares with
sides parallel to the sides of the rectangle, then the ratio of the area filled to the
total area of the rectangle approaches (as the rectangle becomes infinite) a mean
value which is the square of the mean value (packing density) obtained in the
parking problem. In one dimension, as the line becomes infinite in length, the
packing density (mean value) is
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«© t —u
3) ¢ = / exp {—2 / 1= du} dt = .74759.
0 0 u

See the papers by Rényi, Ney, Mannion, Dvoretzky and Robbins. Mannion also
obtained the variance of the occupicd portion of the line segment as the line
becomes infinite—it is proportional to ¢c.x where  is the length of the line seg-
ment and ¢; = 0.035672.

Thus the Palasti conjecture, which is based on some mathematical develop-
ment in her paper, states that the random packing density of unit squares in
two-dimensional space is:

4) ¢ = (74759)2 = .56,

and this value was produced empirically in four experiments reported by Palasti
in her paper.

The conjecture is extended by Palasti to n-dimensional unit cubes filling n_
dimensional space at random where the sides of the cubes are always oriented
appropriately ; namely, that the packing density (mean value) is ¢*. Ney wa$
unconvinced mainly because the four sampling experiments reported always
produced a value of .56. A thorough check on this conjecture in two dimensions
by simulation requires good approximations of the uniform distribution over a
rectangle, and so we first examined a discrete analogue in two dimensions which
also is of practical interest.

4. Two-dimensional ‘‘parking” problem

Consider the simple discrete process developed in the paper by I. S. Page [11]
in connection with the following problem in physical chemistry. A surface re-
ceived a film of hydrogen which was later adsorbed by mercury. If the surface is
regarded as a rectangular lattice of sites available for the single hydrogen atoms,
a possible model for the formation of the film is that a hydrogen molecule con-
sisting of two atoms comes on to the surface and occupies a pair of adjacent sites.
It is supposed that these atoms stay in position until one or both are later ad-
sorbed by the mercury. The hydrogen molecules occupy the pairs by sites in
sequence until all the pairs of adjacent sites are filled. At this stage, the average
proportion of the sites which have not been filled by hydrogen atoms is a quantity
of interest.

In the adsorption stage of the experiment a pair of adjacent hydrogen atoms,
but not necessarily a pair, which originally formed a molecule when occupying
the surface, is replaced by a pair of atoms of mercury. The selection of pairs of
adjacent hydrogen atoms continues as long as possible, and eventually some
isolated hydrogen atoms remain trapped in the film. The proportion of hydrogen
trapped is then desired.

Because this two-dimensional problem seemed too difficult for straightforward
mathematical analysis, Page considered a reduced version in one dimension. We
now wish to employ Page’s asymptotic results for the one-dimensional version
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for comparison with our computer simulation results for the same model. Then
we will simulate a two-dimensional analogue on the computer which relates to
the rectangular lattice model above for the proportion of trapped hydrogen. In
effect, this is a discrete analogue of the parking problem in two dimensions. Our
computer simulation results for the proportion in two dimensions will be com-
pared then with the square of Page’s proportion for one dimension.

Consider the points 1,2, --- ,n on the real line. Pick an adjacent pair of
points (X, X + 1) at random by choosing X = 4,72 = 1, --- , n — 1, with proba-
bility 1/(r — 1). Then choose a second pair at random from the remaining points,
and continue in this way until no adjacent pairs remain there. Let N(n) denote
the number of pairs so chosen. This process has been considered by Page [11],
from whose work one can conclude after some modifications that

(5) lim ]% = .4323.

n—©

A two-dimensional analogue is defined in the obvious way by starting with an
n X n array of points and randomly choosing an adjacent pair of points situated
along the top row of the array (X, X + 1) with probability 1/(rn — 1); and an
adjacent pair of points situated along the first column of the array (¥, Y 4 1)
with probability 1/(n — 1). This identifies the four vertices of a ‘“‘unit square”
in the n X n array of points which cannot be selected again. Continue in this
way until no “unit squares” remain. Let N(s) denote the number of ‘“unit
squares’’ so chosen, and we conjecture in the fashion of Palasti that
©) tim ¥ _ (4328)2 = 1869,

n—wo

This procedure was carried out on a computer for n = 10, 20, 40, 50, 100 in the
one-dimensional case with 10, 25, 50, 100 replications; and forn X n = 10 X 10,
20 X 20, 40 X 40, 50 X 50, 100 X 100 in the two-dimensional case with 10 and
25 replications except for the 100 X 100 array which was replicated 10 times.
The results are given in table IV and are convincingly close to the postulated
value in one dimension and the conjectured value for two dimensions.

The spectacular results listed in table IV suggest why Palasti may have had
the phenomenal occurrences for the two-dimensional continuous model displayed
in her article. In four experiments of random space filling of rectangles with unit
squares, she achieved the space-filling ratio .56. The rectangular dimensions were
5 X 15,10 X 15,15 X 15and 20 X 15. Moreover, this stability occurred around
an asymptotic ratio for unit squares in rather finite rectangles. For one thing, the
conjecture is reinforced since the arithmetic means in table IV increase as n
increases and as they converge to the asymptotic ratio, and the variances are
small and decrease as n increases.

On the other hand, the physical situation for the discrete model inhibits vari-
ability more than one should expect for the continuous version examined by
Palasti—for example, tangency of unit squares is possible only in the continuous
model. For this reason, and because the samplings were not replicated, the
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TABLE 1V

ONE DIMENSION

Sample | Entries in cells are the average Entries in cells are the average ratio
Size | no. of pairs of points chosen and of no. of pairs of points chosen
the variance within the sample divided by the total no. of points and
No. of variance within the sample
points 10 25 50 100 10 25 50 100
10 4.20 4.20 4.20 4.26 4200 4200 .4200 .4260
4000 .1667 2041 .2752 .004000 .001667 .002041 .002752
20 8.60 8.56 8.54 8.53 4300 .4280 4270 4265
2667 .3400 2943 .4132 .000667 .000850 .000736 .001033
40 17.40 1728 17.20 17.18 .4350 4320 .4300 4295
2667 .9600 .5306 .6743 .000167 .000600 .000332 .000421
50 21.20 21.20 21.40 21.51 4240 4240 4280 .4302
4000 .7500 .8980 .8989 .000160 .000300 .000359 .000359
100 4320 4332 4290 43.15 .4320 4332 .4290 4315
1.0667 1.6434 1.8061 2.2096 .000107 .000164 .000181 .000221
Ratio from asymptotic development
in E. S. Page’s paper: .4323
Two DIMENSIONS
Entries in cells are the average Entries in cells are the average ratio
no. of ““unit squares’ chosen and of no. of “unit squares’” chosen
the variance within the sample divided by n? and variance within the
sample
10 by 10 16.80 17.36 .1680 1736
8444 1.5733 .000084 .000157
20 by 20 73.00 73.24 1825 .1831
3.3333  6.3567 .000002 .00040
40 by 40 294.20 295.68 .1839 .1848
67.0668 17.3112 .000026 .000007
50 by 50 460.10 461.16 .1840 1844
23.2118 20.2917 .000004 .000003
100 by 100 1866.60 .1867
118.8 .000001

Conjectured ratio in asymptotic case:
(.4323)% = .1869
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results from the Palasti experiment bear re-examination. A computer simulation
of Palasti’s four experiments produced the following results which are listed
together with her sampling yields. Each case was replicated ten times on the
computer. The mean, variance, and standard deviation in table V are based on
this sampling.

TABLE V
Proportion of area covered
Number of unit squares placed by unit squares
Computer Computer

Rectangle| Palasti| Mean Variance Strd. Dev. || Palasti] Mean  Variance Strd. Dev.

5X5 42 37.7 2.455 1.567 .56 50270 | .0004365 | .02089
10 X 15 84 80.9 9.307 3.282 .56 .53933 .0004785 | .02188
15 X 15 126 120.7 5.346 2.311 .56 .53644 .0001056 | .01027
20 X 15 167 161.1 14.319 3.873 .56 .53700 .0001591 | .01261
20 X 30 329* .54833*

* One trial.

These results indicate some fortuitous findings by Palasti. It is highly con-
ceivable that as the area of the rectangle approaches infinity, the mean ratio of
filled area approaches .56, and the computer simulation data are not inconsistent
with this conjecture. Perhaps some new theoretical developments or additional
computer simulations will provide closure to this almost resolved problem. We
have added a 20 X 30 rectangle which produced a ratio of .54833. This was the
result of only one trial, and no larger rectangles were attempted on the computer
because the expense and the efficiency of the computer dictated this.

Simulation of this random space filling in two dimensions led naturally to
random space filling in higher dimensions and for different geometric figures. In
table I there are listed the results of placing n-dimensional spheres with unit
diameter at random into a larger n-dimensional sphere with diameter equal to
10 units.

6. Restricted random packing in three dimensions

The value of the random-packing density in three dimensions arrived at by
sampling, namely .27, provides a bound of interest in physical chemistry in con-
nection with models of ideal simple liquids. It is in this setting that our attention
was turned to questions of packing density where randomness is restricted
through some structure imposed by the realities of the situation. Several experi-
ments on the packing of equal spheres in three dimensions are reported in the
literature. These experiments were attempts to produce estimates of packing
density through physical simulation by pouring spherical balls into a rigid con-

tainer.
Two kinds of random packing are noted in these papers and are labelled
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“/dense random packing”’ and “loose random packing.” For dense packing, the
balls in the vessel are gently shaken down for several minutes; for loose packing,
the balls fill the vessel by rolling down a slope of random-packed balls. Experi-
ments were reported by Scott [16], and the results were plotted to provide
extrapolations for infinite containers so as to remove ‘“‘peripheral” or “edge”
effects. Values of packing density equal to 0.64 for dense random packing and
equal to 0.60 for loose random packing were obtained.

Bernal and Mason [3], who were following up some earlier work of Bernal [1],
[2], examined the mutual coordination (number of nearest neighbors) of spheres
arranged at random in three dimensions and more or less closely packed. They
report a packing density of 0.62 for an approximation to Scott’s dense packing,
and 0.60 for a situation approximating Scott’s loose packing. Also, they estimate
that in any physical random packing, each sphere should be in close contact with
at least four others as a necessary condition of stability, and at most twelve.
They suggest that the most probable average is six in that each sphere, in
general, would rest on three others and support another three. Bernal and Mason
[3] also conjecture that the dense random-packing density of 0.64 must be
capable of mathematical determination, since it appears that it should occur for
minimum unoccupied volume given this restricted random situation (the maxi-
mum density for lattice packing is .7404, and this occurs when each sphere
touches twelve others). The joint authors suggest that random close packing is
probably related to the configuration of atoms in liquids, such as those of the
rare gases, and the difference between random close packing (.64) and regular
lattice close packing (.74) is nearly the same as the percentage increase in volume
which occurs in the melting of argon. Random loose packing may represent the
approximation of the liquid at higher temperatures.

Scott [17] examined empirically the radial distribution of random close pack-
ing of equal spheres in a rigid container. The number of nearest neighbors is
estimated at 9.3 + 0.8. This is consistent with the estimate of the co-ordination
number made by Bernal and Mason [3], namely a modal co-ordination between
8 and 9 contacts and a mean number of total contacts equal to 8.5. Scott reports
that from the radial distributions of the atoms in liquid helium, neon, and argon,
the number of nearest neighbors reported in the literature is 8.5-9.7 for helium,
8.8 for neon, and 8.0-8.5 for argon. Thus the figure of 9.3 = 0.8 obtained from
random close packing of spherical balls can be considered in agreement with
experimental results for the liquefied rare gases.

As mentioned above, Bernal and Mason suggest that the fractional change of
volume in the melting of argon is the same as the fractional difference between
the densities of regular close packing and random close packing. To reinforce
this conjecture, Scott [17] refers to some data in the literature which gives the
ratio of solid and liquid densities for neon, argon, krypton, and xenon as 1.15,
1.15, 1.15, 1.14 respectively, whereas the ratio of regular to random packing
densities of spherical balls is found to be 1.16.
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All this suggests both the use of random packing as a statistical index for the
classification of liquids and the need to explore methods of obtaining this packing
density without resorting to physical experiment. The latter clause is especially
pertinent when one desires packing densities in higher dimensional spaces. Math-
ematical determination of this phenomenon is too difficult; therefore, one is led
to computer simulation. It would be good to program what goes on physically
in loose or dense random packing, and then have a computer simulate this,
thus producing a packing density. Putting this structure into random space
filling in three dimensions poses problems on a computer which require resolution.

6. Restricted random packing in one and two dimensions

Consideration of these problems led to attempts in one and two dimensions
where simulation can be accomplished easily with and without the use of a
computer. Results from one-dimensional simulations motivated some new theo-
retical results which add to the results previously obtained by those who have
worked on the “parking problem.”

For one and two dimensions, structured (loose or dense) random packing may
be thought of in the following ways.

(a) One dimension. The center of a unit interval is placed at random along a
line of length £ according to the uniform distribution over the unfilled portions of
the line. If the interval does not overlap any previously placed intervals, it re-
mains where it is placed; if it does overlap, it may move either to the right or
to the left (whichever is the shortest distance). It may then be placed so that
its endpoint coincides with the endpoint of the interval it has overlapped, pro-
vided that after this is done, the interval has not overlapped any previously
placed interval. If it still overlaps, it is rejected. This is done sequentially until
it is impossible for any unit interval to fit on the line. We desire the ratio of the
line filled in this manner as £ approaches infinity.

(b) Two dimensions. Consider a rectangle with dimension w for open top and
closed bottom, and dimension £ for the two sides. Circles of unit diameter will be
placed at random within it in the following way. The center of a circle is a point
positioned at random according to the uniform distribution over the interval
(w — 1) centered at the top of the rectangle. When a circle is selected it moves
vertically down an imagined line ¢, perpendicular to the sides, which passes
through the point selected at random in the interval of length (w — 1). It falls
in this way to the bottom of the rectangle unless its descent is blocked by a previ-
ously placed circle. If the latter oceurs, the circle moves along a line perpendicular
to the imagined line to the right or the left, whichever distance is smaller for it
to clear the blocking circle, but always less than a radius length, and keeps falling
until it hits bottom, or if the bottom is filled, until it hits an upper layer which
does not permit any additional fall across the width of the rectangle in the
manner just described. This process continues until the rectangle is filled and no
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additional circles can be accommodated. This is an attempt at simulating in
two dimensions what has been labelled “loose’’ random packing in three di-
mensions.

This two-dimensional version of loose random packing was attempted in three
computer runs in which circles with unit diameters were placed in a square
measuring 50 units to a side. This led to packing densities of .798, .802, and .806.
In some computer runs for unrestricted random packing of circles in a rectangle,
packing density values hovered around .60. Thus the summary given in table
VIII lists values of .80 and .60 in the appropriate cells for the two-dimensional
column. It would be good to simulate three-dimensional “loose packing’’ on a
computer to see if values of packing density center around .63, the value ob-
tained from physical simulation by several authors. This has not yet been done,
but we are looking into the size and complexity of the programming effort.

Simulations of restricted random packing in two and three dimensions led us
back to the one-dimensional case which we described above. Computer simula-
tion for restricted random packing (loose packing) in one dimension produced
the following (random unit intervals).

TABLE VI
Line Length Replications Mean Variance Standard Deviation
20 10 .8000 .00222 04714
50 10 7880 .00108 .03293
100 5 .8060 .00073 .02702

Computer simulation of the unrestricted random packing case—the “parking
problem’”—provided the following results to serve as an anchor to compare
known results with computer simulation (random unit intervals).

TABLE VII
Line Length Replications Mean Variance Standard Deviation
20 10 7000 .00167 104082
50 10 7480 .00046 .02150
100 5 7500 .00040 .02000

Thus the computer simulation mean values are consistent with the theoretical
mean value of .74759 for the infinite line in the parking problem. Also, the com-
puter simulation variances are consistent with the theoretical variance of the
number of cars necessary to fill the line. Mannion [9] gives for this variance
the value 0.035672z when z, the length of the line, approaches infinity. For
example, when the length is 100, we note the estimated variance based on a
sample of size 5 is .000400 as compared with .000357.

This suggests that our computer simulation for the restricted random situation
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is satisfactory. However, it leads to a gnawing doubt and uneasy feeling since
the mean value of .806 is so close to the packing density arrived at by simulation
for circles in the two-dimensional restricted random (loose packing) situation,
namely .80. Table VIII suggests that one or both packing densities may be in
error.

TABLE VIIIL
SUMMARY
Dimensions
of Sphere
Type of 2 3 4 5
Packing
- T -] 2
Best, Lattice Packi — = .9069 | —— = .7404 — = .6168 — = .4652
st Lattice ing Vi vis 16 vVi%
Restricted Randomness .80 .63
2 2
Cubic Packing 17854 | T =.5236 | = .3084 = = 1645
Uniform Distribution .60 27 .148* 075*
2% E_ 3
Worst Lattice Packing ’—\/57 = 5\2/45‘"' 3= 5:;5 c s =
.3023 .1829 1103%*

* Packing spheres in a sphere.
** Less than value in cell, greater than .1036.

The following argument suggested by Herman Rubin proved decisive in dem-
onstrating the validity of our simulation results in one dimension. Thus, it
indicates some re-examination of the simulation results for the two-dimensional
case. Consider a street of length x with intervals of length « < 1 and 8 < 1 at
each end of the street. Let a + 8 = ¢ < 2. These parameters are chosen to
represent the loose packing of cars of unit length in one dimension. For z > 0,
let [¢, t + 1] be the random interval occupied by the first car parked on the
street, unless it overlaps the interval a or the interval 8, in which case it is
moved the appropriate distance so that it touches the end of the interval it
overlapped. Continue this process until no additional cars can be parked. This
should permit more space filling than the original parking problem since cars
are permitted more leeway to park bumper to bumper.

Following the integral equation derivation given by Rényi, Ney, and
Dvoretzky and Robbins, we get

7 G@He—DN@=G+e—D+N@—1D+2 [ No)dy

where N (z) is the number of cars parked in the interval [0, z]. Putting ¢ = 0,
we obtain
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®) @—DN@ = G@—-D+2 [ N dy
or
; 2 (7
©)] N(x+1)=1+5/0N(y)dy,
the integral equation for the regular parking problem. If we put ¢ = 1, then
z—1
(10) N)=1+= N(x - 1) + N(y) dy,

and this is for the case where a car which overlaps a previously placed car can

move only in one direction for a maximum distance of a car length to find an
unobstructed interval.

To find the limiting value for ¢ = 2, as 2 — « we take the Laplace transform
of each side of the integral equation and obtain

(11) &) + (0 (—1 4 2t + tge“) + G + %) ot =
Then we may write
(12) K = ¢(t) {e—-t—-Ze"—Z J;” eu:du} — ﬁm e—? <% + %5) e—v—2e"—2 J;”-e—;udu dv

where K is a eonstant. Since for the limiting situation we have K = 0, we obtain
) o = [ o] [Ten Gl [ S,
¢

or

(14) o) =

[eH—Ze‘ —-2+42 J; —du+27][[ —2(v+e"—l) 2vy— 2J-t —du dv]

where v = Euler’s constant and

(15) '[t —du——logu—'y-l-z(—llnj’—"

= m'm!

Now ¢(t) behaves as A/t* + B/t + --- ,and thus N(z) ~ Az + B+ ---,and
A is the limiting value we seek where

(16) A= / (2 + 1_2) e—20+e —1)—2y—2 f,,” %‘du dv.
0 v v
Evaluating this constant by computer we find .80865 < A < .80866. This theo-
retical value for packing density conforms well to the simulated value for a 100
unit line, namely .806, and suggests that our two-dimensional simulated value
requires further examination.
The value .80 is entered in the appropriate cell for n = 2 in the summary listed
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in table VIII with the tacit understanding that this value bears watching. In
some smaller rectangles, namely 10 X 10, 10 X 15, “loose packing” of circles
produced filled ratios of .7411 and .8011. The latter is already close to the values
obtained in 50 X 50 rectangles, and both results are consistent for increasing
area of rectangle.

The mosaic presented in table VIII is of interest. Cubic packing is obtained by
considering an n-dimensional space compartmentalized into n-dimensional cubes
of unit edge and n-dimensional spheres with unit diameter inscribed in each cube.
Note that for n = 2, 3, restricted and unrestricted random packing are neither
best nor worst but serve to bound cubic packing. For n = 4, one cell is missing,
but this phenomenon is indicated here also. For n = 5, two cells are empty but
this possibility also exists here. A column with results for n = 1 is omitted in
table VIII since the geometry of the situation is lost in one-dimension, and values
are probably not commensurate. In this case, the filled ratio is unity for best
lattice packing and cubic packing; it is .8087 and .7476 for restricted and un-
restricted randomness respectively; and it is .50 for worst lattice packing.

I would like to thank Miss Susan Boyle, Mr. James Dolby, and Miss Phyllis
Groll for their help in programming the computer simulations referred to in the
paper. Two Stanford visitors have already been mentioned: to Professor Peter
Ney I extend my thanks for prompting my interest in this study, and to him and
Professor Herman Rubin I offer my appreciation for helpful comments.
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