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1. Summary

First, a few remarks are made on invariant probability measures of a transition
probability operator. The notion of irreducibility is introduced for a transition
operator acting on the continuous functions on a compact space, and implications
of this assumption are examined. Finally, the unitary and isometric parts of the
operator are isolated and interpreted in terms of the behavior of iterates of the
operator.

2. Preliminary remarks

Let us consider a space 2 with a Borel field of subsets (B. We shall call P(x, B),
x e Q, B e 63, a transition probability function if P(x, *) is a probability measure
on 63 for each x e Q and P(-, B) is a 68-measurable function for each B X 63.
Higher order transition probability functions can then be introduced recursively
starting with P(*, *):

Pi(x, B) = P(x, B),

(1)Pi(x, B) = f Pi(x, dy)P.(y, B), n = 1, 2, * , x E Q, B e (B.

It can easily be seen that the functions P.(., *) probability measures on 6 for
each x E Q and measurable in x for each B e 63. Further, a small argument shows
that

(2) Pn+m(x, B) = f Pn(x, dy)Pm(y, B), n, m = 1, 2, * .

There is an operator T taking bounded measurable functions into bounded
measurable functions induced by P(-, *):

(3) (Tf ) (x) = f P(x, dy)f (y).

The operator T is positive in that Tf 2 0 if f > 0; by f 2 0 we mean that
f (x) > 0 for all x E U. Also, T maps the function one onto itself. A convenient
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norm can be introduced for the bounded functions f in terms of the transition
function P(., *). Let

(4) Ilf 11. = {inf Isup P(x, {fy If (Y) I 2 c}) = O}.
C X

Then 11 Tf 11. <.lf 11, and hence the corresponding norm of the operator T, 1j TIj.,
is less than or equal to one.
The transition function P(-, *) also induces an operator acting on finite

measures and taking them into finite measures. At the risk of a lack in clarity,
we shall also denote this operator by T and let

(5) (AT)(B) = f p(dx) P(x, B) = v(B)
for any finite measure p on (B. The operator T takes probability measures Q into
probability measures since

(6) (QT)(a) = f Q(dx) P(x, Q) = J Q(dx) = 1.

We shall call Q an invariant probability measure with respect to P(., *) if

(7) (QT)(B) = f Q(dx) P(x, B) = Q(B)
for all B e 63. The set of probability measures is obviously a convex set, and the
set of invariant probability measures is a convex subset of the set of probability
measures.
Given any specific invariant probability measure Q, we can consider T as an

operator on the space L2(dQ) of square integrable functions with respect to Q.
For if f G L2(dQ),

(8) f Q(dx)| T(f)(x) 2 = f Q(dx)|f P(x, dy) f (y)|2
< f Q(dx) f P(x, dy)If(y)I2 = f Q(dx)lf(x)I2,

so that (Tf) (x) is well-defined for almost all x with respect to Q and Tf E L2(dQ).
Further, Tf II < IIf Iin the norm of L2(dQ), so that T is a contraction operator
on L2(dQ). Since T is a contraction on L2(dQ), it follows that given any
f E L2(dQ),

(9) - E Thf-4
nlk=l

converges in L2(dQ) to f E L2(dQ) as n -- o. We shall say that the invariant
measure Q is ergodic with respect to T if

(10) f = EQf = f f (x)Q(dx)
for all f e L2(dQ).
THEOREM 1. Given any two invariant probability measures Q,, Q2 ergodic with

respect to T, it follows that they are either singular with respect to each other, or else
identical.
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If the measures Qi, i = 1, 2, are not singular with respect to each other, there
is a set M on which they are absolutely continuous with respect to each other
having positive Qi and Q2 measure.

Given any bounded function f,
l n

Tkf - EQf, EQJ

in measure with respect to both Ql, Q2 as n -X o on M. Then EQJ = EQ, for all
bounded f. Let f be the characteristic function of a set B, CB. It follows that

r1 n
(12) f Qi(dx) k= (TkcB)(x) = Q1(B)

= f Qj(dx) EQICB = f Q2(dx) EQ2CB = Q2(B).

Thus the two measures Q, and Q2 are identical.
We shall call an invariant probability measure Q an extreme point of the set of

invariant probability measures if whenever Q is expressible as a convex combi-
nation of two invariant probability measures Ql, Q2,

(13) Q = aQ, + (1 -a)Q2, 0 < a <1,

it automatically follows that Q = Ql = Q2. First, it is easy to see that every
ergodic measure Q is an extreme point of the set of invariant probability
measures. Since Q = aQl + (1 - a)Q2, 0 < a < 1, it follows that Qi and Q2 are
absolutely continuous with respect to Q. However, theorem 1 then implies that
Q = Q2= Q.
On the other hand, if Q is not ergodic, it cannot be an extreme point of the set

of invariant probability measures. Since Q is not ergodic, there is a function
f e L2(dQ) such that f is not constant almost everywhere. Let c be such that
Q(A) = a, 0 < a < 1 where A = {xjj(x) 2 c}. The fact that T is a positive
contraction on L2(dQ), taking one into one, implies that P(x, A) = 1 for almost
all x(dQ) in A. Thus Q, and Q2 are invariant probability measures where

Q,(B) = - Q(BfnA),a

(14) 1
Q2(B) = 1 (Bn 2),

and

(15) Q = aQ, + (1-a)Q2.
Here 1 denotes the complement of A. We therefore have the following theorem.
THEOREM 2. The extreme points of the set of invariant probability measures with

respect to P(*, *) are precisely the ergodic probability measures with respect to P(., .).
Blum and Hanson [1] have discussed related questions for point transforma-

tions.
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3. Transition operators on a compact space

In this section we shall assume that 2 is a compact Hausdorff space and 68 the
Borel field generated by the topology. Further, T is to take continuous functions
into continuous functions. Therefore, we may take it for granted that P(x, *) is a
regular measure on aB for each x G U. Given any fixed poiIlt x, let aTm(x) be the
spectrum of Pm(x, *), that is, the set of points y such that for every open set 0
containing y, Pm(X, 0) > 0. This set is a closed set for every x and m = 0, 1, - - .

By P0 we shall understand the identity point mapping. The following lemma
was obtained in [4].
LEMMA 1. The spectral set

(16) 0m+n(X) = U cn(y).

The sets on(x) correspond to exit from x to points n steps later on. One can
also introduce sets Tr(x) corresponding to entrance into the immediate neighbor-
hood of x from points n steps before. Let f be any nonnegative continuous
function with f (x) > 0. Consider

(17) Sn(f) = {zl f P.(z, dy)f(y) > 0}

and set

(18) 'r(X) II SW(f).
f(z) >0,f>O

Notice that x E Tr(z) if and only if z E o-a(x). For if x e 7n(z), given any con-
tinuous f 2 0 with f(z) > 0, it follows that (Tnf) (x) > 0, and hence z C Cn(x).
The converse statement follows by going in the reverse direction.
We say that T is irreducible acting on the continuous functions if for any con-

tinuous f > 0, f $ 0, and any given point x there is a positive integer n(f, x)
such that El (Tkf) (x) > 0. The compactness of Q implies that we can find an
n(f) such that " (Tkf) > 0 for all x.
LEMMA 2. The probability Pn(x, gn(x)) is equal to one.
Consider any open set 0 containing an(x). Let C be the complement of 0. For

each y E C there is an open set Oy with y G Oy such that P.(x, 0O) = 0. C is
compact, and hence there is a finite subcovering Oyi, j = 1, * * *, n, of the cover-
ing {0,, y E C} of C. Now Pn(x, C) < E P.(x, Oy,) = 0 so that Pn(x, 0) = 1 for
every open 0 with 0-n(x) C 0. Thus Pn(x, 0-n(x)) = 1 by the regularity of Pn(x, ).
THEOREM 3. The operator T is irreducible acting on continuous functions if and

only if

(19) U an(x) =
n=1

for every x.
For suppose U on(x) = Q for every x. Consider any f > 0, f 0 0. Then there

is a point z such that f (z) > 0. Since z e U aun(x) (= Q), there is a z' c U an(x)
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such that f (z') > 0. Then for some n, (Tnf) (x) > 0. Thus T is irreducible. Now
assume that U arn(x) # Qi2. Then there is a z f U o-r(x). This implies that there
is a continuousf with f(z) = 1 andf = 0 on U an(x). By lemma 2, (Tnf)(x) = 0
for each n > 0, and hence T is not irreducible.
Given the transition function P(., -) we can construct the corresponding

Markov process starting at x at time zero. Consider the space of sequences
(xO, xl, x2, *) with xo = XEEQ., xI, x2, * * E U. Define the measure P(.. Ixo = x)
on product sets of the form B1X B2 X ... X Bk, Bi e , ii= 1, * * , k by
(20) P(B1X B2 X .. X BkIxo= x) = P(xj E Bj, j = 1,* , klxo = x)

= fB P(x, dxl) JB P(xi, dx2) .. fI P(Xk,1 Bk),
and extend it in the natural way to the Borel field generated by these product
sets.
LEMMA 3. If T is irreducible on continuous functions, then for each point x and

every nonvacuous open set 0,
(21) P(xn E 0 infinitely often, n = 1, 2, * Ixo = x) > c(O) > 0.

Irreducibility implies that for each continuous f 2 0, f 0 0, there is an n such
that _ I Tkf > a > 0 for all x. Consider any fixed x and any given nonvacuous
open set 0. Let z be a point in 0. Takef, a continuous function, 0 < f < 1, equal
to one at z and zero outside of 0. Then for some m, Fln Tkf > a > 0. But this
implies that lim.,,- (1/n) _1 Tkf> (6/m) > 0, and this cannot be the case un-
less, starting with any specific x, there is a positive probability of entering 0
infinitely often. Further, the probability of entering 0 infinitely often starting
with x is bounded away from zero by some positive number c independent of x
but generally depending on 0.
THEOREM 4. If T is irreducible on the continuous functions, for each nonvacuous

open set 0 and each point x E Q,
(22) P(xn E 0 infinitely often, n = 1, 2, Ixo = x) = 1.

Suppose there is an x and a nonvacuous open set 0 such that
(23) P(xn E 0 finitely often, n = 1, 2, *xo = x) > 0.
But then there is an integer k such that
(24) P(xn c O k times, n = 1, 2, * * * Ixo = x) > 0.
For some ni, , nk,
(25) P(xni E 0, i = 1,-.. , k; Xn t O otherwise Ixo = x) = q > 0.
Let
(26) A = {Xni E O, i 1, ,k; Xn, O otherwise},
(27) AN = {Xnic 0, i = 1,-* , k; xn t 0 otherwise, n < N},
where ni < n2 < ... < nk < N. Then, given any e > 0 for some N(e) sufficiently
large,
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(28) P(ANIXO = x) < P(AIxo = x)(1 + e).
However,
(29) P(AN fx,,E{ 0 infinitely often n > N} Ixo = x)

= fJ P(AN; dxNlxo = x)P(x. e 0 infinitely often n > NlXN = x)

> cP(ANIXO = x)
where P(AN; Blxo = x) = P(AN nf {XN e B}Jxo = x). Further,

(30) P(AN n {Xn E 0 infinitely often n > N} Ixo = x) > cP(AIxo = x),
and this is a contradiction if e < c.

4. Iterates of a transition function with respect to an invariant measure

Let Q be an invariant probability measure for the transition function P(*, ).
We have already remarked that the induced operator T,

(31) (Tf) (x) = f P(x, dy)f (y),
acting on L2(dQ), is a positive contraction taking the function one into itself.
Consider the family of functions '11 of L2(dQ) for which Ti is norm-preserving,
that is

(32) f Ig(X)12 Q(dx) = f (Tig)(x) 12 Q(dx)
for g e 'Up. For f e L2(dQ),

(33) j(Tif)(x)12 = If Pj(x, dy)f (y) 2

< f Pj(x, dy)If(y)12 = (T1If12)(x).
Thus for g e 9lj,

(34) J Ig(X)I2 Q(dx) = J (TijgI2)(X) Q(dx)

= f (Tig) (x) 12 Q(dx),
and hence,
(35) (TijgI2)(x) = |(Tig)(x)12
for almost all x with respect to Q. Given any x for which (35) holds, it follows
that g(y) is constant for almost all y with respect to Pj(x, *). Thus it is clear that
91j precisely consists of those functions with the following property: for almost
all x (dQ), g(-) is constant for almost all y with respect to Pj(x, .). Obviously,
'Uj is a closed linear space of functions. Further, the essentially bounded functions
in luj are an algebra since the product of any two essentially bounded functions
gl, g2 in 91j is an essentially bounded function in 'Up. We thus have the following
lemma.
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LEMMA 4. The set 'lj of functions in L2(dQ) whose norm is preserved by Ti is
a closed linear space. The essentially bounded functions of Al; are an algebra con-
taining the function one.

It immediately follows that there is a Borel field of sets Sj induced by cuj.
In fact, 'Uj is precisely the set of square integrable functions (with respect to Q)
that are measurable (modulo a set of Q measure zero) with respect to O3j. Clearly,
911 D 'U2 D * andG = (3oD (BiD .

Let

(36) 'uH,=Iljl, (B H=IB.j.
j=1 j=1

The set of functions %tt. is the closed linear space of functions whose norm is
preserved by all powers Ti, j = 1, 2, * * *, of T and is the set of square integrable
functions measurable with respect to (B.. In fact, T induces a measure-preserving
set transformation on the sets of Bj+l taking the sets of Sj+j into 33j, j = 0, 1, -

For if B E (Bj+l,
(37) (TIcBI2)(x) = (TcB)(X) = I(TcB)(X)j2,
so that (TcB)(x) is the characteristic function of a set that we shall call TB.
Further,
(38) Q(TB) = f (TcB)(x) Q(dx) = f c,(x) Q(dx)

= Q(B).
Clearly, TB E 63j since T takes 'tj+l in 'Uj. If B E 6j but not in Bj+i, we have
(39) TkcB = C7kB, k = 0, 1, * * * j,
but on the (j + 1)-st application of T, it no longer acts as a set transformation.

Consider now the action of T on the characteristic functions of sets in M3..
Then
(40) TkCB = CTkB k = 0, 1, 2,
if BEGoM. with T1BE c00 for k = 0, 1, 2, * - - . Notice that the sets B E M3,,,
correspond to a class of events in the backward tail field of the stationary Markov
process determined by the transition function P(., *) and the invariant measure

Since Q(-) is an invariant probability measure, we can consider the operator
T* adjoint to T

(41) f (Tf)(x)g(x)Q(dx) = ff(x)(T*g)(x)Q(dx)
forf, g E L2(dQ). The adjoint operator T* corresponds to the backward transition
function P*(., *) of the stationary Markov process determined by T and Q.
As before, the set cuj* of functions in L2(dQ) whose norm is preserved by T*i is a
closed linear space consisting of the square integrable functions measurable with
respect to some Borel field 63:
(42) 'ut D cU2* D (3= (330D iD*.
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We set

(43) ][X=I cU,, 653. I (B,
j=1 j=1

The operator T* induces a measure-preserving set transformation r* taking the
sets of 63j+I into cj, j = 0, 1, . * *, and the sets of 63* into 63*. The sets B E V*
correspond to a class of events in the forward tail field of the stationary Markov
process determined by T (or T*) and Q(.). The Borel field 3 = fln 6v is of
special interest because the set of functions 'U square integrable and measurable
with respect to CB consists precisely of those functions whose norm is preserved
by both Tk, k = 1, 2, * - - and T*k, k = 1, 2, - - - . The map T acts as a measure-
preserving invertible transformation on the sets of T, that is TT*B = T*TB = B
for B E M with Q(TB) = Q(T*B) = Q(B).
The set of functions f e L2(dQ) such that f I(Tif)(x)i2 Q(dx) -O0 as j -> oo

are of some interest. Call this set of functions OD. It is a closed linear space by the
Minkowski inequality. Let g E I and h E cU... By the characterization of func-
tions in 91U., it follows that

(44) Ti(gh) (x) = f Pj(x, dy)g(y)h(y)

= f Pj(x, dy)g(y) f Pj(x, dy)h(y)
= (Tig) (x) (Tih) (x)

for almost all x with respect to Q. However,

(45) If g(x)h(x)Q(dx)l = If (TVgh)(x)Q(dx)I
= f (Tig)(x)(Tih)(x)Q(dx)j
< {|f I(Tg)(x)12Q(dx) f J(T1h)(x) 12Q(dx)}1/2

which tends to zero as j tends to infinity, so that the 'U,0 is orthogonal to D.
The space D* is the set of functionsf E L2(dQ) such that f I(T*if) (x) 12Q(dx) -O 0
as j -* oo, and in the same manner, one can show that O* is orthogonal to CL*.

In the case of a countable state space or an almost periodic transition operator
T, ct0. = U*U and a) = SA*. It is easy to consider a class of transition operators
for which this need not be the case. Let Q be the unit interval [0, 1] and T the
transition operator

(46) (Tf)(x) = p(x)f(2x) + (1 - p(x))f(2 + 2x)
acting on the continuous functions on [0, 1]. It is assumed that p(x) is a con-
tinuous function with 0 < p(x) < 1 so that T takes continuous functions into
continuous functions (see [2]). There will then be at least one invariant measure
Q(.). In particular, consider the simple case in which p(x) -1 and Q(-) is
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Lebesgue measure on [0, 1]. The set %.L contains precisely the constant functions
and O all functions orthogonal to them. On the other hand, T* is given by
(47) (T*f) (x) = f ([2x])
where [y] = y mod (0, 1). In fact, T* is given by (47) in the case of any con-
tinuous p(x). Thus, cut = L2(dQ), and V is trivial since it contains only the
function zero. This is fairly obvious since with p(x) =- the stationary Markov
process generated by T is purely nondeterministic going forward in time and
purely deterministic going backwards in time.

In the case of an almost periodic transition operator, L2(dQ) is precisely the
Hilbert space generated by the two orthogonal spaces cu. and 5) (see [5]). It is
an interesting question as to whether this is still true in general. In particular, if
cU1e is trivial, in that it consists only of the constant functions, can one find a
functionf e L2(dQ) such that 11 Tkf 11 . c> 0 as k -X o? Notice that if one for-
gets about transition functions and considers generally contractions on Hilbert
space, this is easy to arrange.

In the following simple example, S is a contraction on a Hilbert space of square
integrable functions with the property that the constant functions f are the only
ones for which Ilf 1I = IT"f j1 _ 1, n = 1, 2, * * *, and yet JJTggll J, c(g) > 0 for
all g # 0 as n - oo. Let eo- 1, ei, e2, *** be a complete orthonormal family of
functions, say on [0, 1]. Let S be the operator determined by

(48) Seo = eo,
Sei = Xjej+,, j = 1, 2,*

with 1 > Xi > 0 and ]I' Xi = L > 0. The transformation S is clearly a con-
traction, and if

(49) o= cjej,
j=O

then
(50) IITnso[I2 I1 Ico12 + E IjCj2L2/1lI 2.

1 1

An even more interesting example is given by a class of irreducible transient
chains with an invariant measure. Let the invariant measure be 7r = (7ri) so that
7rT = 7r where T is now the matrix of one-step transition probabilities tij.
Notice that f with fi--1 does not belong to L2(7r) since the chain is assumed to
be transient. Any nontrivial random walk, that is, with tij = ti-i and tj < 1 for
all j, has

(51) ITnfll = I(Tnf)I127ri, 0

as n - oo if f E L2(Qr) with ri- 1. In fact, one would expect this to be the case
with most irreducible transient chains with an invariant measure. However, the
following simple irreducible transient Markov chains do not exhibit this be-
havior. Let T = (ti,j) with
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1-qi if j=i+1,
(52) tij = qi if j = i-1,

0 otherwise,
and 0 < qi < 1 where 2 E qi < 1. Then one can show that there is an invariant
measure with limi, 7ri =1i > 0, limi_- ri = a > 0 given by
(53) rj aE a(s) with aj° 3 1, ajs+l) = qja(5) + qj+lajs)l

s = 0,1, *-
Note that for all f G L2(7r), 11 Tf 11 < llfll, and since

(54) Erijt(j2 4 cj>O

asn-oo, it follows that for mostfe L2(7), 11 Tnf 4 c > Oasn oo. Itseems
natural to call the irreducible transient chains, for which IITnf II 4 0 as n -X 0

for allf E L2(r), purely nondeterministic and to say that the irreducible transient
chains with an f e L2(w), for which II Tnf 4 c > 0, have a deterministic com-
ponent.

Let us consider a real-valued function g e L2(dQ). We can then consider the
distribution function Fg(a) = Q({xlg(x) < a}) of the function g. The following
lemma remarks on a plausible and almost obvious continuity property of the
operator T.
LEMMA 5. If g is real-valued and lgJJ2 - fTgJT2 < e2, E > 0, then

(55) FT(a--)-e < Fg(a) < FTD(a + e) + e.
Now

(56) jgJJ2 - fI(Tg)(x)112 = f Q(dx) {Ig(x)12- f P(x, dy)g(y) 12}
= f Q(dx) f P(x, dy)lg(y) - f P(x, dz)g(z)[2.

Thus, if llgII2 -2 ITgll 2 < e2 then

(57) Se = {xj f P(x, dy)lg(y) - f P(x, dz)g(z)12 > e}

has Q measure less than e. If we look at the measure space of points (x, y) with
measure,u generated by

(58) R(A X B) = IA Q(dx)P(x, B) = M,({(x, y)l(x, y) E A X B}),
then

(59) /.&{(x, y)I If (y) - f P(x, dz)f (z)I > e} . e-

But this immediately yields the conclusion of the lemma. Notice that this implies
that the distribution functions FT.. of Tng converge as n -- oo.

It is well known that the sequence of operators T*k Tk converge as k -X 0

(see [6]). Let M = limk .. T*k Tk be the limiting self-adjoint operator. The fol-
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lowing lemma indicates that the problem of determining when L2(dQ) is gener-
ated by the spaces 'UL and D is related to the character of the operator M.
LEMMA 6. Let the probability measure Q be an invariant measure of the tran-

sition probability operator T. The space L2(dQ) is generated by 9U,x and D if and
only if M is a projection.
Suppose that %.r and 1) generate L2(dQ). It is then clear that M is the pro-

jection operator leaving the functions of 'U,, invariant and annihilating the
functions of 5). Conversely, if M is a projection, the functions left invariant by
M are it. and the functions annihilated by M are the functions of D. The space
L2(dQ) is then the direct sum of cu. and 2D.

Notice that if the constant functions are the only functions belonging to 'U,R
then M is a self-adjoint positive, positive definite operator with Q as an invariant
probability measure. Further, one is the only eigenvalue of absolute value one
and is simple for M acting on L2(dQ). Thus, the Markov process with M as
transition operator is mixing. A transition probability operator T is strongly
mixing if

(60) sup jj(Tf)(x) -|f dQI--0
as n -X (see [3]). It is quite clear from lemma 5 that if cu.ois trivial (contains
only the constant functions) and there is anf such that IT'ffl c > 0, then M
cannot be a strongly mixing operator.
LEMMA 7. Let Q be an invariant probability measure of T. If Tk is normal for

some positive integer k, then M = M* and L2(dQ) is generated by 'U. = 'l and
a1) = D*.

Since Tk T*k = T*k Tk, it follows that M = limn, Tnk T*nk = M*. Further,
M is a projection for M = limnoo T*2nk T2nk = (limn, T*nk Tnk)2 = M2. The
conclusion follows immediately from lemma 6.
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