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1. Introduction

Under the name of boundary problem for Markov processes, we shall consider
the problem of finding all Markov processes whose behavior, before they reach
the boundary, is the same as that of given minimal processes (cf. Feller [2]). In
this paper, we shall characterize those processes by their U-processes (on the
boundary) and certain auxiliary factors (cf. Sato [8]). The precise formulations
and the summary of the paper are given in sections 2 and 3. The author wishes
to express his gratitude to Professors M. Nagasawa, K. Sato, and T. Ueno for
their kind discussions and advice, and especially to Professor K. Sato who read
the paper and suggested many improvements.

2. Assumptions and notations

The space S is a compact space with metric r and S* = S U {a} where a is
an isolated (extra) point; D is a fixed open set in S such that S = 1) and V is
the boundary of D. As sample paths on the space S* = S U {d} or
V* = V U {a}, we consider paths which are right continuous, have left limits,
and stay at a after they reach a. The path is denoted by w and
Xt(w) E S* (or {t(w) c V*) is the value of w at t. We shall set x,(w) = a,
SE = inf {t > 0: x,(w) E E}, and v = inf {t >. 0: xt(w) E D} with inf0 = mo.
A Markov process defined on the space of the above sample paths is called a
Hunt process if it satisfies the conditions (P.1), (P.2), (P.3), and (P.4) in [5].
Roughly speaking, a Hunt process is a right-continuous and quasi-left-continuous
strong Markov process. When referring to "subsets of S," we shall mean only
topological Borel subsets of S. For E C S, B(E) is the set of all bounded measur-
able functions on E, and B+(E) (resp. C(E)) means the subset of B(S) consisting
of the functions which are nonnegative (resp. continuous). Sometimes, we con-
sider f in B(E) as a function on 6*, setting f(x) = 0, x 4 E. For E, F C S,
K(x, A), (x c E, A C F) is called a kernel on E X F if K(-, A) is Borel measur-
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able on E and K(x, *) is a measure on F. If K(x, A) is a kernel, we write Kf(x) =
f K(x, dy)f(y).

2.1. Minimal process. A process Mo is called a minimal process on D if the
following conditions (Mo. 1) - (Mo.6) are satisfied (throughout this paper -y > 0
is fixed and a = aV is the hitting time to V):

(Mo.1) Mo is a Hunt process on S;

(Mo.2) Po(x = {,0.<t <o) = 1, t EV,
where Pe and E? are the probabilities and the expectations for Mo.
Forf E B(S), let

(1) Gaof(x) = EOI (f' e-aIf(xt) dt), (a > 0),

Haf(x) = E (e-aQf(x.,): of < oo), (a > 0);
then the Green kernel of Mo is G° + (i/a) Ha; that is,

[2.1] E° (fo'e7atf(xt) dt) = Gaf(x) + (1/a) Haf(x), and Mo is uniquely deter-
mined by Ga° and Ha.
We can easily see that

(2) Ga°-G + (a- #)GG = 0,
(3) Ha-H + (a-I)GaH 0= O,

(4) Gaf(t) = 0 and Haf(Q) = f(A) for t E V.

(Mo.3) There exists a measure mo on D such that mo(E) = 0 is equivalent
to G°(x, E) = 0 for every x e S;

(Mo.4) G.Of E C(S) if f e C(S), and Haf E C(S) if f E C(V);
(Mo.5) flaf = (G.°f/g,) e C(S) if a > 0 and f E C(S), where g7(x) = G°l(x)

and y is a fixed positive constant and 1 denotes the function which is 1 on S and
0 at a.

Since Gaf(x)/g,(x) is in C(D), (Mo.5) means that Gaof/lg can be extended to S
continuously. By (2) we can easily see that if (Mo.5) holds for some ao> 0,
then it also holds for every a > 0. As functional on C(S), 1ia can be considered
as a kernel on S X S, and fJaf is well defined for f e B(S):

(Mo.6) {flaf: f E C(S)} is dense in C(S).
By (2), we have

(5) 17.- Aft + (a-0t-13aG,6 = O.
Throughout this paper a minimal process Mo and y > 0 are fixed. The condi-

tions need some explanations. We did not hesitate to impose conditions on Mo
if they are convenient for the following argument and if they are satisfied by
ordinary regular processes. Condition (Mo.4) implies that every point of V is
an exit point, and quasi-left continuity on Mo near V assures that it is not too
wide as an exit boundary, although it may be too small. Condition (Mo.5)
assures (except for the smoothness part) that for every point of V there corre-
sponds at most one entrance point, and therefore V is not too small as an entrance
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boundary. For example, let S = [-1, 1], V = {-1, 0, 1}, and let Mo be the
Brownian motion stopped by V. Then (Mo.5) is not satisfied near 0, since 0 con-
sists of two entrance points (see [8]). There exist more essential examples which
do not satisfy (Mo.5). In these the point of V cannot be divided as an exit
boundary, but it consists of many entrance boundary points; that is, Ga°/,g has
many limiting values at V.
The following processes, which are stopped by the boundaries, satisfy condi-

tion (Mo.1) - (Mo.6):
(a) one-dimensional diffusion in an interval with exit boundaries;
(b) Brownian motion in a unit sphere or half plane;
(c) space time Brownian motion in a band-like domain parallel to the time

axis;
(d) stable processes with exponent a > 1 in a finite interval.

In the cases (b) and (c), suitable compactifications are needed.
2.2. Processes with minimal process Mo (extension of Mo). The process M is

called an extension of Mo if the following conditions (M.1), (M.2), and (M.3)
are satisfied:

(M.1) M is a Hunt process on S.
(M.2) Let G,a be the Green kernel of M. There exists measure m on S such

that m(E) = 0 is equivalent to Ga(x, E) = 0 for every x e S.
Under (M.1), (M.2) is equivalent to the condition (L) in [3] or the condition

(P.5) in [5]. (See also [4].)
(M.3) The process M stopped by V is Mo; that is,

(6) Er (f|0 e--If(x,) dt) = Ga°,f(x),

(7) Ez(e-aof(xu)) = H.f(x),
where the expectations and the probabilities for M are denoted by E. and P..
By (4) and (M.3),

[2.2] every point of V is regular to V with respect to M.
Sometimes we shall use the following conditions.
(M.4) The sample path of M has no sojourn on V. a.e.; that is, Gaxv(x) = 0

for every x E S. (We say that an assertion A holds a.e., if P,(A) = 1 for all x.)
(M.5) The sample path of M has no jump from V to D, a.e.; that is,

P.(F8 XV(X.-)XD(Xs) = 0) = 1 for every x E S, where xv and XD are the charac-
teristic functions on V and D respectively.

(M.6) The sample path of M has no jump from V to V, a.e.; that is,
P.(F8 xv(x.-)xv(x.) = 0) = 1 for every x e S.

(M.C) Iff E C(S), then GJf E C(S).
Under (M.1) and (M.C), Ga, restricted on C(S), becomes the resolvent of a

strongly continuous semigroup on C(S).
2.3. Process on the boundary (U-process). In this paper by "additive func-

tionals" we mean nonnegative additive functionals only, unless otherwise
stated. The definition is given in ([4], (A.1) (A.6)). For two additive func-
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tionals A and B, A - B if and only if P.(A(t, w) = B(t, w) for all t) = 1 for
all x, and A << B if and only if P.(A(t, w) < B(t, w) for all t) = 1 for all x. We
set f *A (t) = fO f(xt) dA for f E B(S).
For given M, the U-process of M (introduced by T. Ueno) is obtained as

follows (see [9] and [5]). Let M be a process satisfying (M.1), (M.2), and [2.2].
Then there exists a unique continuous additive functional cb such that

(8) E e('oe d7t' ) = E-(f e-tdt) = H^Gl1(x);

that is, ci = i where T is the additive functional T(t) = t A ¢, and in general,
for a continuous additive functional A, such that E.(fo e-at dA) < ,
we define a continuous additive functional Aa by E_(fo' e-a dla) =
E.(f' e-at dA) (see [4]). The functional ci satisfies

(9) XV4 - f Oxv d-D_ ;I?.

Now set r(s) = sup {t: ci(t) < s}; then the process 191 on V defined by
(x(,J), Pt), (t E V) is called the U-process of M on V. The Green kernel Ox of 12I
is given by

(10) tf(t) = Et(fo' e-8f(x7()) ds)
= E(fo eX-(t)f(xg) d),

for every X> 0, tE V and f EB(V).
It can also be shown that
(M.1) 191 is a Hunt process on V;
(M.2) there exists a measure v on V such that v(E) = 0 is equivalent to

Gx(), E) = 0 for every t E S.
The results stated above are proved in [5]. Further properties of M are dis-

cussed in section 6. In the following, the expectations and the probabilities
by 19 are denoted by E. and P. .

2.4. Definition of a Levy system. For any process M satisfying (M. 1) and
(M.2), a L6vy system was introduced by S. Watanabe in [11]. Here, we give
the definition in a slightly different form. (It is easy to show that the following
definition is equivalent to that in [11]).

Let L be a continuous additive functional and P(x, dy) be a kernel on S X S.
DEFINITION 2.1. A pair (P, L) is called a L6vy system of M if and only if

P(x, {x}) = 0 and

(11) E.( E AX X.)) = E( Pf(xs) dL)
for any t > 0 andf E Bo'(S X S), where
(12) B+(S X S) = {f: f e B(S X S) and f(x, x) = 0}
and Pf(x) = f P(x, dy)f(y).
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The Levy system is unique in the following sense: if (P, L) and (P', L') are
L6vy systems of the same process M, then

(13) Pf-L P'f -L' for any fe Bo'(SX S).
Condition (11) is equivalent to

(14) E,(F e-atf(x,-, X,)) = EI(fI e--'Pf(x,) dL)
for some a > 0 and every f E Bo' (S X S).
The existence of the L6vy system is proved in [11]. It is also shown that
[2.3] there exists an increasing sequence {E.} such that E C S X S -D,

E. T S X S - D, (n -* oo) and E.(fo' e-GLPXE3 dL) is bounded in x, for a
fixeda > 0. Here D = {(x, x): xe S}.

Similarly, a continuous additive functional A., is called the killing functional
of M if

(15) EZ(Ae(°°)) = P.(¢ < %)
which is equivalent to

(16) E.(A.(t)) =P.(D < t), t < 00 ,

or

(17) Ex(f -

e-a' dA,,) = Ez(e-at), > 0.

(See [11] and [7].)

3. A problem of Sato and related topics

The purpose of this paper is to characterize M by its U-process 2t for a given
minimal process Mo. The problem is divided into the following three questions,
where V, 'y > 0, and Mo are fixed.

3.1. Is M uniquely determined by 2? K. Sato proposed this problem and
solved it under a different formulation (see [8]). The answer is also affirmative
in our case when M has no jump from V to D and no sojourn on V.

Let M satisfy (M.1)-(M.3) and let 12 be the U-process of M. Let

(1) T, = {s; r(s-) < T(S), r(s-) < t, X7 (8-).-. = Xr(8)}.
Let t and m be elements of B+(V) and Q be a kernel on V X D such that

(2) t-@ xv*T,
(3) E-(f'o e-'Imd ) = E.( YE () e-1t dt)

(4) Qf * - xvPD(fg-) *L
for any f e B(S), where (P, L) is the L6vy system of M and PDf(x) =
fD P(x, dy)f(y). It will be shown that (f, m, Q), satisfying (2), (3), and (4),
exist. Let v be a measure which satisfies (12.2); then (4, m, Q) is uniquely deter-
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mined up to equivalence with respect to v. We shall call the system (12, t, m, Q)
the boundary system of M (the system (I2I, e, m, Q) changes if y changes, and
the dependence of (12, f, m, Q) on y will be discussed in appendix II). We shall
also see that

(2.3) t(t) + m(t) + Q(t, D) = 1, a.e. P.

Roughly speaking, t(t), m(t), and Q(%, D) represent the (suitably weighted)
proportion of sojourn on V, of reflection, and of jump from t to D (t e V), and
the measure Q(t, *) denotes the mode of jump from V to D averaged by g,. In
fact, we shall see in section 5 that the following proposition holds.

PROPOSITION 2. (i) The path of M has no sojourn on V, a.e., if and only if
t = 0, a.e., v.

(ii) The path of M has no excursion which begins from V, a.e., if and only if
m = 0, a.e., v.

(iii) The path of M has nojump from V to D, a.e., if and only if Q = 0, a.e., v.
Now the problem stated is answered as follows in section 5.
THEOREM 4. The process M is uniquely determined by the boundary system

1Q, , m, Q)-
3.2. What process can 2 be? Let M satisfy (M.1) - (M.3). We shall investi-

gate the properties which characterize the system (12, t, m, Q) as a boundary
system. We have already seen that (12, t, m, Q) satisfies (12.1) - (12.3). More-
over, we shall see that

(12.4) ml axv = 0, a.e. v for every a > 0;
(21.5) set E = {t: t(t) + m(t) > 0}; then

(5) (+ + Q ( )) dt for every t > O, a.e.

Roughly speaking, (A.4) implies that the path of M has no reflection at the
purely exit points (exit but nonentrance points). In fact, in one-dimensional
diffusion, H7x,v(t) > 0 when t is a purely exit point. Condition (12.5) implies
that the path of M should have sufficiently many infinitesimal jumps near the
point at which the path has no sojourn and no reflection. For example, if
t= m = 0 and the carrier of Q(%, *) is contained in some compact set inde-
pendent of t, thenM should be an instantaneous return process which we exclude
in our formulation.

Let (P, L) and J.o be the L6vy system and the killing functional of 2a. Then
we shall see that

(2.6) (P, L) >> ((m + Q)O, T), that is, Pf-L >> {(m + Q)O}f - P for every
f E B+(V X V).

Here T = t A r in 12 and O(x-d-q) = limax al?,H(x, dio), x f d77, and
O(, {t}) = 0, (0 is a kernel on S X V).

(2.7) A,»>> (m + Q).-T
where 0(x) = lim al,a(I - H) 1(x) and I is the identity operator.
Roughly speaking, (2I.6) implies that the path of 12 has at least the jumps

due to the excursions of M, and (12.7) means that the path of 12 has at least
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the killing due to that of the minimal process Mo. In fact, we shall prove in
section 6 the following propositions.

PROPOSITION 8. The paths of M have no jumps from V to V, a.e. (M), if and
only if (P, L) - ((m + Q)e, T).
PROPOSITION 9. The paths of M are continuous for t E [0, t) if and only if

Q = 0, a.e. v, (P, L) _ (mO, T) and the paths of M0 are continuous for t E [0, t).
PROPOSITION 11. The left limit x¢_ q V when r < m a.e. (M) if and only if

L0. _ (m + Q)O- T, (2).
PROPOSITION 12. The process M is conservative if and only if Mo is conservative

and L0. _ (m + Q)O- T, (12).
3.3. Does there exist an M for given (2, e, m, Q)? The conditions

(2.1) , (2.7) for the boundary system are almost sufficient. In fact, we need
the following smoothness condition which seems to depend on our method of
proof:

(2.C) &kf, OxA(t + (m + Q)H,)f E C(V) if f C C(S).
Then the problem is solved in the following way. Let 12 be a Markov process
on V, let t and m be in B+(V), and let Q be a kernel on V X D.
THEOREM 16 (see section 7). To a system (2I, 4, m, Q) satisfying (2I.1)-

(2.7) and (2.C), there corresponds one and only one process M on S satisfying
(M.1)-(M.3) and (M.C), whose boundary system is (2, 4, m, Q).
Under (M.C), the necessity of the condition (12.C) will be discussed in

section 6.4. From the results of that section, we shall obtain the following
theorem when t = 0 and Q = 0.
THEOREM 17 (see section 7). Let 2I be a process on V. Then 121 is a U-process

of a certain process M on S which satisfies (M.1)-(M.5) and (M.C) if and only if
1 satisfies (2.1), (2.2), and

(12.4) Cixv = 0 for some X > 0 and a > 0,
(M.6) (P, L) >> (0, T),
(M.7) L0o>> a T,
(M.C) cxf E C(V) if f e C(V).

The process M is uniquely determined by 2I.
THEOREM 19 (see section 7). Let M satisfy (M.1) (M.5).
(i) The paths ofM are continuous for t E [0, P) if and only if the paths of Mo

are continuous for t e [0, t) and (P, L) - (e, T);
(ii) M is conservative if and only if Mo is conservative and 1. - O- T.
The relation between our formulation and the lateral condition will be dis-

cussed in appendix III.
3.4. Remaining problems. The above arguments shift the problem (deter-

mining every M which is an extension of Mo) to the existence of a process on V
whose L6vy system has the assigned property. However, the general theorem
for constructing such an 2 remains unproved.
(When the number of boundary points is finite, all 2 are easily obtained.

As another example, in the trivial case 4 = 1 and m = Q = 0, 12 is arbitrary
except for the smoothness conditions (2.1), (12.2), and (2.0).)
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Further, the conditions (Mo.5) and (Mo.6) should be replaced by deeper
(probabilistic) and more general ones. In the general case, to every point of V
there corresponds a set of entrance boundary points, and it seems that we can
assign the beginning point of excursion with any probability law.

4. Properties of the excursion at V
Let 1 = P, and let its right continuous inverse r(s) be defined as in 2.3. In

this section, with the exception of the last four lemmas, we assume only (M.1),
(M.2), and [2.2] on M. The following are proved in [5]:

[4.1] r(O) = a, a.e. (lemma 5.6 in [5]),
[4.2] XT(S) ¢ D for any s, a.e. (theorem 5.7 in [5]),
[4.3] for any s, xt ¢ V if t e (r(s-), T(S)), a.e. (theorem 5.9 in [4]), where

r(O-) = 0.
From [4.2], we can easily see that

(1) for every s > 0 and E> 0, there exists a t such that xt e V and
t e (r(s-) - e, r(s-)), a.e. Especially, XT(,-)- e V for any s > 0, a.e.

Let p = p(k) be a Markov time such that
(2) (i) p < (1/k) A aDk A inf {t: r(xo, Xt) > l/k};

(ii) put a, = al(k) = a, pn = pn(k) = a. + p(w+), and o-+i = o-.+1(k) =

Pn + a(wp+n) ,

and limpn = lim an = 0, where Dk = {x: r(x, V) > 1/k} and x,(w,+) =

Xt+s(w).
(If we set p(k) = (l/k) A aDk A inf {t: r(xo, Xt) > (1/k)}, then p(k) satisfies

these conditions.)
It is also easily seen that

(3) for every n and k, Pn(k) = 0n+l(k) if Xpn(k) e V and pn(k) < an+1(k) if
Xpn(k) E D, a.e.

Noting that xvA- 4) and P (-r(0) = a = 0) = 1 for te V, we have
(4) 4)(pn) = 4)(0n+0) for every n and k, a.e.,
(5) r(rt(an)) = 0n for every n and k, a.e.
DEFINITION 4.1. Let T(w) = {s > 0: T(S-) < T(S), T(S-) < P} and

Nk(w) = {n: Xpn(k) e D}.
[4.5] For a fixed k, the mapping n -8s = 4)(0n+) is one-to-one from Nk to T,

and
(6) an < r(s-) < pn < T(S) = an+1, a.e.
PROOF. For n e Nk, pn < un+i A ¢, and S = I)(pn) = 4)(un+±) by (4). So

T(S-) < pn < an+1 = T(s) by (5) and s e T. If n' < n, T((bTn'+0)) = an'+1 <
Pn < Cn+1 and )(Xan +±) < b(an+0) = s, which proves that the mapping is one-to-
one. Setting n' = n - 1, C(an) < s and 0-n < T(S-), we have (6).
DEFINITION 4.2. Let Tk(w) = {s: S = 4C(an+), n c Nk}, and for s e Tk

n(k, s) = {n: n e Nk, 8 = 4)(an+1)}, (k, s) = Un(k,s), p(k, s) = Pn(k,s), and
a(k, s) = an(k,.)+1.
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By (6), we have
[4.6] for s E Tk, Xp(k,.) e D, and a(k, s) < r(s-) < p(k, s) < a(k, s) = r(s),

a.e.;
[4.7] Tk C T and lim infk-. Tk = T, a.e.
PROOF. For any s e T, since Xt E D if t E (T(S-), r(s) A P), there exist

to(w) and ko(w) such that xto(w) E Dk, and to e (T(S-), T(S)). For every k > ko,
since T(s) > T(O) = al(k) taking n such that oa(k) < T(S) < aun+(k), an(k) <
P. < to < T(S) = o-+i(k), for an(k) < T(S-) and on+1(k) = T(S) by [4.2] and
[4.3]. Therefore s = 4(ag+1) and xpn E D by (3). Thus, s e Tk for k > ko.

[4.8] For s E7T, limk-- ca(k, s) = limkA- p(k, s) = r(S-), a.e.
[4.9] For s E T, limk-- Xa(k,s) = limk-4, Xp(k,8)- = XT(8-)_ and limk- Xp(k,s) =

x, (), a.e.

PROOF. By [4.7], the limits in [4.8] and [4.9] have a meaning. Noting that
p(k, s) -a(k, s) < (1/k) and r(xa(k,.), xp(k,8)-) < (1/k), we have [4.8] and [4.9]
by [4.6].

Let MUk = o-D,; then Ik <a and Xlim k = lim xg, G V if lim Ik < °°, a.e. There-
fore, a = lim ;lk and xe = lim x,, if a < oo, a.e. Therefore, we have the following:
(7) for any t <o, xt_ ¢ V, a.e.;

(8) if a<oo andx_eV,x_ = x¢,a.e.

[4.10] For any s, xt. V if t E (r(s-), T(S)), a.e.
PROOF. For s ¢ T (s = 0, Tr(s-) > r or r(s-) = T(S)), [4.10] is obvious.

By (7),

(9) P-(x,. e V, 3 t E (p.(k), oan(k))) = Ez(Pzp,(xg- G V, 3 t e (0, a))) = 0.

Therefore xt. ¢ V if t e (p.(k), o-n(k)) for any n and k, a.e., and xt- ¢ V if
t E (p(k, s), T(k, s)) for any k and s e Tk. The statement [4.10] follows from
[4.6], [4.8], and [4.7].

[4.11] For any s E T, XT(,-) e V implies x,(,,_). = x,(,,), a.e.
PROOF. Since Xp(k,s) E D, p(k, s) > T(S-) and lim Xp(k,s)_ = XT(,,) by [4.8].

On the other hand, lim Xp(k,s)- = X,(,) by [4.9] and [4.11] follows.
[4.12] For every s e T, r(S) < oo and x,(8)- e V implies x,(.)- = xr(8), a.e.
PROOF. By (8),

(10) Pz(xXn,+1- E V, X1- i£ Xoe.+i, 0n+1 < 00)

= Ez(P,p*(x.. e V, xe- xa, oa < °°); Pn <00)
=0

for any n and k, and so [4.12] follows from [4.7].
DEFINITION 4.3. Let

T* = {s > 0: Xr(s.-)_ 52! x,(,); T(S) < P},
(11) Td = {s: X,(a-)-i. Xr(8.-); S E T},

Tc= {s: XT(s,-)- = Xr(-), s E T}.
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With this notation, the following relation holds:
[4.13] {t > 0: Xt- E V, Xt e D} = {r(s-): se Td}, a.e.
PROOF. If xt_ e V and Xt G D, then by [4.10], t = T(S-) or T(S) for some s.

Since X,(,) ¢ D by [4.2], t = r(s-) < T(S) = t + o(w+) and s e Td. If s e Td,
s(S-) < , Xr(.-)- c V by (1) and x,(,-) f V by [4.11], so x,(8-) E D.
[4.14] If s e T*- T, then T(S-) = r(s), a.e. And

(12) {t > 0: x,-, Xt e V, Xt- F= Xt} = {T(s-) = T(s): se T* - T}, a.e.

PROOF. The first assertion is obvious from the definition. If xt-, xt e V, and
xt- F- xt, then by [4.3] (or [4.10]), t = T(S-) or T(S) for some s. In either case,
s cannot be contained in T. Moreover, t < r and t F- T(O) = a (by (8)) imply
that t = r(s-) = T(s) for some s > 0. Therefore, s E T* - T. If s e T* -T,
setting t = T(S-) = T(S), Xt = Xr(8,) V and xt- = x,(,-)- e V, and xi- #d xt
by definition of T*.

DEFINITION 4.4. Let Td,k(w) = {s: s E Tk, xp(k,s)- C V}, a.e.
With this definition we have
[4.15] Td,k C Td and lim infk TdLk = Td, a.e.

PROOF. By [4.6] and [4.10], if s C Td,k, then p(k, s) = r(s-) and Xp(k,,) C D
so that s e Td. If s C Td, by [4.13] XT(8) E D, and there exists ko(w) such that
s c Tk and X,(8) E Dk for k > ko. Therefore by [4.6], v(k, s) < T(S-) < p(k, s)
implies that p(k, s) = r(s-) and Xp(k,,)- = x,(.,- e V. Hence s E Td,k for all
k > ko(w).

In the proof of [4.15], we see that
[4.16] for any s E Td,k, p(k, s) = T(S-)-
For later use we shall give some remarks. Let

(13) f = inf {s: x,(,) = a}.

Then it is easily seen that
(14) T(-) . ¢ < r(t) =

And by (1) and [4.3],
(15) s(u-)= SUp {t: Xt e V}, a.e.

Therefore by theorem 5.2 in [5], we have
r(f -) = ° if and only if o= o, a.e.,

[4.17] T(t-) < ¢ if and only if cC T, a.e.,
= r < °° if and only if r < o and xr- e V, a.e.

(If T(¢-) < < T(¢), then x- f V by [4.10].) Let M be an extension of Mo.
Noting that

(16) PZ(D G (°' all < Po(¢ < a, r <
and

(17) P,(xj- 5d xi, t < r and t < a) = P°(xt- 5d xi, t <

we can prove the following lemmas by the same method as in the proof of [4.10].
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[4.18] Suppose that the paths of Mo are continuous for t e [0, P), a.e.
If t < r and t e (r(s-), r(s)], xt_ = Xt, a.e.
[4.19] Suppose that Mo is conservative. If r < o, then r 5 (T(S-), r(s)]

for all s.
[4.20] Under the same assumption as in [4.18], the paths of M have no

jump from D to S, a.e.
PROOF. If x,- $! x,, xt- E D and xt e S, then t = T(S-) by [4.18], a.e.

However, XT(S,-)- V by (1).
[4.21] Under the same assumption as in [4.19], xr- e V when r < oo, a.e.
PROOF. Since r = T(S-) by [4.19], xr- e V when r < o.

5. Decomposition of the resolvent. The boundary system

5.1. Lemmas on continuous additive functionals. In this section we shall as-
sume (M.1) and (M.2) for M.

[5.1] (Dynkin [1]) Let A, B, and C be continuous additive functionals, such
that Ez(fJ e-A(t) dC(t)) and Ez(f$o e-B() dC(t)) are bounded in x. Then

(1) E.(, e-A (t)f(xt) dC(t) - Ex(f e-B()f(xt) dC(t))

+ E{ff e-A(t)(dA(t) -dB(t)) Exf(fo e-B(8)f(x,) dC(s))} = O.

[5.2] Let X and A be continuous additive functionals, where E., (f e-at dA)
< oo for some a > 0, and X is not necessarily nonnegative and X(t) = 0 for
0 < t < a. Let A = Aa, that is,

(2) Ex(fo e-adt ) - Ex(f eatdA).

Then

(3) Ex(f e-at+x() dA) =E.(f e-at+x(t) dA).

PROOF. Set p = inf {t: (x(t)) > e}, (e> 0), Ui = o, p. = an + p(w+n), and
an+1 = pn + 0(W+). Since X(t) = X(pn) for t E [Pn, an+g,] (X(t) - X(an)) < E
for t E [an) Un+1]. And by lemma 4.1 in [5]

(4) Q) =Et(fo e-at dA) = Et(Jo e-at dA) for any t e V.

Put

(5) Ii = E_z(L| e-at-x(t) dA)

and

(6) I2 = E( e-at-x(t) di) =E.(f e-a-x(t) dl).
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Then,

(7) e-eEz(. e-aQa+x(Tn)'P(xUR-)) < I

n=l~~~~~~~~n'
. eeE~(j e-aan+X(an)s(xa)), i = 1, 2.

Since e > 0 is arbitrary, we have [5.2].
[5.3] Let A and B be continuous additive functionals. If, for everyf E B+(s),

(8) E2(f e-atf(xt) dA) 2 Ex(f ef-aff(X) dB),
then A >> B.
PROOF. Since f -A O 0 implies f-B t 0 for any f E B+(s), there exists a

nonnegative Borel measurable function g such that B - g -A (see theorem 7.1
in [7]). Hence,

(9) 0 > E(,j e-atx(g> l)(dB-dA)) = E.(f e-aIX(g > 1)(g - 1) dA),
where

g(x) > 1
(10) X(9 > 1)(X) = {0' g(x) < 1.

So x(g > 1)(g - 1)-A 00. Therefore,
(11) A - B (1- g)-A x(g < 1)(1 - g)-A >>O.

5.2. Definition of the boundary system. The notations are the same as in
section 4. In section 5.2 we shall only assume (M.1), (M.2), and [2.2] on M.

[5.4] For any f, h e B(S) and a > 0,

(12) lim E.(F_ e-aPn(kxv(XPn(k)-)f(xp,(k)-)XD(xPk(k))h(xp.(k)))
k--x

= E.(f e-atXv(Xe)fx(xt)PDh(xt) dL),

where (P, L) is a Levy system of M and PDh(x) = fD P(x, dy)h(y).
PROOF. Without losing generality, we may assume f, h e B+(S). By [4.15]

and [4.16],
(13) lim E.(, e-PaXvf(xpf_-)XDh(xp.) = lim E.( _ e-a(8-)f(x,(._)_)h(x,(._)))

k-. kI-*c0 Td (k)

= E~( eaT( f(xTcS..>.)h(xT(S-)).
T'd

By [4.13],
(14) Ex(E e ar(8 )f(x,(._))h(x,(S-))) = E.( E e atXvf(xt-)xDh(xt))

Td 1>o

= E(f0 e-atxvfPDh dL).

[5.5] For any f, h e C(S) and a > 0,
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(15) lrm E.(F_ e ap.(k)XD(xp.(k)-)f(Xp(k)-)h(x,.(k))g,(xp.(k)))
k-.

= EF( e-7 ( )f(xT,(.-))h(xT(Se))f (e 7 ( dt)

PROOF. We have

(16) E.(,_ e-aP^-XDf(Xp.-)hg,(xp.))
=E- (, e-UPRXDf(Xp.-)h(xSp) f+' e-y(t-pR) dt)

EEz(4' x(s c Tk)e aP(k,')XDf(Xp(k,a)-)h(xp(k,.)) J(k,) e (t p(k,8)) dt).

Set yo = a A y; then each term in the last member is dominated by

lIfhIl f;t(L) e-dt, which is independent of k. And
rt(8) 1

(17) F, Ilfhll _e-,Ytdt<- lfhll.
T T(8-) - Y

Noting that
(18) lim e-P(k 8)XDf(xp(k,s)_)h(xp(k,S)) L(k8) e-7(t-p(k,8)) dt

k--o fp'~~~~~~~~~~('k,a)

(0 if sE Td

le ( )y(XT(87h(xT8) -] 7 ey (t (I)) dt if s e T,

by [4.8], [4.9], [4.16], and the definition of TC, [5.5] follows by the dominated
convergence theorem.

Let
(19) bo = (xD T) and (b = xv T;

then
(20) =b, + (O.

Let f be in C(S) and
(21) p(k) = (I/k) A UDk A inf {t: r(xt, xo) 2 (l/k)

or lf(xt) -f(xo)I 2 (1/k)}.
Then {p(k)} satisfies the conditions (2) in section 4. Moreover, noting
gy(x) = Ex (fjoe- t d(XD - T)), by theorem 4.4 in [5] we have

(22) lim E.,Ee-aP_(k)f(Xp3(k)_)9e(XA(k))) = Ex(fo e a'f(xt) dt0)-k-*- (n=E 0

Setting h = g, in [5.4] and h = 1 in [5.5], we have

(23) E.,(fo, e-af(x,) dbo) =Ex(, e aT(.-)f(XT | e-y(-7(8-) dt)

+ Ez(f0 e-atxv(x&)f(x)PDgy(x,) dL)
for any f e C(S), and hence also for any f E B(S).
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Let

(24) )3 -XvPDg-L.
Then, from [5.3] and (23), we can see that 4)0 > 4)3. Let

(25) 4)2 - 4)o - 4)3.
Then 4)2 may be considered as a continuous (nonnegative) additive functional.
And by (23),

(26) E.,J0 e-atf(xt) d02) = E.(Y e-a7(8-)f(x,(,.)) eJTy8e- 7 (-)) dte

For t e V and h e B(D) let

PD9,Q) i~f Pzg()W 0,
(27) Q*h(t) = PDg,()

[ v(d()h(t) if PD9g,(t) = 0,

where v is an arbitrary measure on D such that v(D) = 1. Then Q* is a kernel
on V X D and

(28) Q*h(t)PD9g-(t) = PD(hg7)( ) for t e V and Q*h4)3 - xv(PDhg,) -L.

Combining [5.4], [5.5], (26), and (28), we have
[5.6] For any f, h E C(s), and {p(k)} satisfying (2) in section 4,

(29) lim E.(F_ e ap-(k)f(X,(k)-)h(X,.(k))g,(Xp.(k)))

= E.(fo e-aef(xt)h(x,) d4)2) + E(f0o e--tf(xt)Q*h(x,) d03).

(This holds if f(Xt) and g(x,) are right continuous in t a.e.) Since 41), 42, 4)3 << 4),
by theorem 3.8 in [4] there exist functions t, m, n in B+(V) such that
(30) 4)1 = 4), 4)2 = m4), and 4)3 = n4).
Let Q = nQ*. Recalling the definition of (Di's and (26), we have

t4b xvwT,

(31) z(lo e-lmd )) = E 7(,f7(8) e_v dt) for any x,

Qh-4 - XvPDhg.,-L for any h E B(D).
Let

(32) N(4)) = {f: f4) -- 0, f e B+(s)},
and let v be a measure such that

(33) N(4)) = {f: f = 0, a.e. ,}.

The existence of such a v is proved in [4].
Let IVM be a Markov process on V. Let t, m e B+(V) and let Q be a kernel on

V X D.
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DEFINITION 5.1. The system (1, t, m, Q) is called the boundary system of M
if and only if 191 is the U-process of M, and 4, m, and Q satisfy condition (31).
For any boundary system (19, t, m, Q), 4) --4 , P2 - m4, and 13 - Q(., D)1

hold.
PROPOSITION 1. For M satisfying (M.1), (M.2), and [2.2], there exists a

boundary system. For fixed y > 0, 1M is uniquely determined by M and t; m and Qh
(for any h e B(D)) are uniquely determined by M except for a set of v measure 0,
where v is a measure which satisfies (33).

Let (191, 4, m, n, Q) be a boundary system of M, then by definitions of Yi's, we
have;

[5.7] (19.3) t + m + Q(., D) = 1, a.e. v.
PROPOSITION 2. (i) The paths of M have no sojourn on V a.e. if and only if

t = 0, a.e. v.
(ii) The paths ofM have no excursion which starts from V (that is, T0 is empty)

a.e. if and only if m = 0, a.e. v).
(iii) The paths ofM have no jump from V to D a.e. if and only if Q = 0, a.e. v.
Finally, note that [5.6] can be written in the form
[5.6*] For any f, h E C(S)

(34) lim E.,(, e- pn(k)f(X,.(k)-_)h(xp,,(k))g,(x,,,(k)) )

= EU(fo e-atf(mh + Qh) d})-
5.3. Correspondence ofM and its boundary system.
DEFINITION 5.2. Let

K?f(t) = Et(f0 e-X(t)-atf(xt) d4),
Kx = Ko and Ka = Kg, ( EV).

[5.8] The family {K.}, (a, X > 0, a + X > 0) is a system of bounded
nonnegative kernels on V X V and

K=_ Ox (Green kernel of M),
(36) HaKJaf(x) = E.(f e-X(t)-aif(xt) d4?)-
Hereafter we shall assume (Mo.1) - (Mo.6) on Mo and (M.1) (M.3) on M.
Now, we shall prove the decomposition theorem for the Green kernel of M.
THEOREM 3. If Ka, C, m, and Q are defined by (31) and definition 5.2, then

(37) Gaf(x) = Ggf(x) + HGKa{I + (m + Q)12?}f(x)
for any f E C+(s).
PROOF. We can assume that f E C+(S). Then

(38) Gaf(x) - Gof(x) = E.(| e-a*f(Xt) dt)

= E(f0~e-a'xvf dt) + EI( e-at d(Xf-T)a)-
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By theorem 4.4 in [5], we see that

(39) Ez(f, e-at d(XDf - T)a) = lim E-(F e-aP-()Gaf(xpn(k)))

= liin E.(, e aP-(k)gUf(xp.(k))g9(xp.(k))
for suitable {pn(k)}. Now, applying [5.6*] to the right side, we obtain theorem 3.

Let

(40) Ca (t +(m + Q)a)
and
(41) Ua = aCaH = (at + (m + Q)a)H.
Then, Ca is a kernel on V X D and Ua is a kernel on V X V. By (2), (3), and (5)
in section 2, we have

(42) Ca- C + (a4 )CaG6 = 0,
(43) U.- U = (a -O)CaHp

[5.9] The following relations hold:
(44) K_ - K' + (X - A)K.aK. = 0,
(45) -K.- K' + K.(Ua- Up)Kp = 0,
(46) Ga = Ga + HaKaCa.
PROOF. Equality (46) is the same as (37). By [5.1], we can show that (44)

holds and that

(47) K.f(Q) - Kpf(t) + EZ(fjo e-X$()-alHpKpf(xt)(a -A) dt) = 0, (q G V).

Since (h- T)a t Cah-(), by theorem 3, and 4(t)- 0, t < a a.e., by [5.2],

(48) Et(f e-X4()-atHpKpf(x,)(a - () dt)

= (a - i)Et(f e-x'--tC.HpKpf(xt) Ad)

= (a - l)K`CaHpKpf.
Noting (43), we have (45).

Let t, m e B+(V), and let Q be a bounded kernel on V X D.
DEFINITION 5.3. The system {K`}, (a, X > 0, a + X > 0) of bounded kernels

on V X V is called an (4, m, Q)-system if and only if the Ka's satisfy the relations
(44) and (45), for Ua = a(4 + (m + Q)fIaH).
Noting that IIUa- Ujll < la - ,1(IItII + I|mll + iiQII)1|Ha1I, the kernels K!

and Kx3 are uniquely expanded in a series which is uniformly convergent (in the
norm of kernels); that is,

(49) K," 1E n(-l 4 nf-1(KX)(n)n=l
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(50) K' = (l)n-l1(Ka(Ua-U-))(n-1)K,
n=l

if XL-IX and IB- al are sufficiently small. Therefore we have
[5.10] N(K) = {f: K6,f = 0 f E B(V)} is independent of a and X.
[5.11] For some ao and Xo, if K° is given, then the whole system {K,'} is

uniquely determined.
By (42) and (Mo.4),

(51) R(C) = {Caf: f E C(S)}
is independent of a. Noting (44) and (45),

[5.12] if the assertion,
(52) Kaf EC(V) for anyf EC(V) U R(C),
holds for some ao and Xo, then it also holds for every a and X.

[5.13] Let 4, m, 4'm' e B+(S), let Q and Q' be kernels on V X D (bounded),
and let {Ka} be an (4, m, Q)-system. If C' -4, m' -m, Q'h - Qh E N(K) (for
any h e B(D)), then {K,} is also an (4', m', n', Q')-system.

Let (191, 4, m, Q) be the boundary system of the process M, and let KXa be
defined by (35). Then {K.} is an (C, m, Q)-system and N(K) = N(4). Now, we
have the following uniqueness theorem.
THEOREM 4. Let M and M' be processes on S satisfying (M.1) - (M.3), and

(2Q, e, m, Q) and (2', e', m', Q') be their boundary systems respectively. Then,
M = M' if and only if 19 = 19' and C' = 4, m' = m, and Q'h = Qh (for any
h e B(D)) a.e. v, where v is a measure which satisfies (33).
PROOF. The "only if" part is contained in proposition 1. If the conditions

of the theorem are satisfied, let K,a and K2x be kernels defined by (35) for M
and M' respectively. Since 191 = 11', then Kx = K'l and N(K) = N(K'), and
{K2'} is also an (4, m, n, Q) system by [5.13]. Therefore, by [5.10] Ka= K and
by theorem 3, G6 = Ga, that is, M = M'.

For later use, we note the following:
[4.14] let K be a bounded kernel on V X V, let 4, m, 4', m' E B+(V), and

let Q, Q' be bounded kernels on V X D. For some a > 0, if

(53) Km!1aXv = 0 and Km'JLaxv = 0
and
(54) K(4 + (m + Q)OL)f = K(4' + (i' + Q)a)f for anyf e C(S),

then K4g = K4'g, Kmg = Km'g, and KQh = KQ'h for any g E C(V) and
h e C(D).
PROOF. Since both sides of (54) are kernels, the relation holds for any

f e B(S). Let f = xvg for g c B(V). Noting (53), we have K4g = K4'g. There-
fore, for any f e C(S), K(m + Q)fLrf = K(m' + Q')faf. By (Mo.6), the set
{flaf: f e C(S)} is dense in C(S) and the carriers of Km and KQ, (Km' and KQ')
are disjoint. So we have [5.14].
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6. Properties of the boundary systems (Levy's system of U-processes)
In this section, Mo and M on V are fixed. The process Mo is assumed to satisfy

conditions (Mo.1) - (Mo.6), and M is assumed to satisfy conditions (M.1) -

(M.3). Let (MIV, 4, m, Q) be the boundary system of M. Let Gx be the Green
kernel of 191 and let
(1) N(G) = {f: f E B(V), Gxf = O}.
Then N(G) = N(b) in section 5. Let v be a measure on V such that
(2) N(G) = {f: f = 0, a.e. PI,
where v is a measure given in section 5 (33).

6.1. Miscellaneous properties. We have already seen that
(1M1.1) 191 is a Hunt process on V,
(19.2) 1Q1 has a reference measure,
(19.3) e, m e B+(S) and Q is a kernel on V X D such that t(f) + m(t) +

Q(Q, D) = 1, a.e. P.

PROPOSITION 5. The following relation holds:
(1Q[.4) mlaxv = 0, a.e. v.
PROOF. Noting that fIaXv(x) = 0 if x c D, by theorem 3,

(3) GaXv() = Ka(f + MraXv)(A ) for any t E V.
On the other hand, by the definition of f,

(4) Gaxv(Q) = Et( e-atXv dt) = Et(f e--tCd4) = Ka,t() for any t e V.

Noting [5.10], we have (11.4).
PROPOSITION 6. Let E {t E V: f(Q) + m(t) > 0}; then

(11.5) fl Q-XE((S) () ( )) ds for any t > 0, a.e. (1Q).

PROOF. Let u = (1/1 - XE) + Q(1/qe), p = inf {t: fO ud4) = oo} and
P1 = inf {t: fr ud& > 1} in the process M. Then, by the continuity of 4),

(5) Jp ud4) < 1,
and since fO ud4) is continuous for t e [0, p), P1 > 0 if and only if p > 0. More-
over, by the definition of E and (5), we see that fr (t + m) d) = 0. If
Pj(pi > 0) = 1 for some (, noting that

(6) a),I(x) = aGl(x) ) < (x e D).g7(X) gy(X),
Further, by theorem 1,

(7) aGa1(Q) = E(f0o ae-at(t + (m + Q)I7al) dA)

< E(f'o e-ataQIlal dA) + E(e-aPlaHaGal(xpl))

< E_( e-afQ (-) d4) + Ej(e--P).
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Noting (5), Pe(pi > 0) = 1, and the right continuity of M, one obtains
1 = lim aGal(Q) = 0, which is a contradiction. Therefore,

(8) P(pi> 0) = 0 and P(p> 0) = 0 for any V.
Now,

(9) Pt(fO u(Q,) ds < oo for some t > O)
= Pt(ft u(x,(8)) ds < o for some t > O)

= p(Jr(t) u(x8)db < o for some t > O)
< Pt(p > 0) = 0.

Therefore, (1%.5) is proved.
6.2. The Levy system of 191. First, we shall note that
[6.1] iIa+9+Hjf is increasing in /3 and decreasing in a for any f e B+(V).
PROOF. Since #G,+gHaf = Haf - H+f = E. (eaU(1-e-)f(x¢)) is increas-

ing in /3 and decreasing in a, the same holds for 01a+#Haf for f E C+(V) by
(Mo.5) and it also holds for f e B+(V).
DEFINITION 6.1. Oa, (a > 0) is a (not necessarily bounded) kernel on S X V

such that Oa(0, {f}) = 0 if t e V and

(10) OaQ, E) = lim /3fl.+#Ha(x, E) for E < V and x 1 E.

By [6.1], Ga is well defined and

(11) 0 = 0= liM Oa,
a-*o

(12) Oa(x, E) = Ha(X, E) if x e D.

Let (P, L) and (P, L) be the Levy system of M and 191 respectively. Then, by
the definitions of U-process and L6vy system, for any f E Bo+ (V X V),

(13) Ej(_ f(xr(8_)_, Xr(.))) = Et( f(Q8, Bf))= Et(f, Pf(s dL)-
_< 8<t

0f. r)
[6.2] For f e Bo (V X V),

(14) E.( , e-ar(s)f(X7.(s_)_ X,(S>)
8>0

= E.(f0 e-atxvPvf(xt) dL) + E.( E e-a,(8)f(xrs_)_, Xr(,)),
where Pvf(Q) = fv P(Q, dq)f(Q, 7).
PROOF. Noting that f(, t) = 0, by [4.14] we have

(15) E.( _ e-ar(8)f(x,(._)_, XT(8)) = Ez(E e-atXv(xt-)xv(x)f(xt-, xt))
8>0

+ E.( F e-a?()f(xc(8-)-, Xr(a))).
sET

The relation [6.2] is a consequence of the definition of the L6vy system.
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[6.3] Let f E B+(V X V); then
(16) E.( E e-ar(s)(l - e- (T(8)-T()))f(xr(S,-)-, X,(S)))

aET
= E(f0o e-at{(m + Q)BAa+±Ha}f d4').

PROOF. It is sufficient to prove the result for f(, nq) = h,(Q)h2(10), for (, E V
and h, e C+(S). Notations used will be the same as in section 4. Put

(17) I(k) = E., e-aao+i(k)I |; e-p(k) dthi(x,.(k)-)
* h2(X.an+l(k))X(X,n(k) EF D))

Since,

(18) e-aT(8)# ) e-ft(t-p(8)) dt hj(xp(k,8)-)h2(X,(8))X(( E Tk)

. 1311h1h2lle a) J(a-) dt
for any s E T, and

(19) , #11hihl2lle-ar(8) J dt < 11h1h2!I,
T(a-) C

we have by [4.8] and [4.9], that the limit

(20) lim l(k) = EZ(Ey e-a,(8),# 'ef (tT(8)) dt hi(xr(,-))h2(X,(.)))
is equal to the left side of (16). On the other hand, by [5.6*]
(21) lim I(k) = lim Ez( e-ap8 f 7 e_a+I)(tp)

k- ~~~k- P.

-hj(x,.-)Hah2(x,) dt x(x,. Ei D))

= lim EZ(5, e-aP-h1(x,.-)flGa0+#Hah2(XPO))
= lim E-(E, e---h1(xP.-)ilrH,+#Hah2(xp.)g7(xPa))

k-

= E.(jCo e-athi(m + Q)fi?a+pHah2 db),
which proves [6.3].
Noting that 1-e-(T(8)T(8)) T 1 for s E T and 132a+PHaf T Oaf for

f e Bo+ (V X V) whenO -,Bo, we obtain from [6.3] that

(22) EZ( E e-ar(8)f(x7r(-)-, x(8))) = E(f|o e-at{(m + Q) daf.d4})
forf E Bo+(V X V). Combining [6.2] and (22), we obtain

(23) E.(( e-af(8)f(x)r(-))+,(x+()))

=E.(fo e-alxv,Pvf(x,) dt) + E.(f e-at{(M + Q)O.}f d(D)
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for any f E B+(V X V). Noting that T(S) is a Markov time and T(S + u) =

T(S) + t(u, w(.)), we have from (23),

(24) EsfE e-'8yz(-2XT(8)))
8<t

= Ex(flO e-a-(xvPvf - dL + {(m + Q)O}f- d)).

Letting a 00 and noting (13), we have
[6.4] for f e B+ (V X V)

(25) Et(f0 Pf(Q.) dL) =Et(f0T() xvPvfdL) + E(0t {(m + Q)e}f ds).
Hence, we have

(26) Rt(f PfdL) 2 Rt(jt {(m + Q)O}f ds)

for any t, and consequently (by theorem 3.8 in [4]),

(27) PfL>> ((m + nQ)O}f-T for any f e Bo'(V X V).

PROPOSITION 7. Let (P, L) be the Levy system of 19M; then
(21.6) (P, f) >> ((m + Q)O, T).
By [6.4], (P, L) t ((m + Q)O, T) if and only if xvPvfLL 0 for any

f E B+(V X V). So, we have the following proposition.
PROPOSITION 8. The paths of M have no jump from V to V a.e. if and only if

(P,) --((m + nQ)e, T).
Combining this proposition and proposition 2 (iii) with [4.20], we have the

following result.
PROPOSITION 9. The paths of M are continuous for t E [0, P) if and only if

Q = 0, a.e. v, (P, E) (mO, T), and the sample paths of Mo are continuous for
t E [0, ).

6.3. Killing functionals of 191. Let L. be a killing functional of the process 1M.
First we note that

[6.5] alta(I - H)1(x) is increasing in a.
PROOF. Since

(28) aa(lI- H)1(x) = E (a go e x(a(w') )dt)

= Ex' (a f e-at dt: a. = X )

= E,(a fot e-a' dt: oa = )

= Ez(1 - e-a: af = oo),
aG:(I- H)l(x) is increasing in a. By (Mo.5), [6.5] is proved.
DEFINITION 6.2. Let

(29) @(x) = lim aHla,(I - H)l(x), x e S.
a-.
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Then,

(30) (x) (I-H)l(x) if x E D.

Let

(31) = inf {s: XT(8) a}
as in section 4; then from [4.17]

[6.6] Px(f < -) = P.(xr- e V, r < oo) + Px(f G T),
[6.7] Px(f e T) = Ex( f (m + Q)0db).
PROOF. Let

(32) I(k) = Ex( EI x(s E Tk)e-aT(-)x(T(s) = oo)(1 -
8GT

Then, by the monotone convergence theorem,

(33) lim I(k) = EZ( E e-aT(8 )X(T(s) = oo )(1 - e (t-T(S )))).
kx-+. 8ET

On the other hand, by (28),

(34) 1(k) = Ex(, x(xp, e D)e-aP-x(oa+i = oo)(1 -
= Ex(F, e-aP-BG#(I - H)l(xp.))
= Ex(F, e-aPRt3J2(I -H)j(xl3)g,(xpn))

And by [5.6*], we have

(35) lim I(k) = Ex(fo e-ta(m + Q)#]?#(I- H)1 d-F).
Hence,
(36) Ex( Z e aT(8 )x(r(8) = o )(1 - l-( 7T(8

sE-T

= fz(1 e-at(m + Q)#]?#(I - H)1.dc!).
Letting a I 0 and then ,B , we have

(37) Px(f E T) = EZ( - X(T(S) = °°)) = Ex(f| (m + Q)6-d4).

From [6.6] and [6.7]

(38) Px(f <0) = Px(xr- E V, r < oo) + Ex(fo (m + Q) 0 d4).
Noting that {t < ¢} E {¢ = t + (w;(t))},

(39) P.( < t) = Px(X- e V, t < T(t), r <0) + Ex(t) (m + Q)0 d4!).
Since R(jJ.(t)) = Pj S t) = Pjf S t), we have

[6.8] E(j(t)) = P&(x_ E V, r S T(t), r <c ) + Re(ft (m + Q)Odt).
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PROPOSITION 10. Let ,!, be a killing functional of 1S. Then
(19.7) A. >> (m + Q)O- T.

From (39), the following result is easily obtained.
PROPOSITION 11. The relation x¢_ ¢ V when v < oo, a.e. (M) holds if and

only if
(40) A (m + Q)G* T(M).
Since 0 = 0 if M0 is conservative, combining [4.21] with proposition 11, we have
the following result.
PROPOSITION 12. The process M is conservative if and only if M0 is conservative

and J. i' (m + Q) - T for 91.
In conclusion, we have the next theorem.
THEOREM 13. Suppose M0 satisfies (M0.1) -(Mo.6) and M satisfies (M.1)

(M.3). Then the boundary system (M, 4, m, Q) of M satisfies (19.1) (191.7).
6.4. Remarks on condition (M.C). Suppose M0 satisfies the conditions

(Mo.1) - (Mo.6) and M satisfies the condition (M.1) - (M.3) and
(M.C) Gaf E C(S) if f E C(S).
By theorem 3,

(41) Gaf(Q) = KaIaf(t) for t E V if t = Q = 0, a.e. v,
(42) Gaf(t) = Ka(f + mJL)f(U) for t G V if Q = 0, a.e. P.

If 1 = Q = 0, a.e., from (41) and (Mo.6), Kaf e C(V) for f c C(V). And if
Q = 0, a.e. and Mo satisfies the condition

(Mo.6*) {af: f E C(S) andf(Q) = 0 for t E V} is dense in C(S);
[6.9] Kaf, Kaff and K,mf E C(V) forf E C(V).

Noting [5.12] and proposition 2, we have the following result.
PROPOSITION 14. Suppose that M satisfies (M.C) in addition to (M.1)

(M.3).
(i) If the paths of M have no sojourn on V and no jump from V to D, then
(2.C) Gxf E C(V) forf e C(V).
(ii) Suppose that Mo satisfies (Mo.6*) for (M.6). If the paths of M have no jump

from V to D, then
(IVI.C) G,f and OX(f + mfIa)f E C(V) forf E C(V).
REMARK. The converse of proposition 14 is in general true. Namely, if

M satisfies
(M1k.C) Gxf and GA(t + mRl, + QRl)f E C(V) forf c CV),

then, by [5.12] and theorem 3, we can easily see thatM satisfies condition (M.C).

7. Construction of M for a given boundary system

7.1. Lemmas on right continuous functionals. Let M be any process on S
satisfying (M.1) and (M.2) and let (P, L) be the L6vy system of M. Let A, B,
and C be continuous additive functionals of M, a, f3 E Bo+(S X S), and 0 < a,
,6 < 1. Let
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a(t) = II (1-a(x,., x8)),
e<t

(1) ~~~~b(t) = II (1- i3(x_. x~)).

The following lemmas are proved in [6].
[7.1] Suppose that E(fo e-A(t) dC) and Ex(fo e-B() dC) are bounded in

x. Let

K1f(x) = E.(fo e-A(t)a(t)f(xg) dC),

(2) K2f(x) = E.(fO" e-B(%b(t)f(xt) dC),

Ulf(x) = f P(x, dy)a(x, y)f(y),

U2f(x) = f P(x, dy)i3(x, y)f(y),

and let E,(fo UjI(xt) dL) be bounded in x(i = 1, 2). Then
(3) Kif(x) - K2f(x)

+ E,(f0 e-A(t)a(t){K2f(x,)(dA - dB) + (U1 - U2)K2f(xg) dL}) =.

[7.2] For any Markov time oa such that {t < a} C {a(wt+) = a- t} and
anyf c Bo+(S X S),

(4) Ez(f " e-A(8)Pf(x8) dL) = E-( e-A(8)f(x,_, x,)).
Let A, be a killing functional of M; then we have the following analogue

of [7.2].
[7.3] For any Markov time a such that {t < a} C {a(w+) = a- t} and

for any f e B+(S),

(5) E(f06 e-A(L)f(x,) dA.o) = Ez(f(xr_)e-A(1); r < a t <

7.2. Preliminaries. In the following, y > 0 and Mo satisfying (Mo.1)
(Mo.6) are fixed. Let 12 be a process on V which satisfies (2.1) and (12.2). Let

(6) N(G) = {f E B+(V), Oxf = 0}

where G,\ is a Green kernel of M. Let v be a measure on V such that

(7) N(O) = {f E B+(V) f = 0, a.e. v}

as before. Let (P, L) be the L6vy system of 2I. In section 7.2, we shall assume
that a system (12, t, m, Q) satisfies the conditions (12.4) (12.7) and the follow-
ing (which is weaker than (12.3)):

(2W.3*) t, mE B+(V), Q is a kernel on V X D such that t + m + Q(., D) . 1,
a.e. v.
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Let
(8) Ca = + (m +

Ua= aCsrH,
Va(., E) = (m + Q)aJIaH(t, E - {t}), (E C V),

(9) va(s) (m + Q)alaH(%, {t}),
W,(Q) = at + va.

Then

(10) aCa = Ua ± aC,(I- H),
U= Wa + Va,

and by (2.6), the definition of 0, and [6.1],
(11) Vaf - T << PfL- for any fe B+(V X V).
Therefore, by appendix I, we have that

[7.4] there exists ka e Bo+(V X V) such that 0 < ka < 1 and
(12) Vaf-T = P(kaf)-L for any fe B+(V X V).
Let

(13) Kaf(t) = E e-t-w- t II (1 - ka(a,Q te))f(%) dt);
8s<t

then
(14) KX = KX= Ox.

[7.5] The operator Ka is a positive kernel and aKCa.1 < 1, (a, X>02
a + X > 0).
PROOF. Since limx,o Kal = Kal, it is sufficient to prove [7.5] for X > 0. Let

(15) Va() = Va(, V) = Va( V - W),

V-g(5) = f(0 ) e
Va(., d?7),

(16) aC'I(t) = wa(s) + V.5( ) + aCa(I -H)1Q),
(17) p = p(e) = inf s: r(%, t8) 2 e,

po = 0 and Pn+l = pn + p(Wp+),
then lim.,.- P. =°. Let

(18) JE(A) = a@t(fo e-(+wa)t H y(n)Ca,) dt)

where y(n) = (1 - ka({p_-, Gp.)X(Pn < i)). Since

la II 'v(n)C.(t)l < a(IClIl + Ilm|l + jIQII)llf1ajj,
(19) P. <t

lim a H -y(n)C'( ) = a I (1 -k%, t.))Ca1 (t),
e$0 pn<t s<t
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noting that X > 0, we have

(20) limJ,(Q) = KaCa1(s)

(21) JE(t) < aEt (L P+l'e--Wa t II y(m)C.%) dt)
n P. m<n

= m(pnII'Y(m)EGpn(fe-wa taC (%) dt)).

Let

(22) Ij*Q) = Rz(fop e-w' taCQ(') dt).
Since aCa(I - H)1 = (m + Q)aHa(I - H) < (m + Q)G, by [7.4] and (1Q.7),

(23) Ie(Q) = RE(fop e-wat(wa + Va + aCr(I- H)1) dt)

< Et(fo0 e-wat(wa dt + |(t > k.%, n)P(%z, dr7) dL + dJX)).
Noting that r(_, 4) < e and t8 E V, if 4o E V and s < p, by [7.2] and [7.3],
(24) I.(Q) < EJ(1 e-waP + e-w-Px(r(p-, {p) > E)k.(Q_, (p) + e-" -P)

(. = P < co))
< ER(1 e-ew-P(l -k , {p))X(P < t))

Therefore,
(25) J4(Q) S R( e-aP n y-(m)(1 - e- (P.+,-Pn)y(n + 1)) < 1.

m<n

From (20), [7.5] is proved.
Since 1 = f1,l = I2a(l + (a -)G1),

(26) Kal < Ka(C + m + Q(., D)) = KaCa(l + (a - y)G°1)

<
I Ill + la- 'ylG°1Ia

for a > 0. So, we have that
[7.6] Ka is a bounded kernel (a > 0, X > 0, a + X > 0).
[7.7] The kernel Ka satisfies the relations

(27) Ka-Ka + ()-_I)KaKa= 0

(28) K- K + Ka(Ua- U#)K' = 0.

PROOF. For X > 0, we can apply [7.1]. Note that P(k,,f)-L Vaf.T. For
X = 0, we can obtain (27) and (28) by letting X -* 0.

Let

(29) G. = Ga + HaKaCa, (a > 0);
then Ga is a kernel on S X S.

[7.8] The kernel Ga satisfies the inequality aGal < 1.
PROOF. By [7.5], aGal = aGal + aHaKaCal < aGl + Hal < 1.
The following is an immediate consequence of [7.7] and (29):
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[7.9] Ga- G# + (af-,)GaG = 0.
7.3. The case t > p > 0. In section 7.3, for the system (12, , m, Q), we shall

assume (2.C) and
(M.3**) t > p where p is a positive constant, in addition to (2.1), (2.2),

(2.3*), and (12.4) - (2.7). Notations used are the same as in section 7.2.
From (M.3**), we can see by the definition of K, that

(30) K1 < min \ap X/
From (l.C) and [5.12] we have that

[7.10] Gaf e C(S) if f E C(S).
From (2.C) and (2.1)

(31) R(K) = {K'f: f e C(V)} is dense in C(V).
Since G, + (1/a) Ha is a Green kernel of Mo,
(32) lim JjaGgf + Haf - fli = 0 for f E C(S)..
In particular,
(33) lim laGaf - fli = 0

forf E C(S) and f() = 0, t E V.
[7.11] One has lima,. IIKaUag - glv = 0.
PROOF. Since KaUa = aKaCaH is a uniformly bounded kernel in a, it is

sufficient to prove [7.11] for g = KXf withf G C(V). Since
(34) KaUag - g = (Ka - K.)Uag - KUaKXf -Kf

= XKaKaUag - KVf,
then

(35) IlKaUag911 < ap 11911 p llfll 0, (a- ).ap aep
[7.12] Iff E C(S) andf = 0 on V, then lima, IIaKaCafIIv 0.
PROOF. By (33), it is sufficient to prove the result for f= Gag, for some

,3> 0 and g e C(S). Since
(36) CaGgg = (m + Q)?aG,eg = (m + Q)HB#Gag,
(37) IlaKaCaflj = JjaKaCaG#g9j

< (Ilmil + jjQIi)aiKaGgJ1G Jjmij + IIQII 11 1f1 119l1 0, (a>o)ap

[7.13] For every f e C(S), limax IlaKaCaf- fllv = 0.
PROOF. For anyf E C(S), by [7.11] and [7.12], we have

(38) 1jaKaCaf - fillv < jKaUaf - fIv + IlaKaCa(I - H)fllv 0, (a - ).

[7.14] For everyf e C(S), lima. fIaGaf- fll = 0.
PROOF. Since aGaf-f = aG6f + Haf-f + Ha(aKaCaff-f), the rela-

tion [7.14] is a consequence of (32) and [7.13].
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From [7.8], [7.9], [7.10], and [7.14], GL. is a Green kernel of a strongly con-
tinuous contraction semigroup on C(S). Therefore, there exists a (unique) Hult
process M on S whose Green kernel is Ga given by (29). (See [3].)

[7.15] The following equalities hold:

(39) Haf = E.(e-aUf(x,): a <o°),

(40) G,f = E.(f0 e-atf(xt) dt);

that is, Mo is a stopped process of M.
PROOF. For any f e R(C) = {Cag: g E C(S)}, f/f e B(V), and noting

(A.4), Ga(f/f) = HaKaf. On the other hand,

(41) Ga(f) = E.( e-atdt) E.(e-a1Ga (x,)) = E.(eaUKaf(xe)).

However, by [7.13], {KaCag: g c C(S)} is dense in C(S) and we have (39). Since

(42) G°f = Gaf - HaKaCaf = Gaf- HaGf = Gaf - E.(e-,Gaf(xo))

= E.(fU e-atf(xt) dt),

equation (40) is proved.
[7.16] The process M satisfies (M.2).
PROOF. Let v on V and mo on D be the measures appearing in (12.2) and

(Mo.3) respectively. Let m(E) = mo(E) + vCa(E), (E C S). Then, mo(E) = 0
if and only if Ga°(x, E) = 0 for any x in S, and C'Ca(E) = 0 if and only if
KaCa(t, E) = 0 for any t in V (by [5.10]). Therefore, m(E) = 0 if and only if
Ga(x, E) = 0 for any x in S.
PROPOSITION 15. Let the system (2II, f, m, Q) satisfy (2D.1), (12.2), (I2I.3*),

(I2.3**), (21.4) - (12.7), and (2.0). Then KX, given by (16), is an (f, m, Q)-
system, and Ga, given by (29), is the Green kernel of a process M which satisfies
(M.1) - (M.3). Let (D1*, t*, m*, Q*) be the boundary system of M; then
N(K) = N(K*), and Kag = K,*(1/t + m + n)g, f* = (f/f + m + n), m* =
(m/t + m + n), and Q*f = (1/t + m + n)Qf, for any g c B(V) and f E B(D),
except for functions in N(K) = N(K*). Here {Ka} is a system of kernels defined
by M (as in definition 5.2) and n = Q(., D).
PROOF. The first part has already been proved. Since

(43) Gaf = G.f + HaKa(f + (m + Q)HIa)f
= G°f + HaKa(t* + (m* + Q*)JIa)f,

for any g E B(V) and Kag = K*(f*/t)g. Therefore, N(K) = N(K*) and

(44) Ka* (t + (m + Q)a)) = K*(f* + (m* + Q*)a)-

Noting (A.4), by [5.14] we have m = m* and Qf = Q*f, except for functions in
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N(K*). Since4* + m* + Q*(-, D) = 1(N(K*)), 4*/4 = (1/I + m + n)(N(K*)),
and N(K) = N(K*). Thus, we have the last part.

7.4. The general case. Let the system (19, 4, m, Q) satisfy the conditions
(1%.1)-(191.7) and (M.C). Let ax be the Green kernel of 19. Then the system
(19, 1 + 4, m, Q) satisfies the conditions in proposition 15. By proposition 15,
there exist a (1 + 4, m, Q)-system Ka such that K' = ()x and a Markov process 191
on S whose boundary system (191, 4, m, Q) satisfies

1 + ==m(45) 4 = 2 4 m = , Qf = (for anyf E B(D)), a.e. v,

(46) Th(fo e-alf(xt) db) = 2Kaf(t), (f e B(V), t s V),

where v is a measure appearing in (91.2) and f = Tz (in 191).
[7.17] Letb = 1T; then Kaf(j) = (|f e-'t-(t)f(xg) d4))
PROOF. Let K,I'f = E.(fo' e-a`-X(t)f d)). Then by [5.1], and the definition

of cl, {K2 "} is a (1 + t, m, Q)-system and Ka = Ka. Thus, by [5.11], K,', = K,
for any a and X.

In particular, we have

[7.18] Jf(Q) = 7(f e-1¶f d4) = Ek(f0o e-if dt), ( e V). There-
fore, 19 is a process whose velocity is exactly twice times that of 191.

Let

(47) u() = 1 +Q

where E = et:4+ m > 0}.

[7.19] P(J0tudcI= oo, t > O)= 1, for any t G V.
PROOF. Let T(t) = sup {s: i(s) < t}. By (2.5) and [7.18],

(48) P(fo u(x,) d4) = oo, for any t > O)

= P,(1f2ou(48) ds = , for any t > 0)

= Pt(f0 u(48) ds = o, for any t > 0) = 1,

for t E V. Noting that P(P(O) =a = 0) = 1, we have [7.19].
[7.20] Let (P, T) be a L6vy system of M and a = 0D. Thein

(49) e etQ (f) db) = 7h(e ^16f(x6): x6 e D),

(50) (o e-'ytm db) = 0,
where t E V and f e B(S).
PROOF. Since xt e V for 0 < t < . By [7.2] and (31) in section 5,
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(51) x7e z6(x)x, E D) = EJ E ew XV(X,-)XD(Xs)f(X,))
8<a

= E(lfo e-'tXVPDf dL)
e-tQ (f) d¢)

= E(| e-7tQ (f) d).

Thus (50) is proved. Letting f = gy in (49),

(52) Et(fo' e-'YtQ(., D)d41) = 7(ea'gy(xa): xe e D)

= R(| e rtXD dt)

= fog e-zYXD dt)

= fo(, e-t(m + Q)1771 d4)
Since i2,1 = 1, we see that

(53) E (f e-7tQ(6g, D) dl) = E (f e-vt(m + Q) dt).
Therefore, we have proved (50).

Let

(54) f="- + XD *T,
then

(55) T = + T + XD*T = 4+ .2

[7.211 Let p = sup {t: *(t) = 0}; then p = 0, a.e. (M).
PROOF. If t > a = aD, *I(t) 2 fa: XD dt > 0 and p < a, a.e. Therefore,

Pz(p = 0) = 1 for x e D. For
t
e V, ft(fg dA) -- 77j*(p)) = 0, and by (50)

(56) efo etmdem ) <. t(fo e- tm d) = 0.

Thus, Pj(fo (1/1 - XE) db <0 for any t < p) = 1. On the other hand, by
(49),

(57) 7t(f evtyQ (-) d) <T(e-'D: xUD e D) < 1,

and Pj(fo Q(1/gy) dA <0 for any t < p) = 1. Therefore,

(58) P5t(f udc < - for any t < p) = 1

and, comparing this equality with [7.19], we have Pt(p = 0) = 1.
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[7.22] The function 'I'(t) is strictly increasing for t E [0, P) a.e. (The proof of
[7.22] was given by K. Sato.)
PROOF. By [7.21], we have

(59) P.(t < , p(w+) = 0) = T(x(t < t)p.x(p = 0) = P, (t < t)
for every fixed t. Hence
(60) Pa,(p(wt) 0 for all rational t < t) = 1.

Relation [7.22] is proved.
Therefore, by [9] there exists a right-continuous Markov process M on S such

that, for each A belonging to the Borel field generated by cylinder sets,
(61) Pa,(A) = Pa,(fv E A),
where the mapping w w-+ tv is defined by x8(w) = x,(8)(w) and Iu(s)
sup {t: 'if(t) < s}. Moreover, the Green kernel Ga of M is given by

(62) Gaf(x) = 7(Jo0 e-a(t)f(x,) d(t)).
Noting Th(fa e-afXD dt) = E(fo e-at(m + Q)Ilafdf)) and T -T-, by [5.2],
we have

(63) 7a(f e-a(t)fd) = E( e-a(t)ffdA) + Ex(f e--*(t)fxD dt)

- E(J e-*a¶(' + (m + Q)fIa)fd0).
Since 9!(t) = t for t < a A ¢, we have

(64) Gaf = Gaf + HaKa(e + (m + Q)1a)f

where Kaf(Q) = m(fo0 e-a(t)Wf(x) d4))

Letting

(65) K.xfQ) = Et(fo' e-a*(0)X"(V)(x,) d(D),
by [5.1], we can easily see that {K.} is an (?, m, Q)-system and K, = K" is the
Green kernel of 12. Therefore by [5.10] and (2.0),

[7.23] Gaf E C(S) if f e C(S).
Combining [7.23] and the right continuity of M, we see that M is a Hunt

process. By (62), for a measure such that f'-I _ 0 is equivalent to f = 0 a.e.,
(f E B+(S)), we also see that M satisfies (M.2). (Such a measure exists by [4].)
Finally, by the definition of ', the stopped process of M coincides with that
of 2Q. Hence, we have that

[7.24] M satisfies the conditions (M.1) - (M.3).
Let (lQ*, t*, m*, Q*) be the boundary system of M, and let 4)* = T, (in M),

that is, Ez(f'a e-'t dt) = E,(fo' e-'t d4)). Let K*f(Q) = Ej(fo e-xi(t)-atf(xg) d4));
then K*x is the Green kernel of 12* and

(66) Gaf = Ga°f + HaK*(t* + (m* + Q*)17a)f.
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Comparing this with (64), we have

(67) Ka(C + (m + Q)17.)f = K*(t* + (m* + Q*)fta)f.

Letting f = (I + (a - y)G:)1 (hence, 17,f = f7,1 = 1) and noting (191.3), we
obtain Kal = K*1; that is,

(68) e-a)(t)Ed)=E e( de-td*)
[7.25] For any f e B(V), Kjf = K*f.
PROOF. It is sufficient to prove the result for f E C(S). Let

(69) p = inf t: lf(xt) - f(xo)I 2 E, pO = 0, pn1 = Pn + p(wpn).
Since T(t) is strictly increasing, p(w) = *(p(w), w) and p(w) = ,A (p(iV), w);
hence, Ez(g(x,)e-aP) = Th(g(xp)e-a¶(1)). Since *I'(pn+i) = l(pn) + '(p(w,p), wZ),
we can prove by induction that

(70) E.(g(xpn)e-aPu) = 7 (g(xg)e-g1-)), g E B(S).
Therefore, writing so(x) for both sides of (68), we have

(71) Et( Y eaP.f(xp.))P e-at d*()
- EJ(5 e--Pf(xp.)(So(xp.) -E.,.(,(xp)e-aP)))
= Et(E e-a(P-)f(xp.) (p(xp) - ($0(xp)e-a(P))))
= E(, e-a*i(P-)f(x,,) Lp?+1 e-a*(t) d4).

Write I, for the first member of the above equality and 12 for the last member.
Noting

(72) IEt(fO e-alf(xt) d4*) - I, < eK*l
and

(73) 14(f1o e-a*(t)f(xt) dA) - I2 .<eKa,
we have Kaf = K*f.
Now, by [5.13], we have t = 4*, m = m*, and Qf = Q*f, (f E B(D)) up to

functions of N(K) = N(K*). And by [5.11] and [5.13], Kx = K*>; that is,
1I9* coincides with the given process 1R.
THEOREM 16. Let (1R, 4, m, Q) be a system satisfying (19.1) - (1.7) and

(IV1.C). Then, there exists a (unique) process M on S which satisfies (M.1) - (M.3)
and (M.C) and whose boundary system is (19, 4, m, Q).

Noting proposition 2 and proposition 14, the following theorems are conse-
quences of theorem 16.
THEOREM 17. Let 1S be a process on V. Then 191 is a U-process of a certain

process M on S which satisfies (M.1) - (M.5) and (M.C) if and only if 91 satisfies
(19.1), (1Q.2), and
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(19.4) 6j?J,x,v = 0 for some X > 0 and a > 0,
(19.6) (P,A) >> (e, T),
(19.7) 0>>o-T,
(DI.C) Gxf E C(V) if f S C(V).

The process M is uniquely determined by 19.
THEOREM 18. Suppose that Mo satisfies (Mo.l) - (Mo.5) and
(Mo.6*) the set {Haf: f e C(S) and f = 0 on V} is dense in C(S).

Then, (19, X, m, 0) is a boundary system of a certain process M which satisfies
(M.1) - (M.3), (M.5) and (M.C) if and only if (19, t, m, 0) satisfies (1.1),
(2.2), and

(21.3) t+ m = 1, a.e. v,
(2.4) mlLxv = 0, a.e. v,
(2.6) (P, L) >> (mE, T),
(2.7) »>> m@- T,
(2.C) Oxff, Oxmf e C(V) if f c C(V).
(In the above theorems, Ox is the Green kernel of 12I, v is a measure appearing

in (2I.2), and (P, L) and J0 are the L6vy system and the killing functionals of
2 respectively.) Combining these theorems with propositions 2, 8, and 9, we
can obtain many alternatives, of which we state the following one alone.
THEOREM 19. Let M satisfy (M.1) - (M.5).
(i) The path of M is continuous for t E [0, t) if and only if the path of Mo is

continuous and (P, L) _ (8, T);
(ii) M is conservative if and only if Mo is conservative and .J. ; O- T.

APPENDIX I. Proof of [7.4]

Let M be a process satisfying (M.1) and (M.2). Let P and Q be (not neces-
sarily bounded) kernels on S X S, and let L and M be continuous additive
functionals. Suppose that

(*) there exists an increasing sequence of sets {FF}, (F. C S X S) such that
XF. T 1, (n -X o) and E(fro e-aePXF. dL) are bounded in n for a fixed a> 0.

(The condition (*) is satisfied if (P, L) is the L6vy system of M (see [11]
and [2.3]).)

[1.1] If Pf*L >> Qf-M forallf e B+(S X S), then there existsk E B+(S X S)
such that P(kf) -L ; Qf-M for allf E B+(S X S).

Before proving [1.1], we note the following.
[1.2] Let m be a measure appearing in (M.2), and let L and M be

any continuous additive functionals. If

(1) Em(|O e-atfdL) = Em(f e-tfdM) <

for allf E B+(S) and x E S, then L M. Here a > 0 is fixed.
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PROOF. Let 2V=L+ l; then L k-N and *-C for some k and
4 E B+(S) (see [4]). Let

(2) u(x) = E.(fo e-atx(k > t)(dL - dM))

= Ex(f e-atx(k > t)(k- t) dN).

Then u(x) is an a-excessive function and, by assumption, u = 0, a.e. m. Thus,
u(x) = 0 for all x E S. Similarly, we can see that

(3) E,(f* e-atx(k < t)(dL - dM)) = O

for all x, and that

(4) E.(f e-at dL) = Ex(f e-at dM)

for all x, that is, L _ R.
PROOF of [1.1]. For any F C S X S, let

t,(F) = Em(Jo e-atPXF dL),

v(F) = Em(f e-atQXF dL).
Then ,(F) 2 v(F), and by (*), ,u and v are a-finite measures on S X S. There-
fore there exists a function k E B(S X S), 0 < k < 1 such that v(F) = XFk d,u.
Hence,

(6) Em(f e-atQfdM) = f f dv = f kf dA

= Em(fO e-atQ(kf) dM).

Therefore, for any g e B+(S) and h E B+(S X S) such that Ex(fo e-atPh dL)
s bounded in x, letting f(x, y) = g(x)h(x, y), one obtains

(7) Em(f0 e-atgP(kh) dL) = Em(L e-atgQh dM).
By (*) and [I.2], we have [I.1].

APPENDIX II. Dependency of the boundary system on y

Let M be a process satisfying (M.1) - (M.3), and let -y and -y* be two positive
constants. Let (1, t, m, Q) and (1%*, f*, m*, Q*) be boundary systems of M
corresponding to -y and y*, respectively, and Ii _ T, and V T*.Let

(1) c(x) = c(y, -Y*; x) = ____).
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Then c can be considered as a function in C(S) and

(2) Ha = cH.

By theorem 3,

(3) Gaf = G°f + H,Ka(f + (m + Q)I,)
= G°f + HaK.*(t* + (m* + Q*)1l*).

Letting a = y* and f = 1 in (3), we have

(4) +(e+(m +Q)c) *4?
and

(5) Kag = K* (9 + (m + Q)c 9)' (g e B(V)).

Applying [5.14], we have

(6) e+ (m + Q)c t + (m± Q)c

Q*h = Q(Ch) (h G B(D)),

except for functions in N(K) - N(K*).

APPENDIX III. Lateral conditions

Let M be a process oIn S which satisfies (M.1) - (M.3), and let (Mv[, t, m, Q)
be the boundary system of M. In this appendix, we shall assume that M satisfies
(M.C) and (1M, e, m, Q) satisfies

(M.C*) Gxg e C(V) if g cC(V),
Caf C(V) if fcC(S),

where Ca = t + (m + nQQ)H, and U,, = aCCaH (see section 6.4).
Let A (or A) be an infinitesimal generator of the strongly continuous semi-

group of M (or 1Q) on C(S) (or C(V)), and D(A) (or D(A)) be its domain. Then
by [5.9] and (M.C*), we see that

[111.1] D(A) = {v = KAg: g c C(V)}
and Av = (X + Ua)v- g if v = Kqg.

Let
(1) Do = {u: u-H,,au = G°f,f E C(S)},
and for u c Do, such that u - Hau = G2f, let

(2) A0*u = au-f,
Nu =H,(aHu-f) .

By (2), (3) and (5) of section 2, we have that
[III.2] Do, AO, and N are independent of a.
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Now, by theorem 3, we can easily prove
[3] (i) A < A*; (ii) let u E Do. Then u E D(A) if and only if uv E D(A)

and
(**) [uv = tAou + (m + Q)Nu,

where uv is the restriction of u on V.
By Appendix II, we can see that the equation (**) is independent of -y.
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