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1. Introduction

Let G be a locally compact group (which we always assume to satisfy the
second axiom of countability), and let X be a standard Borel space on which
G acts as a Borel transformation group (see [7], p. 628). That is, we have a
homomorphism of G into the group of Borel automorphisms of X such that if
x - g -x is the automorphism corresponding to g E G, then (x, g) -+ g x is a
Borel function from G X X into X where G is endowed with the a-field of sets
generated by the open sets, and G X X is given the product a-field. Further,
let A be a a-finite measure on X (all measures henceforth will be understood to
be a-finite) which is quasi-invariant under G; that is, for every g E G, gAp and A
are equivalent in the sense of mutual absolute continuity. (Here g -, is the
transform of A by g defined by (g -I) (r) = jA(g-1 a) for Borel sets ar of X.) One
says that p is ergodic under G if for every Borel ar in G such that IA(arAg-r) = 0
for all g E G, we have I,(a) = 0 or Au(X - a) = 0. It is clear that these two
properties of A depend not on ,u, but only on the equivalence class C(u) of p.
We shall say, following [8], that C(,u) is a quasi-orbit of G if p is quasi-invariant
and ergodic. Note that each orbit of G on X carries a unique equivalence
class C(,) of such measures (see [8], p. 295). One calls these classes transitive
quasi-orbits or simply orbits.
We shall say that a measure v is invariant if g- v = v for all g E G. In this

note we are going to discuss a special case of the following circle of questions:
given a quasi-orbit C(y) on X, when does it contain an invariant measure v or
more specifically an invariant v with specified properties? We note that if
v E C(,) is invariant, it is unique up to multiplication by positive scalars. This
is an immediate consequence of ergodicity. Furthermore, any X E C(,) is either
atomic (consists of point masses) or nonatomic (no point masses).
The systems (G, X, C(,)) which we will discuss will be such that G is countable

and acts freely on X in the sense that {x: g -x = x for some g #' e} is a A-null
set. When these conditions are satisfied, von Neumann in [10] has shown how
to construct a certain factor von Neumann algebra associated with (G, X, C(z)).
The type of this factor is determined by the measure theoretic properties of
C(,) discussed in the previous paragraph (see [10], theorem IX). One can show
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that these kinds of factors arise as the rings generated by certain representations
of restricted products of groups. Our results will be applied to this situation in
a subsequent paper.
Our attention will be restricted to those systems (G, X, C(,.A)) which arise in

a very particular fashion. Let A be a countable index set, and let Xa, a E A be
countable spaces with the a-field of all subsets, and let Ga, be a discrete group
acting transitively on Xa. Let ,4t be a probability measure on X., quasi-invariant
under Ga. (This simply means, of course, that each point of Xa gets positive
mass.) Let X be the full Cartesian product of the Xa given the product Borel
structure (which is a standard Borel space), and let ,u be the infinite product of
the measures Ia (see [4]; recall that L,La(Xa) = 1). Finally let G be the direct
sum of Ga; G = {(ga) : ga E Ga, ga = e for almost all a}. ('Almost everywhere'
with respect to sets of indices a will mean 'except for a finite number'; there
should be no confusion with the usual measure theoretic usage of the term.)
Then G is countable and acts on X in the obvious way. Moreover it is clear
(see below) that C(g) is a quasi orbit. Our results concern conditions under
which C(,u) contains an invariant measure.
Von Neumann raised this question in the case when X, is a two-point space,

and implicitly states a theorem but gives no details (see [10], p. 95, last sentence
of the third paragraph of 4) and compare with ([9], pp. 66-77). Pukansky
treated a special case of this, ([11], p. 140, lemma 6), and recently J. D. C. Bures
[2] has given a systematic treatment of some aspects of this including a proof
of von Neumann's assertion. See also the paper of Araki [1]. Bures' results are
unfortunately not strong enough for our purposes. Bures works in the context
of the von Neumann algebra associated to the system, whereas we shall work
just with the measure theory. We wish to thank R. V. Kadison for calling our
attention to this paper of Bures.

2. Statement of the results

Let (G, X, C(M)) be a triple as discussed above, not necessarily arising from
the product construction, with G countable and acting freely where C(G) is a
quasi-orbit.

DEFINITIONS. (1) We shall say that C(,) is type I if it is transitive (or equiv-
alently that C(,) consists of atomic measures, or that C(,) contains an atomic
invariant measure).

(2) We shall say that C(u) is type III if it is nontransitive (that is, nonatomic),
and contains a finite invariant measure.

(3) We shall say that C(,u) is type II. if it is nontransitive, and contains an
infinite invariant measure.

(4) We shall say that C(,u) is type III if it contains no invariant measure.
We observe that these possibilities are mutually exclusive and exhaustive.

One could, of course, formulate these definitions for an arbitrary G, but we shall
not need this, and moreover, if G does not act freely, this classification does not
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seem to be too appropriate (see [8]). We note that the von Neumann algebra
constructed from (G, X, C(,)) mentioned in section 1 is a factor whose type is
exactly that of C(,u) ([10], theorem IX). Our approach here is to fix G and let
C(y) vary. However, the recent result of Tulcea [13] concerns the opposite. This
says roughly that if C(,u) is fixed and G is fixed to be the integers, but its action
is allowed to vary, then in a suitable categorical sense C(u) is almost always
type III. Our results indicate the same, namely that the type III case is generic.

Let us now return to the specific case which we shall consider. That is,
X = IIa Xa, ,u = II tt, where the Xa are countable and the ,c, are probability
measures on Xa giving each point positive mass, and G is the direct sum of
countable groups Ga with Ga transitive and free on Xa.
LEMMA 2.1. The class C(,u) is a quasi-orbit for G.
PROOF. This is essentially known, but we include a proof for completeness.

If a E A, then X = Xa X Xa where X* is the product of the Xp, ,B $ a. Also,
= pia X i where ic is the product of the remaining a, #3 $d a. Now let us

identify Ga with the subgroup of G, all of whose coordinates except the a-th are
the identity element. Then Ga acts on X by its usual action on Xa and trivially
on Xa. Clearly i- is quasi-invariant under Ga since i-la is. Since G is generated
by the Ga, i- is quasi-invariant under G. Finally, to see that C(,u) is ergodic, we
simply note that this assertion is the Borel zero-one law of probability theory
(see [3], p. 102).
We next want to note that the type of C(,u) does not depend on any precise

information about the Ga, since one can characterize G-invariant measures on X
independently of the Ga.
LEMMA 2.2. Let v be a Borel measure on X. Then v is invariant under G if and

only if for each a, v = Va X va, where va is some Borel measure on X, and va is the
measure on Xa, giving mass one to each point.

PROOF. If our condition is satisfied, then v = va X v,, and since va, is in-
variant under Ga, v is invariant under Ga since Ga acts trivially on Xa. Thus
again, as G is generated by the Ga, v is G-invariant. Conversely, let v be
G-invariant, and write X =X X X a. Let x E Xa and define a measure va on
X.* by v=(a) = v({x} X a) for a- C X,. It is easy to see that va is ca-finite so that
it is a measure under our conventions. Since Ga is transitive on Xa and v is
invariant under Ga, one sees that v, is independent of the choice of x. As Xa is
countable, it is clear that v = va X v, on all 'rectangles' in the product. There-
fore, these two measures are the same. This completes the proof.
We note indeed that the condition of the lemma is independent of the Ga. We

shall simply say that v on X is invariant if it satisfies this condition. Thus we
can speak of the type of a measure class Ci(,u) with z constructed as above without
reference to G (just as long as G is built from some groups Ga). This also means
that we are free to take any Ga we want in our proofs. For instance if Xa has
na points (na = a), possibly), then we can identify Xa and Ga with the integers
mod na with Ga acting on itself by translation.

In general it will be convenient notationally to number the points of each Xa
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by the integers from 1 to na. The choice of the numbering is, however, at our
disposal. The data we are given then essentially are the measures uan which in
turn are determined by pa, = jua({i}) for the points i of Xa. Since Fipa = 1 for
every a, we can number the points of Xa so that pa. is decreasing as a function of i.
We shall now state the main results.
THEOREM 1. (1) C(A) is type I if and only if Ea (1 - pa) converges.
(2) C(A.) is type II, if and only if na < °° for all a and n, > 1 for infinitely

many a, and

(1) E (n.) 111 - (pln.)1/212ait
converges.

Bures [2] has obtained part (1) which is rather easy, and has obtained some-
thing equivalent to (2) under the additional hypothesis that the n,, are uniformly
bounded. Our proof does not need this side condition. It is somewhat more
subtle to distinguish the II,, from the III case, and we must impose a side
condition similar but weaker than Bures' condition (but not 'essentially' weaker).

Let us establish the notation lxl = inf (jxl, c) for c > 0.
THEOREM 2. Suppose that pa > a > 0 for some a and all a. Then C(,u) is

type III if and only if

(2) a Pa VPa/Pa) - c
a i

diverges for some (and hence all) positive c.
Therefore, of course, we can distinguish the II. case at least under our side

condition. Notice that pa > a > 0 is automatically satisfied if the na are uni-
formly bounded by some K, for we can take a = 1/K. It is an easy matter to
see that the convergence or divergence of the series in the theorem is independent
of the value of c. We have stated our results in terms of absolutely convergent
double series. These criteria can be rephrased in terms of conditionally convergent
double series as in [2], but we feel they are more convenient in the present form.
PROOF OF THEOREM 1. We include the trivial proof of part 1, theorem 1 for

completeness. Recall that C(,u) is type I if and only if u gives positive measure
to some point. If x E X with x = (ja,), 1 < ja < na, then M({x}) = II Ma({ja}),
since u is a product measure. Now it is clear that this product is as large as
possible when ia = 1 for all a. Thus C(,u) is type I if and only if II, pa > 0, and
this is true if and only if F_(1 - pal) is convergent.
We pass now to part (2). Suppose that C(,z) is type IIl. Then by lemma 2.2,

it is clear that na must be finite. Furthermore, if na = 1 for almost all a, X is
finite, and we are in the type I case. We must prove now that the series in ques-
tion converges.

Let X be a finite invariant measure on X. As we mentioned before, we may as
well take Xa to the integers mod na and Ga = Xa acting on itself. In that case
X is a compact abelian group, and G may be viewed as a dense subgroup. Since
X is finite and invariant under translation by G, it is invariant under X. (To
see this, look at the Fourier-Stieltjes transform of v.) Therefore X is the Haar
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measure on X, and we may take X(X) = 1. Then if X,, is the measure on Xa
giving mass (na)-l to each point, it is clear that X is the infinite product of
the Xa. Now since X ,-u = II , we may apply a criterion of Kakutani [5]
for equivalence of infinite product measures. His result says that XA,u if and
only if _,, 1 - (dua/dXa)"l2I2 converges, where 1 indicates the norm in L2(Xa).
But now this series can be seen by substituting the p , to be precisely the series
in the statement of the theorem, and so we are done. (We are indebted to
Kakutani for calling our attention to his paper.)

Conversely, let the conditions of the theorem be satisfied; then in the same
notation, X -,u so that X e C(,), using Kakutani's result the other way. Thus
as X is invariant, C(,) is either type I or II,. The condition na > 1 for infinitely
many a assures us that we are in the II, case. This completes the proof.

3. Proof of first part of theorem 2

We come now to the proof of theorem 2. We first prove the sufficiency of our
condition which is the more difficult part. If (a") and (b.) are sequences of non-
negative numbers, we say that an - b. if there exist positive constants k1 and k2
such that k1an < b,, < k2an. If an - b,,, then clearly E a,, converges or diverges
with E b,,.
Suppose now that C(,u) contains an invariant measure v, and let f = dv/d,u

so that f is a Borel function on X, unique up to u null sets and > 0 almost
everywhere. According to lemma 2.2, we have v = va X v*, and since ,u = I,, X M,
we see that dv/d,I = dval/dp,a X dv*/d*. To be precise, if x E X, x = (x,,xa),
then f(x) = fa(xa)fa(Xa) for almost all pairs (xa, x*) where f, = dva/duIda and
f* = dva/dg*. Since Xa is discrete, this holds for almost all x* for each Xa E Xa.
Moreover, since va is unique in this decomposition, it follows that va is an invar-
iant measure on Xa in the class C(j,u). We can repeat this argument to find the
following.
LEMMA 3.1. Let F be a finite subset of A, and let XF = laMEF Xa, and

X*F = llaIF Xa. Then X = XF X X* where x = (XF, x) are the coordinates of
a point x. Then P = (fIaEF Va) X V*F for some invariant measure VF on X* and
f(x) = (HIaCeF fc(xa)) * f*F(X*) for almost all x*F where fF = dv*F/d,. and
I1F = IlaZF ha.
Now let qX ga,19FX denote respectively the functions exp (2iriX log (-)), where

(*) is f, fa, fF for real X. These functions are of modulus one and

(3) 9g(X) = [I 9(Xa)gF*(X4F)-
aEF

We view each of these functions as an element of L2(X, A) by making them
constant in the variables on which they do not depend. Since ,(X) = 1, they
are all unit vectors.
Now denote by PF the orthogonal projection of L2(X) onto L2(XF) where we

view L2(XF) as the subspace of L2(X) of all functions which depend only on the
coordinates Xc,a E F, of the point x e X. It is immediate that
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(4) PF(gX) =( ][I (9FX, 1)

where 1 denotes the function equal to one everywhere. Then it is well known
that PF(g') -9 gX in the norm topology on L2(X). Therefore,

IPF(g9) = (g*, 1) I- 1,
and in particular (g*F, 1) F- 0 for large F. It follows at once that (ga, 1) = 0 can
hold for only a finite number of a. Now let us choose constants a, = exp (27riXba)
of modulus one such that (aaga, 1) > 0. Of course ba is not determined at all
for a finite set of a, and in general is only determined modulo 1/X.
Now we write

(5) PF(9') = (II aa9a) ( aa"X) (gF, 1),
GGF aCF

and denote by 'YF the product of the last two terms. We observe that by our
construction, for large F, the argument of 7YF independent of F. If we put
d = IF/lYFI for large F, then
(6) PF(dgX) = II a lYF|-I

aep

We have observed before that IYFI -+ 1 as F - oo, and we immediately conclude
that II.CF aag, converges to dgX in L2(X).
On the other hand, one knows precisely when this happens.
LEMMA 3.2. Let ha E L2(Xa) with Jhal = 1, and view them as elements of

L2(X). Suppose that (ha, 1) > 0. Then lIaCF ha converges in L2(X) if and only if
EI ha -112 converges.
PROOF. This is well known (cf. [10], lemma 3.3.4, p. 24).
We apply this to the situation at hand to conclude that a2 laga - 112 con-

verges for every X. Now we know what fa, and hence ga, are; indeed
fa(i) = (dPa/dlia)(i) = (pa)-' for 1 < j < na. We find then by putting in these
values for ga that the series of nonnegative terms

(7) E p|Iexp (27riX(ba- log pa)) - 112
a,1

converges for all real X. In particular, we may rearrange at will and conclude
that the sum of the terms with i = I converges. Since pa is assumed bounded
below, we conclude that the series

(8) E lexp (27riX(ba- log pa)) - 112
a

converges for all X. In particular the individual terms of the series approach zero.
Now let llxll for a real number x denote the distance from x to the nearest
integer. Then it is clear that for large a, the series (8) will dominate term by
term the series

( ) h ||s cnegs log Pra)
a

and hence the latter series converges. As we remarked before, the ba' are deter-
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mined only modulo 1/X, and now we make use of this freedom of choice to choose
bx so that

(10) E b - log p.12
converges. This says that the b, are in some way almost independent of X in
the sense that they do not differ very much from a sequence which is independent
of X. Note that the hypothesis p, > a > 0 was used in a very crucial way to
accomplish this.
Now if sX = exp (-27riX(b' - log p')), then by (10), EQ 11 -5X2 converges.
LEMMA 3.3. Let the unit vectors ha be as in lemma 3.2 with (ha, 1) > 0 and

Y- Iha - 112 < o.o If YI JSa- 112 converges with 1Sal = 1, then Isaha- 112
converges.

PROOF. This is quite obvious by the inequality Ix + yl2 < 2(JxJ2 + Jy12) for
vectors x and y.
We now apply lemma 3.3 to the vectors aaga and to sa. We then conclude the

following, using the fact that lexp (ix) - 112 = 2(1 - cos x).
LEMMA 3.4. The series

(11) E_ pa(l - cos (2irX log (pa) - log (pa)))ali

converges for all real X.
The following lemma now essentially completes the proof of the first part of

theorem 2.
Recall that lxl, = inf (Ixl, c) for real x and c > 0.
LEMMA 3.5. Let {an} and {bn} be sequences of nonnegative numbers. Then the

following are equivalent:
(1) E an(1 - cos (Xbn)) converges for all X.
(2) E an(1 - cos (Xbn)) converges for X in a set of positive Lebesgue measure.
(3) E anIbnl converges for some c > 0.
(4) E2 anlbnlc converges for all c > 0.
Assuming this, let us complete the proof of the first part of theorem 2. Accord-

ing to lemmas 3.4 and 3.5, we see that 2, pi jlog p /pI12 converges for some,
and hence all c > 0. Now observe that Ilog (pI/ps ) 1, ' (p,/p )-1ic, and hence
we see that

(12) )2 pa(Pa/pa) - 1I2
a,i

converges for some, and hence all c > 0. This proves the sufficiency of the condi-
tion in theorem 2.
PROOF OF LEMMA 3.5. Clearly (1) =X (2), and also (3) =* (4), for it is obvious

that anlbnl2 - anlbnId for any two c, d > 0. Therefore, L_ a.jb. . converges if
and only if E_ ajbn|jd converges. Furthermore, (4) => (1) is clear since, for fixed
X and c, a constant multiple of anIbnI dominates an(1 - cos (Xbn)) term by term.
It remains then to prove that (2) => (3).
Let S be a set of positive Lebesgue measure where the series in (2) converges,
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and let M(X) be its sum for X E S. Clearly M(X) is a Borel function of X, and
consequently, by regularity of Lebesgue measure, we can find a compact set T
of positive measure contained in S such that M(X) < K for some K and all X
in T. Then

(13) fTM(X) dX < KITI < oo,

where I TI is the Lebesgue measure of T. Since we are dealing with a series of
positive terms, we can invert the order of summation and integration to find that

(14) an fT (1 - cos (Xbn)) dX

converges. Now we claim that the function f(t) = fT (1 - cos (Xt)) dX has a
lower bound m(c) on the set ItI > c. In fact f(t) is continuous in t, and positive
except for t = 0. It suffices to show then that it is bounded from zero at infinity.
But this is clear for as It -÷ oo, f(t) - ITI by the Riemann-Lebesgue lemma.

Therefore, if L(c) = {n: IbnI > c}, we see that YneL Cc) an < (m(c))-'K!TI < -.
On the other hand, by assumption E_ an(1- cos Xbn) converges for some X > 0.
Then choose c so small that 1 - cos x > X2/4 if jxl < cX. Then

(15) E anlbnj = an bn + L_ an,
n L(c) n EL (c)

and the first series is dominated term by term by 4 ,_ an(1- cos Xbn), (n j Lc),
and the second series is convergent as we have shown above. This completes
the proof.

4. Restricted products of measures

We now have proved in theorem 2 that if C(,) is not of type III, then the
series of the theorem converges. To show the converse, we must be able to
construct invariant measures X on X = II Xa, provided that the infinite series
of the theorem converges. This section is then devoted to a short digression on
a method of construction of measures on product spaces which will have applica-
tions beyond the immediate scope of this paper.
Suppose that Sa is a standard Borel space for each a e A, a countable index

set, and let Ka be a Borel subset of Sa. We let S be the full Cartesian product
of the Sa with the product Borel structure, and we let E = {(Sa): Sa E Kag
almost everywhere}. We call E the restricted product of the spaces Sa relative
to the subsets Ka.
LEMMA 4.1. The restricted product E is a Borel subset of S, and hence a standard

Borel space; moreover, E = Sa X E* where E* is the restricted product of the
So, 3 # a.

PROOF. If F is a finite subset of A, let SF = HlaEeF Sa X I[IaZF Ka. Then
SF is clearly a Borel subset of F. Moreover, E = UF SF so that E is also a Borel
subset of S. The second statement is obvious.
We note that if a is a subset of E, then a is a Borel subset of E if and only if
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oa n SF is a Borel subset of SF for every finite set F. Thus the Borel structure
on E is the 'inductive limit' of the Borel structures on SF. This method could
also be used to define the Borel structure on E independently of its structure
as a subset of S. Suppose further that X, is a family of measures on Sa such that
Xa(K,t) = 1. We want to define the restricted product measure X = II Xa as a
measure on E.

Indeed, let F be a finite set of indices, and let XF be the product of the measures
)a (a E F) and the measures X)t restricted to K., a1 F on SF = ILaGF Sa X
fIla,F Ka. This is well defined since Xa(Ka) = 1, and is a (a-finite) measure on SF.
Then if a is a Borel subset of E, define X(of) = lim xF(o n SF). The limit exists as
the sequence on the right increases as F increases.
LEMMA 4.2. The restricted product measure X is a (a--finite) measure on E and

X = Xa X X.* (product measure), where E = Sa X Ea and X is the restricted product
of the )o, # F a on E-.

PROOF. The assertions are completely obvious.
Since E is a subset of S, we may always regard any measure X on E as a

measure on S by X(o-) = x( n E) for Borel subsets a of S. With this convention
the following is clear.
COROLLARY. Let X. (= Sa) be discrete, and let Ka be a finite subset of Xa

consisting of ma elements. Let Xa be the measure on Xa giving mass (ma)-' to each
point, so that X,a(Ka) = 1. Then the restricted product measure X on X = II Xa
is invariant (cf. lemma 2.2) and ergodic.
PROOF. This follows from the definition of invariance and the second state-

ment of the previous lemma. The ergodicity follows by an easy modification of
lemma 2. 1.

5. Completion of the proof of theorem 2

We now return to the second half of the proof of theorem 2. Thus we assume
that the series

(16) E Pj(pJ /pa) 1I
a,t

converges for all c > 0, and that pa > a > 0 for some a. It is convenient to
extend the definition of pa for i > n,. (= number of points in X,) by making
it zero for i > ne,.
We first notice a trivial remark. As before, if F is a finite set of indices, let

XF = flaEp Xa and X*F = HGMF Xa, and similarly for /1F and j4F.
LEMMA 5.1. The class C(,u) on X is type III if and only if *F on X*F is type III.
PROOF. If v E C(,u) is invariant, it follows by repeated application of

lemma 2.2 that v = VF X VF, where VF gives each point of XF mass one and
V*F E C(,U*F) is invariant. Conversely, if V*F e C(,U*F) is invariant, then v defined
by the above formula is in C(,u), and is invariant. This completes the proof.
The meaning of this is that we are free to delete any finite set of indices from A



456 FIFTH BERKELEY SYMPOSIUM: MOORE

as far as the question of type III is concerned. Since the convergence or diver-
gence of the series in theorem 2 clearly does not depend on any finite set F of
indices from A, we may ignore finite sets of indices when proving theorem 2.
Now if b > 0 is fixed and k is a positive integer, define a subset L(b, k) of A

by L(b, k) = {a: pa < b}. Since p+' < pa, it is clear that L(b, k) C L(b, k + 1).
If we take b = a/2 where pa > a, then

(17) E a(ap)-1|1 t<X
where the primed summation is over all a E L(b, k) and all i > k. On the other
hand, if a $ L(b, k), and i < k, then pa. > b > 0, and so

(18) E2 I(p/) _ ll, (a ¢ L(b, k), i < k)
converges for any c > 0. This of course immediately implies that

(19) E Jpl/pa1- 112, (a $ L(b, k), i < k)
converges since pa/pa, is bounded on this range of indices. Now suppose 1/n < a.
Then the convergence of (19) implies that except for a finite number of
a ¢ L(b, k), we have pa. > 1/n for all i < k. Therefore, if A - L(b, k) is in-
finite, there exists an a such that pa. > 1/n for all i < k. It follows then that
1 2 Yi <k p2. k/n. In other words, if k > n, then A - L(b, k) must be a
finite set. By our previous remarks, we are free to assume that A = L(b, n + 1).
We now define a partition of A into n disjoint sets A (k), 1 < k < n by

A(k) = L(b, k + 1) - L(b, k) so that a E A(k) if and only if pa > b, and
pk.+ < b. It is clear that if a e A(k), then Xa has at least k points. We deduce
then from (17) and (19) the convergence of

(20) , pa (a eAA(k), i > k)
and of

(21) E (pP/pa) - 112, (a e A(k), i < k).
Now let Ka be the subset of Xa consisting of the first k points when a E S(k).

We let va be the measure on Xa giving mass l/k to each point when a G S(k),
and we let v be the restricted product of the va using the sets Ka. Then, according
to the corollary to lemma 4.2, v is an invariant measure on X. The following
completes the proof of theorem 2.
LEMMA 5.2. Let , and v be as above, then v E C(p).
PROOF. Since v and IA are both ergodic under some group G acting on X,

they are either equivalent or mutually singular. Thus it suffices to show that
p and v are not mutually singular. Let K be the full Cartesian product of the
sets Ka. Then v(K) = 1 by construction. On the other hand, if aa = Yi>k(.) pa
where k(a) = k if a e S(k), then by (20), L aa converges. But now I(K) =
IIHa a(Ka) = Ha (1 - aa), and this infinite product is therefore positive. Now
let Xa be the measure on Ka which is (1 - aa)-' times the restriction of pa
to Ka. Then Xa(Ka) = 1 and the infinite product of the Xa, say X, is a multiple
of IA restricted to K. Thus to complete the proof, it is enough to show that
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X v as measures on K. Observe that Xa gives mass (1 - aa)-'p, = q, to the
i-th point of Ka, i< k(a). Then by (21),

(22) E (qa/qa) - 1|2
converges where the sum extends over all a and all i < k(a).
Now since q,. has a lower bound, b, over the range of summation, we see from

the above that

(23) , (qa- q.)2, (a, i < k(a))
converges. Now using the fact that y(a) qla = 1, and the Schwarz inequality,
we deduce immediately that

kI(a)
(24) k(a)(qa- k(a)-1)2 < , (q. - q})2
Now summing on a, and using (23) and the inequality (s + t)2 < 2(s2 + t2), we
see that

(25) ', ((qa/qa,) - (k(a)qa)-l)2, (a, i < k(a))
is dominated term by term by a convergent series, and so also converges. Now
combining (22) and (25) and the same numerical inequality, we see that

(26) E ((q2k(a))-' - 1)2, (a, i < k(a))
is dominated term by term by twice the sum of (22) and (25), and thus con-
verges. Finally we observe that (q,k(a)) is bounded above and below so that

(27) ((q'k(a))- - 1)2 _ ((qak(a)) 12 - 1)2;
thus,

(28) . ((q.k(a))l/2 - 1)2
a,} <k(a)

is convergent. Now by Kakutani's criterion [5] for equivalence of infinite product
measures used in section 2, we find that X - ', and this completes the proof
of the lemma and hence of theorem 2.

6. Complements

We would like to add a few words about the meaning of the series
E pa,(pa/pa- 1)2 of theorem 2. For this to converge, either pa must be small,
or the second term must be small. In other words, the convergence of this series
means that asymptotically the measure ya gives approximately equal mass to
some set of points in Xa (those i such that the second factor is small) and very
small mass to the rest. Note that both factors cannot both be simultaneously
small; this is the meaning of the hypothesis pa > a > 0. We can interpret the
condition for C(,u) to be type II, as simply that, all the points of Xa get approx-
imately the same mass, and the type I condition can be interpreted to say that
the first point in Xa carries nearly all the mass with the other points having
very small mass.
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We do not know what happens when the condition p, > a > 0 is dropped.
However, one can show by the same arguments as used in the second part of
the proof of theorem 2, that if there exist integers k(a) such that

(29) L p
a,i >k(a)

and

(30) E J(k(a))-l/2 (p.)1/2j2
a,i <k(a)

converge, then C(uA) is not type III.
Let us consider for a moment an example of theorem 2 which was our original

motivation. Let A be the set of rational primes, and let XQ be infinite for each
prime q with t,u defined by pt = ql-i(l- q-') for i = 1, 2, *- . Then since
pl > 2 for all q, theorem 2 applies. We observe that terms of the series in the-
orem 2 for i = 2 are asymptotic to q-1, and since E q-1 diverges, we are in the
type III case. It is amusing to note that we do not need lemma 3.5 to do this.
Indeed if we look at the series in lemma 3.4 instead, and take the terms with
i = 2, we see that it is termwise asymptotic to

(31) E q-(1 - cos (27rX log q),
and if we were in the type I or II case, this would converge for all real X. But
it is well known that

(32) q-1 cos (27rX log q)
is (conditionally) convergent for real X $ 0 (see [12], p. 56); this is equivalent
to the fact that the Dirichlet series for log I (s)I converges for Re (s) = 1, s wd 1,
and hence that the zeta-function, c(s), has no zeroes on this line). Now by addi-
tion, we see that E, q-1 would converge which is of course nonsense.
We note that this example is not covered by Bures' criterion ([2], p. 170) for

the type III case. This example will be used elsewhere to show that the adele
group of the 'ax + b' group [14] has as regular representation a type III factor
representation.
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