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1. Introduction

Under the name of boundary problem for Markov processes, we shall consider
the problem of finding all Markov processes whose behavior, before they reach
the boundary, is the same as that of given minimal processes (cf. Feller [2]). In
this paper, we shall characterize those processes by their U-processes (on the
boundary) and certain auxiliary factors (cf. Sato [8]). The precise formulations
and the summary of the paper are given in sections 2 and 3. The author wishes
to express his gratitude to Professors M. Nagasawa, K. Sato, and T. Ueno for
their kind discussions and advice, and especially to Professor K. Sato who read
the paper and suggested many improvements.

2. Assumptions and notations

The space S is a compact space with metric r and S* = S U {8} where 9 is
an isolated (extra) point; D is a fixed open set in S such that S = D and V is
the boundary of D. As sample paths on the space S* = S\ {8} or
V* = V U {0}, we consider paths which are right continuous, have left limits,
and stay at 0 after they reach 4. The path is denoted by w and
zs(w) € 8* (or £(w) € V*) is the value of w at {. We shall set z,(w) = 9,
og = inf {t > 0: z,(w) € E}, and ¢ = inf {t > 0: z,(w) € D} with inf ¢ = .
A Markov process defined on the space of the above sample paths is called a
Hunt process if it satisfies the conditions (P.1), (P.2), (P.3), and (P.4) in [5].
Roughly speaking, a Hunt process is a right-continuous and quasi-left-continuous
strong Markov process. When referring to “subsets of S,” we shall mean only
topological Borel subsets of S. For E C S, B(E) is the set of all bounded measur-
able functions on E, and B+(E) (resp. C(E)) means the subset of B(S) consisting
of the functions which are nonnegative (resp. continuous). Sometimes, we con-
sider f in B(E) as a function on &% setting f(z) =0, z € E. For E, F C 8,
K(zx, A), (x € E, A C F) is called a kernel on E X F if K(-, A) is Borel measur-
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ableon E and K(z, -) is a measure on F. If K(x, A) is a kernel, we write Kf(z) =
J K(z, dy)f(y).

2.1. Minimal process. A process M, is called a minimal process on D if the
following conditions (M,.1) ~ (M,.6) are satisfied (throughout this paper v > 0
is fixed and ¢ = oy is the hitting time to V):

(M,.1) M, is a Hunt process on S;

Mo.2) Pz, =40<t<®) =1, teV,
where P° and E° are the probabilities and the expectations for M.

For f € B(S), let

Gf@) = B ( [ =gtz dt) (@ > 0),

H,.f(z) = E3(ef(25): ¢ < ), (a 2 0);
then the Green kernel of M, is G2 + (1/a) H,; that is,
[2.1] E} (Jeef(x,) dt) = G2f(x) + (1/a) H.f(x), and M, is uniquely deter-
mined by G2 and H,.
We can easily see that

1)

@) G2 — G§ + (a — B)GaGs = 0,
3) H.— Hp + (« — B)G2H; = 0,
4) Gaf(®) =0 and H.f()) = f(§) for ¢€V.

(M,.3) There exists a measure mo on D such that m(E) = 0 is equivalent
to G3(z, E) = 0 for every z € S;

Mo4) GfeCS)iffeC(8),and H.f € C(S) if f € C(V);

Mo.5) H.f = (G3f/g,) € C(S) if a > 0 and f € C(S), where g,(z) = G71(z)
and v is a fixed positive constant and 1 denotes the function which is 1 on S and
0 at 2.

Since G2f(x)/g,(x) is in C(D), (M,.5) means that G3f/g, can be extended to S
continuously. By (2) we can easily see that if (M,.5) holds for some a > 0,
then it also holds for every a > 0. As functional on C(S), H, can be considered
as a kernel on 8 X 8, and A.f is well defined for f € B(S):

(M.6) {H.f: f € C(8)} is dense in C(S).

By (2), we have

)] A.— Hs + (« — B)H.GE = 0.

Throughout this paper a minimal process My and ¥ > 0 are fixed. The condi-
tions need some explanations. We did not hesitate to impose conditions on M,,
if they are convenient for the following argument and if they are satisfied by
ordinary regular processes. Condition (M,.4) implies that every point of V is
an exit point, and quasi-left continuity on M, near V assures that it is not too
wide as an exit boundary, although it may be too small. Condition (M,.5)
assures (except for the smoothness part) that for every point of V there corre-
sponds at most one entrance point, and therefore V is not too small as an entrance



ADDITIVE FUNCTIONALS 77

boundary. For example, let S =[—1,1], V = {—1,0, 1}, and let M, be the
Brownian motion stopped by V. Then (M,.5) is not satisfied near 0, since 0 con-
sists of two entrance points (see [8]). There exist more essential examples which
do not satisfy (M,.5). In these the point of V cannot be divided as an exit
boundary, but it consists of many entrance boundary points; that is, G2/g, has
many limiting values at V.

The following processes, which are stopped by the boundaries, satisfy condi-
tion (My.1) ~ (M,.6):

(a) one-dimensional diffusion in an interval with exit boundaries;

(b) Brownian motion in a unit sphere or half plane;

(c) space time Brownian motion in a band-like domain parallel to the time

axis;

(d) stable processes with exponent & > 1 in a finite interval.

In the cases (b) and (c), suitable compactifications are needed.

2.2. Processes with minimal process My (extension of My). The process M is
called an extension of M, if the following conditions (M.1), (M.2), and (M.3)
are satisfied:

(M.1) M is a Hunt process on S.

(M.2) Let G, be the Green kernel of M. There exists measure m on S such
that m(E) = 0 is equivalent to G.(z, E) = 0 for every z € S.

Under (M.1), (M.2) is equivalent to the condition (L) in [3] or the condition
(P.5) in [5]. (See also [4].)

(M.3) The process M stopped by V is Mjy; that is,

®) E.([) ey dt) = Gi@),

Q) E(ef(zs)) = Haf(2),

where the expectations and the probabilities for M are denoted by E. and P, .
By (4) and (M.3),

[2.2] every point of V is regular to V with respect to M.

Sometimes we shall use the following conditions.

(M.4) The sample path of M has no sojourn on V a.e.; that is, Gaxv(z) = 0
for every z € S. (We say that an assertion A holds a.e., if P,(A) = 1 for all z.)

(M.5) The sample path of M has no jump from V to D, a.e.; that is,
P,(3 s xv(zs—)xp(xs) = 0) = 1 for every x € S, where xy and xp are the charac-
teristic functions on ¥V and D respectively.

(M.6) The sample path of M has no jump from V to V, a.e.; that is,
P> xv(@e)xv(zs) = 0) = 1 for every z € S.

M.C) Iff e C(8), then G,f € C(8S).

Under (M.1) and (M.C), G,, restricted on C(S), becomes the resolvent of a
strongly continuous semigroup on C(S).

2.3. Process on the boundary (U-process). In this paper by ‘“additive func-
tionals” we mean nonnegative additive functionals only, unless otherwise
stated. The definition is given in ([4], (A.1) ~ (A.6)). For two additive func-
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tionals A and B, A & B if and only if P.(A(f, w) = B(t, w) for all ) = 1 for
all z, and A < B if and only if P,(A(t, w) < B(t, w) for all ) = 1 for all z. We
set f-A(t) = [4f(x;) dA for f € B(S).

For given M, the U-process of M (introduced by T. Ueno) is obtained as
follows (see [9] and [5]). Let M be a process satisfying (M.1), (M.2), and [2.2].
Then there exists a unique continuous additive functional ® such that

(8) Ea:(ﬁ)'=° et d<I>) = Ez(/;w et dt) = H‘yG‘yl(x);

that is, ® = T, where T is the additive functional T(f) = ¢ A ¢, and in general,
for a continuous additive functional A, such that E.(f¢ e % dA) < =,
we define a continuous additive functional A. by E.(f¢ et dd.) =
E.(J7 et dA) (see [4]). The functional ® satisfies

(9) xV'@Nj;: xV'dQNq’.

Now set 7(s) = sup {t: ®(t) < s}; then the process M on V defined by
(@,, Pe), (¢ € V) is called the U-process of M on V. The Green kernel Gyrof M
is given by

(10) 6@ = B [, @) ds)

= B [ eo0f@) de),

forevery A > 0, ¢ € V and f € B(V).
It can also be shown that

(M.1) M is a Hunt process on V;

(M.2) there exists a measure » on V such that »(E) = 0 is equivalent to
G\(¢, E) = 0 for every £ € S.

The results stated above are proved in [5]. Further properties of M are dis-
cussed in section 6. In the following, the expectations and the probabilities
by M are denoted by E_and P .

2.4. Definition of a Lévy system. TFor any process M satisfying (M.1) and
(M.2), a Lévy system was introduced by S. Watanabe in [11]. Here, we give
the definition in a slightly different form. (It is easy to show that the following
definition is equivalent to that in [11]).

Let L be a continuous additive functional and P(z, dy) be a kernel on 8 X S.

DErintTION 2.1. A pair (P, L) s called a Lévy system of M #f and only if
P(z, {x}) = 0 and

(11) E( = ., z)) = B [/ Pf(w) ar)
for any t > 0 and f € B (S X S), where
(12) Bi(SX8) = {f:feBSXS8) and f(z,z) =0}

and Pf(x) = [ P(z, dy)f(y).
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The Lévy system is unique in the following sense: if (P, L) and (P’, L) are
Lévy systems of the same process M, then

(13) Pf-L~ P'f-L' forany fe& Bs(S X S).
Condition (11) is equivalent to
(14) E,(tg e~ f(x,, x,)) = E’(,[o e~ *Pf(x,) dL)

for some « > 0 and every f € B (S X S).

The existence of the Lévy system is proved in [11]. It is also shown that

[2.3] there exists an increasing sequence {E,.} such that E C S X S8 — D,
E. T 8X8—D, (n—>w) and E,(f5 e *Pxg,-dL) is bounded in z, for a
fixed @ > 0. Here D = {(z,z): = € S}.

Similarly, a continuous additive functional A, is called the killing functional
of M if

(15) Ez(Aoo(w)) = Pz(g‘ < °°),

which is equivalent to

(16) E(A.(1) = P.(¢ < 1), t <,
or

17 B[ e dAw) = By(e=), a> 0.

(See [11] and [7].)

3. A problem of Sato and related topics

The purpose of this paper is to characterize M by its U-process M for a given
minimal process M. The problem is divided into the following three questions,
where V, v > 0, and M, are fixed.

3.1. Is M uniquely determined by M? XK. Sato proposed this problem and
solved it under a different formulation (see [8]). The answer is also affirmative
in our case when M has no jump from V to D and no socjourn on V.

Let M satisfy (M.1)-(M.3) and let M be the U-process of M. Let
(1) Te= {s;7(s—) < 7(s), 7(s—) < ¢, Tr(o)— = Trw}-

Let £ and m be elements of B+(V) and @ be a kernel on V X D such that

2) L@ xv-T,
®) E( L * evimd q») = E( v [

BeTa 7(8—)
4) Qf @ ~ xvPp(fg,) - L

for any f € B(S), where (P, L) is the Lévy system of M and Ppf(z) =
Jp P(z, dy)f(y). It will be shown that (¢ m, Q), satisfying (2), (3), and (4),
exist. Let » be a measure which satisfies (M.2); then (¢, m, Q) is uniquely deter-

et dt),
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mined up to equivalence with respect to ». We shall call the system (M, ¢, m, Q)
the boundary system of M (the system (M, ¢, m, Q) changes if v changes, and
the dependence of (M, ¢, m, Q) on y will be discussed in appendix IT). We shall
also see that

(M.3) £(8) + m(&) + Q& D) = 1, ae v

Roughly speaking, £(¢), m(¢), and Q(¢, D) represent the (suitably weighted)
proportion of sojourn on V, of reflection, and of jump from ¢ to D (¢ € V), and
the measure Q(¢, -) denotes the mode of jump from V to D averaged by g,. In
fact, we shall see in section 5 that the following proposition holds.

ProrositioN 2. (i) The path of M has no sgjourn on V, a.e., if and only if
£=0,a.e.,r.

(ii) The path of M has no excursion which begins from V, a.e., if and only if
m = 0, a.e., ».

(iii) The path of M has no jump from V to D, a.e., if and only if Q = 0, a.e., ».

Now the problem stated is answered as follows in section 5.

THEOREM 4. The process M is uniquely determined by the boundary system
(M, (’ m! Q)'

3.2. What process can M be? Let M satisfy (M.1) ~ (M.3). We shall investi-
gate the properties which characterize the system (M, ¢, m, Q) as a boundary
system. We have already seen that (M, ¢, m, Q) satisfies (M.1) ~ (M.3). More-
over, we shall see that

(M.4) mH.xv = 0, a.e. » for every a > 0;

(M.5) set E = {¢: £(£) + m(£) > 0}; then

t
(5) / ( 1 +Q (;—)) dt = » for every ¢t >0, a.e.

o\l — xz

Roughly speaking, (M.4) implies that the path of M has no reflection at the
purely exit points (exit but nonentrance points). In fact, in one-dimensional
diffusion, H.xv(¢) > 0 when £ is a purely exit point. Condition (M.5) implies
that the path of M should have sufficiently many infinitesimal jumps near the
point at which the path has no sojourn and no reflection. For example, if
£ =m = 0 and the carrier of Q(%, ) is contained in some compact set inde-
pendent of £, then M should be an instantaneous return process which we exclude
in our formulation.

Let (P, L) and 4., be the Lévy system and the killing functional of M. Then
we shall see that

(M.6) (P,L)> ((m + Q)®, T), that is, Bf-L> {(m + Q)0}f- T for every
fe BH(V X V).

Here T =t A ¢ in M and 6(z-dn) = limesw aHH(x, dn), * & dn, and
0(, {¢&}) =0, @isakernelon S X V).

(M.7) A, > @m+Q)%-T
where 8(z) = lim aH (I — H)1(z) and I is the identity operator.

Roughly speaking, (M.6) implies that the path of M has at least the jumps
due to the excursions of M, and (M.7) means that the path of M has at least
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the killing due to that of the minimal process M. In fact, we shall prove in
section 6 the following propositions.

ProrosiTiON 8. The paths of M have no jumps from V to V, a.e. (M), if and
only if (P, L) ~ ((m 4 Q)®, 7).

ProposiTioN 9. The paths of M are continuous for t € [0, {) if and only if
Q =0, aev (P,L) ~ (m0, T) and the paths of My are continuous for t € [0, ¢).

ProposITION 11.  The left limit x— & V when § < © a.e. (M) if and only if
A~ (m+ Q-T, (F).

ProrosiTiON 12. The process M is conservative if and only if M, ¢s conservative
and A, ~ (m + Q)6-T, (M). »

3.3. Does there exist an M for given (M, ¢ m, @)? The conditions
(M.1) ~ (M.7) for the boundary system are almost sufficient. In fact, we need
the following smoothness condition which seems to depend on our method of
proof:

(MLC) G, Gt + (m + QH.)f € C(V) if f € C(8).

Then the problem is solved in the following way. Let M be a Markov process
on V, let £ and m be in B*(V), and let @ be a kernel on ¥V X D.

THEOREM 16 (see section 7). To a system (M, ¢, m, Q) satisfying (M.1)-
(M.7) and (M.C), there corresponds one and only one process M on S satisfying
(M.1)-(M.3) and (M.C), whose boundary system is (M, ¢, m, Q).

Under (M.C), the necessity of the condition (M.C) will be discussed in
section 6.4. From the results of that section, we shall obtain the following
theorem when £ = 0 and @ = 0.

THEOREM 17 (see section 7). Let M be a process on V. Then M is a U-process
of a certain process M on S which satisfies (M.1)-(M.5) and (M.C) if and only if
M satisfies (M.1), (M.2), and

(M.4) G\H.xv = O for some X > 0 and o > 0,

M.6) (P,L)>» (6, T),

M.7) A,.>06-T,

M.C) GfecC(V)iffecC).

The process M is uniquely determined by M.

TuEOREM 19 (see section 7). Let M satisfy (M.1) ~ (M.5).

(1) The paths of M are continuous for t € [0, ¢) if and only if the paths of My
are continuous for t € [0, ¢) and (P, L) ~ (0, T);

(ii) M ds conservative if and only if My is conservative and A, ~0-T.

The relation between our formulation and the lateral condition will be dis-
cussed in appendix IIT.

3.4. Remaining problems. The above arguments shift the problem (deter-
mining every M which is an extension of M,) to the existence of a process on V
whose Lévy system has the assigned property. However, the general theorem
for constructing such an M remains unproved.

(When the number of boundary points is finite, all M are easily obtained.
As another example, in the trivial case £ = 1 and m = Q = 0, M is arbitrary
except for the smoothness conditions (M.1), (M.2), and (M.C).)
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Further, the conditions (M,.5) and (M,.6) should be replaced by deeper
(probabilistic) and more general ones. In the general case, to every point of V
there corresponds a set of entrance boundary points, and it seems that we can
assign the beginning point of excursion with any probability law.

4. Properties of the excursion at V

Let ® = T, and let its right continuous inverse 7(s) be defined as in 2.3. In
this section, with the exception of the last four lemmas, we assume only (M.1),
(M.2), and [2.2] on M. The following are proved in [5]:

[4.1] 7(0) = o, a.e. (lemma 5.6 in [5]),

[4.2] =z, ¢ D for any s, a.e. (theorem 5.7 in [5]),

[4.3] foranys, z:¢ Vifte (r(s—), r(s)), a.e. (theorem 5.9 in [4]), where
7(0—) = 0.

From [4.2], we can easily see that
(1) for every s> 0 and e > 0, there exists a ¢ such that 2z, € V and

t € (r(s—) — ¢ 7(s—)), a.e. Especially, z.¢.— € V for any s > 0, a.e.

Let p = p(k) be a Markov time such that

) (@) p < (1/k) A ope A inf {t: 7(20, z) > 1/k};
(ii) put o1 = a1(k) = 0, po = pa(k) = on + p(w), and onp1 = Gapi(k) =
on t+ O'(w:;))
and limp, = lim ¢, = ©, where Dy = {z: r(z, V) > 1/k} and z.(ws) =
xt+s(’lU).

(If we set p(k) = (1/k) A ope A inf {t: 7(xo, ;) > (1/k)}, then p(k) satisfies
these conditions.)

It is also easily seen that
(8) for every n and k, p,(k) = cnp1(k) if zpwy €V and pn(k) < onpalk) if

Zpat) € D, ave.

Noting that xy-® ~ ® and P;(r(0) = ¢ = 0) = 1 for £ € V, we have
@) ®(p,) = P(ony1) for every n and k, a.e.,

) 7(®(0,)) = s for every n and k, a.e.

DEFINITION 4.1. Let T(w) = {s > 0: 7(s—) < 7(s), 7(s—) < ¢} and
Ni(w) = {n: z,.@ € D}.

[4.5] For a fixed k, the mapping n — s = ®(o,41) is one-to-one from Ny to T,
and
(6) o0 < 7(8—) < pu < 7(8) = Ouypy, a.e.

Proor. For n € Ny, pn < gupa A ¢, and s = ®(p,) = ®(on1) by (4). So
7s=) < pa < onmu=7() by 5) and s T. If n’ < n, 1(@(on41)) = oy <
pn < 0ny1 80d ®(opy1) < ®(0,41) = s, which proves that the mapping is one-to-
one. Setting n’ = n — 1, ®(o,,) < s and g, < 7(s—), we have (6).

DerINITION 4.2. Let Ti(w) = {s: s = ®(on41),n € Ni}, and for s Tk,
n(k,s) = {n: n € Nx, s = ®(onp1)}, ¢k, s) = onie), K, 8) = pnr,e)y and
a(k, 8) = Tn@.0+1-
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By (6), we have

[4.6] forse€ Tk z,0.0 €D, and ¢(k, s) < r(s—) < p(k, 8) < o(k, s) = 7(s),
a.e.;

[4.7] T: C T and lim infine T = T, a.e.

ProoF. For any s € T, since z;: € D if ¢ € (r(s—), 7(s) A ), there exist
to(w) and ko(w) such that z,(w) € Di, and &, € (7(s—), 7(s)). For every k > ko,
since 7(s) > 7(0) = o1(k) taking n such that ¢,(k) < 7(s) < onp1(k), ou(k) <
pn <t < 7(8) = onp1(k), for o,(k) < 7(s—) and ona(k) = 7(s) by [4.2] and
[4.3]. Therefore s = ®(v,41) and z,, € D by (3). Thus, s € Ty for k > k.

[4.8] Fors e T, limie ¢k, s) = limgw plk, 8) = 7(s—), a.e.

[4.9] Forse T, limgw Tos) = liMtnw Lok 09— = Tre—y— and liMgew 4.0 =
Tr(s)y Q.€.

Proor. By [4.7], the limits in [4.8] and [4.9] have a meaning. Noting that
ok, s) — ¢k, s) < (1/k) and r(Zs@k,s), Tpr,—) < (1/k), we have [4.8] and [4.9]
by [4.6].

Let ur = opg; then py < o and 2jim , = lim 2, € V if lim u, < «, a.e. There-
fore, o = lim g and 2, = lim z,, if ¢ < =, a.e. Therefore, we have the following:

@) forany t < o,z ¢V, a.e.;
(8) ifo <o and 2, €V, z,— = z,, a.c.

[4.10] For any s, z,— & Vif t € ((s—), 7(s)), a.e.

Proor. Fors¢ T (s =0, 7(s—) > ¢ or r(s—) = 7(s)), [4.10] is obvious.
By (7),
9) Piz— €V, 3t € (pu(k), 0a(k))) = Eo(Prn(x— € V, It € (0, 0))) = 0.
Therefore z,— ¢ V if t € (pa(k), on(k)) for any n and k, a.e., and z,_ ¢ V if

t € (p(k, s), 7(k, s)) for any k and s € Ti. The statement [4.10] follows from
[4.6], [4.8], and [4.7].

[4.11] Forany s€ T, z.¢—) € V implies &, ¢—)— = ,¢,), a.e.
Proor. Since z,¢,,) € D, pk, s) > 7(s—) and lim 2,4, = z,,—y by [4.8].
On the other hand, lim z,4,— = ;- by [4.9] and [4.11] follows.
[4.12] For every s€ T, 7(s) < « and z,i— € V implies z,¢)— = Z,¢, a.e.
Proor. By (8),
(10) Pz(xmm— € V, Tona— 7 Topuy Tnp1 < °°)
= E (P, (@s- €V, 2o # 2,0 < 0); pp < ®)
=0
for any n and %, and so [4.12] follows from [4.7].
DeriniTioN 4.3.  Let

T™* = {s > 00 Try— 7 Trgo; 7(s) < &3,
(11) Ta= {8: Trsm)— #= Trmy; s € TY,
Tc = {SZ Tr(s—)— = Lr(s—), S € T}.
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With this notation, the following relation holds:

[4.13] {t>0:2,_€V,z, €D} = {r(s—): s€ T4}, ae.

Proor. If z,_ € V and z, € D, then by [4.10], t = r(s—) or 7(s) for some s.
Since %,y € D by [4.2], t = 7(s=) < 7(s) =t + o(w) and s € T4. If s € Ty,
r(s—) < ¢, Zro— € V by (1) and x,,—y € V by [4.11], s0 ,(—y € D.

[4.14] Ifse T* — T, then 7(s—) = 7(s), a.e. And

(12) {>0:z ,x,€V, z#z} = {r(s—) =7(s): s€ T* — T}, ae.

Proor. The first assertion is obvious from the definition. If z,_, z; € V, and
z,_ # z,, then by [4.3] (or [4.10]), t = 7(s—) or 7(s) for some s. In either case,
s cannot be contained in T. Moreover, ¢ < ¢ and { > 7(0) = ¢ (by (8)) imply
that t = 7(s—) = 7(s) for some s > 0. Therefore, se T* — T. If se T* — T,
setting t = 7(s—) = 7(s), 2, =2,y €V and 2, = 2,(,y— € V, and z. # z,
by definition of 7*.

DEFINITION 4.4, Let Tap(w) = {s: s€ Tk, Z,q.0— € V}, a.e.

With this definition we have

[4.15] Td,k C Td and Iim infk_m Td,k = Td, a.e.

Proor. By [4.6] and [4.10), if s € T, then p(k, s) = 7(s—) and z,4.n € D
so that s € Ty. If s € Ty, by [4.13] .- € D, and there exists ko(w) such that
s € T: and z,,_y € D, for k > ko. Therefore by [4.6], ¢(k, s) < 7(s—) < p(k, s)
implies that p(k, s) = 7(s—) and z,4.9— = .- € V. Hence s € Ty, for all

In the proof of [4.15], we see that

[4.16] for any s € Ty, p(k, s) = 7(s—).

For later use we shall give some remarks. Let

(13) ¢ = inf {s: 2,y = 9}.
Then it is easily seen that
(14) Tf=) S <) = .
And by (1) and [4.3],
(15) (=) = sup {t: z, € V}, ae.
Therefore by theorem 5.2 in [5], we have
7(f—) = if and only if § = «, a.e,
[4.17] r(f-)<¢ ifandonlyif e T, a.e,

r(f—)=¢ <o ifandonlyif { <o andz_ €V, ae.
If 7(f—) < ¢ < 7(f), then z;— ¢ V by [4.10].) Let M be an extension of M,.
Noting that

(16) Pt €(0,0], <w) =P < 0,§ <)
and
(17) P;(xz_ # Iy, t< ¢ and ¢ < O') = Pg(x,_ # Ty, I < f),

we can prove the following lemmas by the same method as in the proof of [4.10].
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[4.18] Suppose that the paths of M, are continuous for ¢ € [0, {), a.e.

Ift<¢fandte (r(s—), 7(s)], z:._ = x,, a.e.

[4.19] Suppose that M, is conservative. If { < «, then ¢ ¢ (r(s—), 7(s)]
for all s.

[4.20] Under the same assumption as in [4.18], the paths of M have no
jump from D to S, a.e.

Proor. If z, #x, 2, €D and z,€ 8, then t = 7(s—) by [4.18], a.e.
However, z,,—— € V by (1).

[4.21] Under the same assumption as in [4.19], ;— € V when { < =, a.e.

Proor. Since { = 7(s—) by [4.19], z;_ € V when { < =,

6. Decomposition of the resolvent. The boundary system

5.1. Lemmas on continuous additive functionals. In this section we shall as-
sume (M.1) and (M.2) for M.

[5.1] (Dynkin [1]) Let A, B, and C be continuous additive functionals, such
that E’z(f({ e~4® dC(1)) and E,(f(;‘ e B dC(t)) are bounded in z. Then

W B[ eaop@) ac) — B [ eB0f@) deo)
+ Ex{ j;w eAW(dA(t) — dB(1)) Ez,( ]; * e BOf(z,) dC(s) )} _o.

[5.2] Let X and A be continuous additive functionals, where E,([5 e==¢dA)

< o for some @ > 0, and X is not necessarily nonnegative and X(f) = 0 for
0<t< o Let A = A, that is,

@) B[ edd) = B[ eda).
Then
® B[ ewrx0 a4) = B [ eorro ad),
Proor. Set p = inf {t: (x(t)) > ¢}, (¢ > 0), o1 = 0, pu = ou + p(w?), and

ot = pn + o(w3). Since X(t) = X(pn) for t € [pn, ony1], (X(t) — X(0n)) < €
for t € [o4, ony1]. And by lemma 4.1 in [5]

4) o(f) = EE(Lﬂ eot dA) = Eg(j;ﬂ et dA) forany ¢£eV.
Put

(%) I, = E’z(};w gt X® dA)

and

(6) I, = Ez(j;” e—at—X (1) dfi) - E‘(ﬁ)” =X dg)
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Then,

(7) e-eEz<n§;_:l e‘“’"+x(”")(p(x¢,.)) < I{

S 6‘E;< Zle—an+X(a'n)¢(xﬁ)>, 1 = 1’ 2.

Since ¢ > 0 is arbitrary, we have [5.2].
[6.3] Let A and B be continuous additive functionals. If, for every f € B*(s),

®) B[ @) da) > B [ e~ dB),

then A > B.
Proor. Since f-A ~ 0 implies f-B &0 for any f € B*(s), there exists a

nonnegative Borel measurable function g such that B ~ g-A (see theorem 7.1
in [7]). Hence,

@ 02 E([[" eoxlg > D@B — d)) = B [[" eoixlg > Dlg — 1) d4),

where

(10) xo>n@ ={y DY

So x(g > 1)(g — 1)-A =~ 0. Therefore,
(11 A—-Brx(1—-—g-A~xx@@g< 1A —-9g)-4>0.

5.2. Definition of the boundary system. The notations are the same as in
section 4. In section 5.2 we shall only assume (M.1), (M.2), and [2.2] on M.
[5.4] For any f, h € B(S) and « > 0,

(12) I}LH; E.(X e ®xy (2o t)— ) (Zontt) = ) XD (T @) R (Ton )

= B.( [,” et (@)f@)Poh(z) dL),
where (P, L) is a Lévy system of M and Pph(z) = fD Pz, dy)h(y).

Proor. Without losing generality, we may assume f, k € B+(S). By [4.15]
and [4.16],

(13)  lim E.(3 e~y f(@on—) x0h(T.)

lim Ez( Z e (B_)f(xr (s—) —)h (x‘r (8—)))
Ta(k)

k—

= Ez(;d e~ If (2, (o) )R (T (s)-
By [4.13],

(14) B3 e @0 )h(@re)) = B L, e xv] (@) xph(z0))

= E( ﬁ)” e~atxy fPph dL)-
[5.5] Forany f, he C(S) and a > 0,
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(15) ]}1_{2 E.(X e ®x p(Zpnt) = )f @ontt) = V2 (X0 8) g (Tonk)))

1(8)
= —ar(e) —y (=) i )-
B e @) [0 1o dr)
Proor. We have ‘
(16)  Eo(Z e~ "xpf (@om-)hg4(%0)

= E,(Z = pf @pn— Y1 (Z,0) /;:-m P dt)

o(k,8)
= E:(Z x(s € Tr)e** ®Ixpf(x,k,00-)P(Tp (k) / €
T P

(k,8)

— (t—p (k,8)) dt)_

Set 70 = a A v; then each term in the last member is dominated by
IRl [, e~mdt, which is independent of k. And

7(8)
1
17 h / —ridt < — ||fA||-
a7 Sl [ e ]
Noting that

. o (k,8)
(18) 1{1_{2 e ® Dy f(Xp ) ) (Tp 1 ) fp

— (t—p (k,2))
®s € dt

0 if se T,
e e (@ o)A (s (om) f :8_))6—7(‘—'(‘—)) dt if seT.

by [4.8], [4.9], [4.16], and the definition of T, [5.5] follows by the dominated
convergence theorem.

Let
Ve
(19) ® = (xp:T)y and $ = xv T,
then

Let f be in C(S) and
(21) k) = (1/k) A op. A inf {t: r(xy, 20) > (1/k)
or |f(z) — f(zo)| = (1/k)}.

Then {p(k)} satisfies the conditions (2) in section 4. Moreover, noting
g,(x) = E,(fo" e d(xp-T)), by theorem 4.4 in [5] we have
@2 Jim B £ e Ofonmdoaonn) ) = B [, (e dvo):

k> n=1
Setting b = ¢, in [5.4] and h = 1 in [5.5], we have

@) B [ @) dd) = B3 e o) |

7(8)
(s—1)

e—v(t=7(s-) dt)

+ E,(j;“ e xv(x)f (x:) Ppgy(xs) dL)
for any f € C(S), and hence also for any f € B(S).
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Let

(24) ®; =~ xvPpg,- L.
Then, from [5.3] and (23), we can see that &, >> ®;. Let
(25) P, = Py — Ps.

Then ®; may be considered as a continuous (nonnegative) additive functional.
And by (23),

@ 7(8)
@6) B [" (@) ds) = BT e f@n) [0 e at).
For £ € V and € B(D) let

(27) Q*h(t) = Ppg,(§)
[ »@on® if Pogy(® = 0,

where » is an arbitrary measure on D such that »(D) = 1. Then @Q* is a kernel
on V X D and

(28) Q*h(£)Ppgy(§) = Pplhg,)(¢) for ¢€V and @Q*h®; ~ xv(Pphgy)-L.

Combining [5.4], [5.5], (26), and (28), we have
[5.6] For any f, h € C(s), and {p(k)} satisfying (2) in section 4,

(29) l}g& E:(Z e—ap”(k)f (xﬂn(k)_)h(xpn(k))g 7(379,:(1«:)))
- E( ﬁ)” e=f (@ )h(z:) d<I>2) + E( ﬁ) ® e—a(2,)Q*h(xy) dcba).

(This holds if f(X,) and g(z;) are right continuous in ¢ a.e.) Since &, ®,, &; K ¥,
by theorem 3.8 in [4] there exist functions ¢, m, n in B¥(V) such that

(30) & = (b, P, =m®P, and & = nd.
Let @ = nQ*. Recalling the definition of ®,’s and (26), we have
(o~ xv T,
(31) E,(j: e r'md <1>) = Ex(; fr;(s_)) e dt) for any z,
Qh-® ~ xyPphg,-L for any h € B(D).
Let
(32) N@) = {f: f-®#=~0, f € B*s)},
and let » be a measure such that
(33) N@®) = {f: f =0, a.e. v}.

The existence of such a » is proved in [4].
Let M be a Markov process on V. Let £, m € Bt(V) and let Q be a kernel on
V X D.
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DeriniTION 5.1, The system (M, ¢, m, Q) %s called the boundary system of M
if and only if M is the U-process of M, and ¢, m, and Q satisfy condition (31).

For any boundary system (M, ¢, m, Q), ®, ~ (&, &, ~ m®, and & ~ Q(-, D)®
hold.

ProrosiTioN 1. For M satisfying (M.1), (M.2), and [2.2], there exists a
boundary system. For fived v > 0, M s uniquely determined by M and £;m and Qh
(for any h € B(D)) are uniquely determined by M except for a set of v measure 0,
where v 1s a measure which satisfies (33).

Let (M, £, m, n, Q) be a boundary system of M, then by definitions of ®,’s, we
have;

5.7 M3) £+ m+Q(,D) =1, ae.r

ProrosiTion 2. (i) The paths of M have no sojourn on V a.e. if and only if
{=0,a.e.r.

(ii) The paths of M have no excursion which starts from V' (that s, T. is empty)
a.e. if and only if m = 0, a.e. »).

(iii) The paths of M have no jump from V to D a.e. if and only if Q = 0, a.e. ».

Finally, note that [5.6] can be written in the form

[5.6*] Forany f, h € C(S)

(34) 1}1{2 E.(X e-ap"(k)f(xpu(k) = I(Zpn ) G2 (Tonth)))

= E( L * e=tf(mh + Qh) d<1>)-

5.3. Correspondence of M and its boundary system.
DEeFINITION 5.2. Let

K@ = B f,” 0, do):

K*=K) and K, = K}, (e V).

[5.8] The family {K}}, (&, A >0, a+ A > 0) is a system of bounded
nonnegative kernels on ¥V X V and

K* = Gy (Green kernel of M),
H,,Kﬁf(x) = Ez(j;” 6—)‘<Ii(t)—atf(xt) d@)-

Hereafter we shall assume (M,.1) ~ (M,.6) on M, and (M.1) ~ (M.3) on M.
Now, we shall prove the decomposition theorem for the Green kernel of M.
TueoreM 3. If K,, ¢, m, and Q are defined by (31) and definition 5.2, then

@7 G.f(z) = G2f(z) + HuKau{t + (m + Q)H.} f()

for any f € C*(s).
Proor. We can assume that f € C+(S). Then

(38)  Guf(@) — Gi(e) = B [” e=yw) dt)

= B [[" eetuwf di) + B [ o=t dCo T

(35)

(36)
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By theorem 4.4 in [5], we see that

69 B[, et dGof Ta) = lim BT e~ PG (zp0))

k—o

= %}-’n}o E(X e~ o ® R f (@) gy Tonte))

for suitable {p.(k)}. Now, applying [5.6*] to the right side, we obtain theorem 3.
Let

(40) Ca=(+ (m+ QH.)
and ,
(41) . U, = aCuH = (af + (m + QH)H.

Then, C,isa kernelon V X D and U, isa kernel on V X V. By (2), (3), and (5)
in section 2, we have

(42) Co—Cs+ (@ — B)CGE =0,
43) Ua — Up = (@ — B)CaHp

[5.9] The following relations hold:
(44) K:— Kt + (\— wKK: =0
(45) ‘ v KX — K4+ KMU, — UpK} = 0,
(46) Ga = G2 + H.K.Co.

Proor. Equality (46) is the same as (37). By [5.1], we can show that (44)
holds and that

@) KY® — Kf® + B [” e 0-“H K@) (@ — ) dt) = 0, (€ V).
Since (ﬁ)a &5 Czh-®, by theorem 3, and &(f) = 0, t < o a.e., by [5.2],
(48) B [,” e %0~ «HpK)f(w)(a — B) dt)

= (a— ;S)EE( fo ® e=NO—atC H KA () d<1>)
= (a — B)KMC.HsKY.

Noting (43), we have (45).

Let ¢, m € B*(V), and let Q be a bounded kernel on V X D.

DErINITION 5.3. The system {K}, (e, A > 0, @ + N > 0) of bounded kernels
on V X V is called an (£, m, Q)-system if and only if the KX's satisfy the relations
(44) and (45), fO‘I‘ Us. = a({ + (m + Q)HaH)

Noting that [|U. — Usl| < la — g|(|¢l]l + [[m]l + [QIDI|H.ll, the kernels K
and K} are uniquely expanded in a series which is uniformly convergent (in the
norm of kernels); that is,

(49) Ki= ¥ (=1)mu = NmE)®,
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(50) Ky = ¥ (—1(EMU. = Up) KD,
=

if |u — A| and |8 — «] are sufficiently small. Therefore we have

[5.10] N(K) = {f: K}f =0 fe B(V)} is independent of « and A.

[5.11] For some og and Ao, if K is given, then the whole system {K2} is
uniquely determined.

By (42) and (M,.4),

(51) R(C) = {C.f: f€ C(8)}

is independent of «. Noting (44) and (45),
[5.12] if the assertion,

(52) Kif e C(V) for any f € C(V) U R(C),

holds for some o and Ao, then it also holds for every a and .

[5.13] Let ¢, m, £'m’ € B¥(S), let @ and @' be kernels on V X D (bounded),
and let {K2} be an (£, m, Q)-system. If £’ — £, m’' — m, Qh — Qh € N(K) (for
any h € B(D)), then {K2} is also an (¢/, m’, n’, Q')-system.

Let (M, ¢, m, Q) be the boundary system of the process M, and let K2 be
defined by (35). Then {K2} is an (¢, m, Q)-system and N(K) = N(®). Now, we
have the following uniqueness theorem.

THEOREM 4. Let M and M’ be processes on S satisfying (M.1) ~ (M.3), and
(M, ¢, m, Q) and (M, ¢, m', Q') be their boundary systems respectively. Then,
M M’ if and only if M = M’ and £’ = £, m' = m, and Q'h = Qh (for any

h € B(D)) a.e. v, where v is a measure which satisfies (33).

Proor. The “only if” part is contained in proposition 1. If the conditions
of the theorem are satisfied, let K} and K2 be kernels defined by (35) for M
and M’ respectively. Since M = M’, then K* = K™ and N(K) = N(K’), and
{K2} is also an (¢, m, n, Q) system by [5.13]. Therefore, by [5.10] K, = K, and
by theorem 3, G, = G, that is, M = M’.

For later use, we note the following:

[4.14] let K be a bounded kernel on VX V, let ¢, m, £/, m' € B+(V), and
let Q, @ be bounded kernels on V X D. For some a > 0, if

(63) KmBoxy =0 and Km'Huxy =0
and

(54) K{¢+ (m + QH)f = K(t' + (m' + QH.)f for any f € C(S),

then Kf{g = Kt'g, Kmg = Km'g, and KQh = KQ'h for any g € C(V) and
h e C(D). A A

Proor. Since both sides of (54) are kernels, the relation holds for any
f € B(8S). Let f = xyg for g € B(V). Noting (53), we have Kfg = K{'g. There-
fore, for any f € C(S), K(m 4+ QH.f = K(m’ + @)H.f. By (M..6), the set
{A.f: f € C(S)} is dense in C(S) and the carriers of Km and KQ, (Km' and KQ')
are disjoint. So we have [5.14].
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6. Properties of the boundary systems (Lévy’s system of U-processes)

In this section, My and M on V are fixed. The process M, is assumed to satisfy
conditions (My.1) ~ (M,.6), and M is assumed to satisfy conditions (M.1) ~
(M.3). Let (M, ¢, m, Q) be the boundary system of M. Let G\ be the Green
kernel of M and let

(1) NG = {f: f€ B(V), G\f = 0}.
Then N(G) = N(®) in section 5. Let » be a measure on V such that
(2) N@G) = {f: f=0ae},

where » is a measure given in section 5 (33).

6.1. Miscellaneous properties. We have already seen that

(M.1) M is a Hunt process on V,

(M.2) M has a reference measure,

(M.3) ¢, m e B*S) and Q is a kernel on V X D such that £(¢) + m(¢) +
Q¢ D) =1, a6 0.

ProrositionN 5. The following relation holds:

(M.4) mH.xv =0, a.e. .

Proor. Noting that H.xv(z) = 0 if z € D, by theorem 3,
3) Gaxv(®) = Kot + mHoxv)(®) forany ¢ € V.
On the other hand, by the definition of ¢,

@) Gaw® = B [ o dt) = B [ eetd®) = K.b() forany §€ V.
Noting [5.10], we have (M.4).

ProrosiTioN 6. Let E = {§ € V: £(§) + m(§) > 0} ; then

(M.5) / XE(Es + Q( > (&)) § = for any t > 0, a.e. (M).

Proor. Let w = (1/1 — xz) + Q(1/g,), p = inf {t: [ ud® = ©»} and
p1 = inf {t: [§ ud® > 1} in the process M. Then, by the continuity of &,

5) j;’" udd < 1,

and since [§ ud® is continuous for ¢ € [0, p), p1 > 0 if and only if p > 0. More-
over, by the definition of E and (5), we see that [§ (£ + m)d® = 0. If
Pi(p1 > 0) = 1 for some £, noting that

aG21(x) 1

(6) al,1(z) = o) ST (z € D).
Further, by theorem 1,
) aGol(®) = B [" ac=(¢ + (m + Q)H.1) d)

< E;( L ? atoQH,1 d<1>) + Eyle~aH Gal(z,))

< Ef( ﬁ p—y <!;1;) dcb) + Eye—em).
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Noting (5), Pg(p1 > 0) = 1, and the right continuity of M, one obtains
1 = lim aG,1(¢) = 0, which is a contradiction. Therefore, :

8) Pipr>0)=0 and Pi(p>0)=0 forany ¢ € V.
Now,
9) P;(L’ u(¢,) ds < « for some ¢ > 0)

= Pg(ﬁ u(Z-5)) ds < « for some ¢t > O)

= Pe(/;w u(z,) d® < « for some ¢ > 0)

< Pp>0) =0.
Therefore, (M.5) is proved.

6.2. The Lévy system of M. First, we shall note that

[6.1] BH..sH.f is increasing in 8 and decreasing in a for any f € BH(V).

Proor. Since BG21gHof = Hof — Harpf = E. (e*°(1 — e #)f(x,)) is increas-
ing in B and decreasing in @, the same holds for A, sH.f for f € C+(V) by
(M,.5) and it also holds for f € B+(V).

DEFINITION 6.1. ©,, (e = 0) 75 a (not necessarily bounded) kernel on S X V
such that 0,(¢, {£}) = 04if £t € V and

(10) 0.(¢, E) = lim fH o sH.(z, E) for E< Vandz ¢ E.
o=
By [6.1], O, is well defined and
(11) 0 =6 = lin%ea,
H.(z, E) )
12 Ou(x, B) = =222 f zeD.
= @B =0 i

Let (P, L) and (P, L) be the Lévy system of M and M respectively. Then, by
the definitions of U-process and Lévy system, for any f € B (V X V),

(13) BT e mw)) = BT J6ms £) = B [ Pre) dL).
[6.2] Forfe Byf (VX V),
(14) E §0 e~ T Of(Zr (0= Tr i)
= B [;” exPrf@) dL) + B T, e Of(@ 0 ),
where Pyf(8) = [, P(&, dn)f(€, n).

Proor. Noting that f(§, £) = 0, by [4.14] we have
(15)  Ex Z>:0 e Of (X, o0)—, Tr ) = B e txv (@ )xv(@)f (@i, 24))
+ E"(ET e TOf(L, o)y T(0)))-

The relation [6.2] is a consequence of the definition of the Lévy system.
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[6.3] Letfe B*(V X V); then
(16) B T, (1 = 2000 gy, 210)

= B [;" e<t{(m + QHarsH.}-d2).

Proor. It is sufficient to prove the result for f(¢, 1) = hi(§)ha(n), for é, n €V
and h, € C*+(S). Notations used will be the same as in section 4. Put

a7y 1(k) = E(zl emeoni®f [ ¢=0mh diy(pu-)

“ha(Tann6) X (Tonthy € D))-

Since,

(18) e [0

o) e—Bt—r®0) dt by(Tor,s)— Yh2(@-0))x (s € Tk)

7(8)
< Blltale==r [1* a1
for any s € T, and

(s)

19) = sl [ at <8 i,

we have by [4.8] and [4.9], that the limit
20)  lim I(k) = B e 7 e dt by@rio-ha(ee))
is equal to the left side of (16). On the other hand, by [5.6*]
21) lim I(k) = lim Ez(Z e—emg /;:"e-(a+ﬁ)(l—pn)
hs(@pu) Heha(z2) dt X(pn € D))
= I%LH: E(X e hi(pn—)BGa+sH uha(2,,))

= };1—I>nu E ,(Z e~ %py (xp.— )ﬁH a+ﬁH «hs (xm)g v (xﬂn))

= Ez(ﬁlw e~thy(m + Q)ISI?cHﬂI{"‘h2 dq))’ .

which proves [6.3].
Noting that 1 — ¢=8¢®-76-) 1 1 for s€ T and BH.pH.f T 6.f for
f € B (V X V) when 8§ — », we obtain from [6.3] that

@) E( L e - 2w) = B [T et {m + Q.f-de) )

for f € B (V X V). Combining [6.2] and (22), we obtain
(23) E(X e Of(r(0—)—) Tr(0)))

= B([" eoPrf@) dt) + B [, e={m + Q)0.}5 do)
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for any f € B (V X V). Noting that (s) is a Markov time and 7(s + u) =
7(s) + 7(u, wky), we have from (23),

(24) E’x(gZ(lt e Of (2, —)—, Tr(s)))
- ()
= B[] e=oPrf-dL + {(m + Q}-d®)).

Letting @ | 0 and noting (13), we have
[6.4] forfe BF(VXV)

@5) B[/ Pie) aL) = B [ xvPvfdL) + B [ {(m + Qo)1 ds).

Hence, we have

(26) E( [, Prdz) = E( [, {m + Q) ds)
for any ¢, and consequently (by theorem 3.8 in [4]),
@7 Bf-L>» {(m + nQ)6}f-T forany fe Bf(V X V).

ProrosiTioN 7. Let (P, L) be the Lévy system of ML; then

(#.6) (P,L)> ((m+ @8o, 7).

By [64], (P,L)~ ((m + @)6, T) if and only if xyPyf-L~0 for any
f € B (V X V). So, we have the following proposition.

ProrosiTioN 8. The paths of M have no jump from V to V a.e. if and only f
(P, L) ~ (m + nQ)o, T).

Combining this proposition and proposition 2 (iii) with [4.20], we have the
following result.

ProrosiTioN 9. The paths of M are continuous for t € [0, ) if and only <f
Q =0, ae. v, (P,L)~ (m6, T), and the sample paths of My are continuous for
t € [0, ).

6.3. Killing functionals of BI. Let A, be a killing functional of the process M.
First we note that

[6.5] af.(I — H)1(z) is increasing in a.
Proor. Since

(28) oG2I — H)1(z) = B (o [ eoix(owi) = ) dt)
= Eg(a LM{ et dl: ¢ = oo)

= E’z(a‘/:e‘“‘dt: g = 00)

=E,(1 —e*: 0 =),

aG2(I — H)1(z) is increasing in a. By (M,.5), [6.5] is proved.
DEFINITION 6.2. Let

(29) 6(z) = lim aH.(I — H)1(z), zeS8.
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Then,

(30) 6(z) = Lﬁ)l(—” if zeD.
Let
31) € = inf {s: x,4) = 9}

as in section 4; then from [4.17]
[6.6] P.f <w®)=Puyz_€V,§ <o)+ P €T),

[6.7] P.feT) = E( ﬁ) " (m+ Qo d<I>).

Proor. Let

(32) 1) = Bo( T, x(s € To)em 0 x(r(s) = w0)(1 = ¢=86=sta)))

Then, by the monotone convergence theorem,

(33)  lim 1) = B o™ x(r(s) = 0)(1 = ¢=A6=reN)),

On the other hand, by (28),

(34) I(k) = E(X x(%o, € D)e~x(0a41 = o )(1 — ¢=PC=en))
= Ei(X e~*8G(I — H)|(x,))
= E(X e»8Hp(I — H)|(25.)9+(5)).

And by [5.6*], we have

(35) lim 7(k) = E( [) " eet(m + Q)BH(I — H)1 d<I>).

Hence,
36) E( %re_m(s_))((r(s) = )(1 — e~ BE—r6-D))

= B [ e(m + QA — H)1-d%).
Letting | 0 and then 8 — », we have
B PEET) = B L x(rls) = =) = B [[" (m + Q)0-d2).
From [6.6] and [6.7]
(38)  Puf <) =Puler-€ V¢ <o)+ E( [ m+ Qode).
Noting that {t < §} € {§ =t + f(wi,)},
(39) Puf <O =Pulm-e V0 <7(0),5 <)+ B [

0
Since Ey(AL(t)) = Pi(y < t) = P(f < 1), we have
(68] Ee(du(®) = Pelas- €V, ¢ < 7(0), ¢ <) + B [} (m + Qo dt).

(m + Q)8 d<1>).
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ProrosiTioN 10. Let A, be a killing functional of M. Then

M.7) A,> (m+ Q)-T.
From (39), the following result is easily obtained.

ProposiTiON 11.  The relation x;— ¢ V when ¢ < », a.e. (M) holds #f and
only if
(40) A, ~ (m + Q)o-T(HN).

Since § = 0 if M, is conservative, combining [4.21] with proposition 11, we have
the following result.

ProrosiTioN 12.  The process M is conservative if and only if M 1s conservative
and A, ~ (m + Q)-T for M.

In conclusion, we have the next theorem.

THEOREM 13. Suppose M, satisfies (My.1) ~ (M,.6) and M satisfies (M.1) ~
(M.3). Then the boundary system (M, ¢, m,Q) of M satisfies (M.1) ~ (M.7).

6.4. Remarks on condition (M.C). Suppose M, satisfies the conditions
(M,.1) ~ (M,.6) and M satisfies the condition (M.1) ~ (M.3) and

M.C) G.feC®) if feC(I).

By theorem 3,

(41) Gof(t) = K H.f(£) for ¢V if £=Q =0, ae.»
(42) G.f(t) = Ko(£ + mANf() for ¢€V if Q=0, ae. »

Ifl=Q =0, a.e., from (41) and (M,.6), K.f € C(V) for f € C(V). And if
@ = 0, a.e. and M, satisfies the condition

(Mo.6%) {H.f: f<C(S)andf(t) = Ofort e V} is dense in C(S);

[6.9] K.f, Kutf and Komf € C(V) for f € C(V).
Noting [5.12] and proposition 2, we have the following result.

ProrosiTioN 14. Suppose that M satisfies (M.C) in addition to (M.1) ~
(M.3).

(i) If the paths of M have no sojourn on V and no jump from V to D, then

(M.C) G\f € C(V) for f € C(V).

(i) Suppose that M, satisfies (M.6*) for (M.6). If the paths of M have no jump
from V to D, then

(M.C) Ghfand Gy(£ + mA,)f € C(V) for f € C(V).

ReEmARk. The converse of proposition 14 is in general true. Namely, if
M satisfies

(M.C) Gifand Gh(¢ + mHA., + QA.)f € C(V) for f € C(V),
then, by [5.12] and theorem 3, we can easily see that M satisfies condition (M.C).

7. Construction of M for a given boundary system

7.1. Lemmas on right continuous functionals. Let M be any process on S
satisfying (M.1) and (M.2) and let (P, L) be the Lévy system of M. Let 4, B,
and C be continuous additive functionals of M, @, 8 € B (S X S), and 0 < a,
B < 1. Let
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a(t) =1I (1 - a(x,_., xa));
<t
b(t) = Et (1 — B, xa))

The following lemmas are proved in [6].
[7.1] Suppose that E.(Jg e=4® dC) and E.(Js e B® dC) are bounded in
z. Let

(1

Kf(z) = E( [)” e~ 40a()f (z2) do),
) Kof(@) = E( ﬁ) * e~ BO(t)f () dc),
Uif@ = [ P, dyat, y)f@),

Usf@) = [ PGz, dy)Bia, v)f@),
and let E,(f5 U:l(x;) dL) be bounded in z(¢ = 1, 2). Then
@) Kif(z) — Kaof(x)
+ B[ e=40a() {(Kof(e)(dA ~ dB) + (Us — UnKef(@s) dL} ) = 0.
[7.2] For any Markov time ¢ such that {t < ¢} C {o(wi") = ¢ — &} and
any f € Bf (S X 8),
) E( ﬁ) ° o= AOPf(z,) dL) - E(; o= A0 (z,_, x,)).

Let A, be a killing functional of M; then we have the following analogue
of [7.2].

[7.3] For any Markov time ¢ such that {t < ¢} C {¢(wi") = ¢ — £} and
for any f € B*(S),

() B[] o4 dA) = B(f@)em 4058 < 0§ < ).

7.2. Preliminaries. In the following, v > 0 and M, satisfying (M,.1) ~
(M,.6) are fixed. Let M be a process on V which satisfies (M.1) and (M.2). Let

(6) N@G) = {f e BXV),G\f = 0}
where G, is a Green kernel of M. Let » be a measure on V such that
(7 N@G) = {feB+HV) f=0, ae v}

as before. Let (P, L) be the Lévy system of M. In section 7.2, we shall assume
that a system (M, ¢, m, Q) satisfies the conditions (M.4) ~ (M.7) and the follow-
ing (which is weaker than (M.3)): '

(M.3%) ¢, meB¥V),Qisakernelon V X Dsuchthatf + m + Q(-,D) > 1,
a.e. v.
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Let
®) Co=1t+ (m+ QH,,
Uy = aC,H,
Va(§, E) = (m + QaH H(, E — {8), (B CV),
9 va(¥) = (m + QaHH(E, {£}),
wa(§) = af + v,
Then
(10) aCy = Uy + aCo(I — H),
Ui = W + Vo,
and by (M.6), the definition of ©, and [6.1],
(11) Vof T K Bf-L for any fe Bf(V X V).

Therefore, by appendix I, we have that
[7.4] there exists k, € Bf (V X V) such that 0 < k, < 1 and

(12) Vof T = P(kof)-L  forany feBi(V X V).
Let
(13) K@) = B [[7 et I (1 = Ralton, £ d2);
a<t

then
(14) K = K} = G\

[7.5] The operator K% is a positive kernel and aK3C,1 <1, (e, A > 0,
a+ x> 0).

Proor. Since limy—o K31 = K,l, it is sufficient to prove [7.5] for A > 0. Let
Va§) = Va5, V) = Vul§, V — {8),
Va® = [ Valt dn),
(16) aCe(§) = wa(§) + Va(f) + aCu(I — H)1(2),
p = p(e) = infs: 7k, &) 2 ¢
" po=0 and pau = px + p(wyh),
then limy,—w p, = «. Let

(18) T = @B f[7 em0te T y(m)Ca(ts) dt)

(15)

(17)

where y(n) = (1 — Kal&n—) £m)x(pn < {)). Since
o T v)Ca(@)] < adle] + Im] + [QDIA,

(19)
lima II 'Y(n)Ci(E) =all (1 — k-, ga))Cal(s);
ey 0 <t 8 <t
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noting that A > 0, we have
(20) lifrg J (&) = aKiCal(8),

@) O < aBe (T et T Am)Catk) dr)

= B oo T ytm) By [ e taCile) dr)).
Let
(22) 1) = B [} e~metaCele) dt).
Since aCu(l — H)1 = (m + Q)aH.(I — H) < (m + Q)8, by [7.4] and (ML.7),
23) L&) = B [} e~ t(wa + Vi + aCall — H)1) dt)

< B [F e (wadt+ [ kaleo )P dn) dL + dAL)).
Noting that r(&_, &) < eand & €V, if & € V and s < p, by [7.2] and [7.3],

24) 1)) < Bl — emep + eepx(r(Emy &) = Ohalbo, £) + €727
_ € =p<w))
< Ei(l - e—wa~p(1 - ka(fﬂ—; Eﬂ))X(P < f))

Therefore,
(25) Jo(§) < Eey(X emom I y(m)(1 — e=abri=ply(n 4 1)) < 1.
From (20), [7.5] is proved.
Since 1 = H,1 = A,(1 + (a — v)G%1),
(26) Ka]- _<_ Ka(€ + m + Q(’ D)) = KaCn(l + (a - 7)G‘21)

1
< T+ e = i3]

for @ > 0. So, we have that

[7.6] K2 is a bounded kernel (« > 0,A >0, & + X > 0).

[7.7] The kernel K, satisfies the relations
27) KX — Kt 4+ (A — wKMKE = 0,
(28) K) — K} + Ki(Ua. — Up)K = 0.

Proor. For A > 0, we can apply [7.1]. Note that P(k.f)-L = Vaf-T. For
A = 0, we can obtain (27) and (28) by letting A — 0.

Let
(29) Ga = Gg + HaKaCa7 (a > O);
then G, is a kernel on 8 X S.

[7.8] The kernel G, satisfies the inequality aG.l < 1.

ProoF. By [7.5], aG.l = oG + aH.K.C.l < oGl + H,1 < 1.

The following is an immediate consequence of [7.7] and (29):
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[7.9] Go— Gs+ (e — B)GGs = 0.

7.3. Thecase{ > p > 0. Insection 7.3, for the system (M, ¢, m, Q), we shall
assume (M.C) and

(M.3**) ¢ > p where p is a positive constant, in addition to (M.1), (M.2),
(M.3*), and (M.4) ~ (M.7). Notations used are the same as in section 7.2.
From (M.3**), we can see by the definition of K2 that

(30) KX < min (% %)
From (M.C) and [5.12] we have that
[7.10] G.fe C(S) it f € C(S).
From (M.C) and (M.1)
31) R(K) = {Kf: f € C(V)} is dense in C(V).
Since G2 + (1/a) H, is a Green kernel of M,
(32) }g‘}o laGof + Hof — fll = 0 for fe C(8).-
In particular,
(33) lim [laGaf — f| = 0

forfe C(S)and f(¢) = 0,¢€ V.

[7.11] One has limg—» ||KoUsg — gllv = 0.

Proor. Since K, U, = aK.C.H is a uniformly bounded kernel in «, it is
sufficient to prove [7.11] for ¢ = K*f with f € C(V). Since

(34) KaUag - 9= (Ka - Kz)Uag - Kt);UaK)‘f - K)f
= MK.K:U.g — Kif,
then
(35) 1KUeg = gll < 2l = 2 141 =0, (> 0).

[7.12] Iffe€ C(S) and f = 0 on V, then limy» [|aK.Cof|ly = 0.
Proor. By (33), it is sufficient to prove the result for f = Gjg, for some
B > 0and g € C(8). Since

(36) CaGlg = (m + QH.GYg = (m + QH4GYy,
@7)  [[aKLafll = [[aK.CGogl|
< (il + el AG21 LI gy g 0, (@ o)
[7.13] For every f € C(S), lime—» [|aKCof — fllv = 0.
Proor. For any f € C(S), by [7.11] and [7.12], we have
(38) aKuCuf — flv < |KaUef — flv + llaKuCall — H)f[ly =0, (a— ).

[7.14] For every f € C(S), limenw ||aGf — f|| = 0.
Proor. Since aG.f — f = oGof + Hof — f + Ho(aK.Cof — f), the rela-
tion [7.14] is a consequence of (32) and [7.13].
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From [7.8], [7.9], [7.10], and [7.14], G+ is a Green kernel of a strongly con-
tinuous contraction semigroup on C(S). Therefore, there exists a (unique) Hunt
process M on S whose Green kernel is G, given by (29). (See [3].)

{7.15] The following equalities hold:

(39) H,f = E (e*f(x,): ¢ < ),

(40) Gif = E( [ e=fa) dt);

that is, M, is a stopped process of M.
Proor. For any fe R(C) = {Cuy: g € C(S)}, f/€ € B(V), and noting
(M.4), G.(f/£) = H.K.f. On the other hand,

@1) G(J;) - E( ﬁ i e—aﬂ-;dt) - E.(e-‘”Gajg (x.,)) = B (K.f(z)).

However, by [7.13], {K.C.g: g € C(S)} is dense in C(S) and we have (39). Since
(42) Gf = Gof — HK,Cof = Gof — HGof = Gof — E (672Gof(z,))

= E( [ e=f(z) dt),

equation (40) is proved.

[7.16] The process M satisfies (M.2).

Proor. Let » on V and m, on D be the measures appearing in (M.2) and
(M,.3) respectively. Let m(E) = mo(E) + vCo(E), (E C S). Then, mo(E) =0
if and only if Gz, E) = 0 for any z in S, and vC,(E) = 0 if and only if
K,C.(¢, E) = 0 for any ¢ in V (by [5.10]). Therefore, m(¥) = 0 if and only if
Gu(z, E) = 0 for any x in S.

ProrosiTiON 15. Let the system (M, ¢, m, Q) satisfy (M.1), (M.2), (M.3%),
(M.3*%%), (M.4) ~ (M.7), and (M.C). Then KJ, given by (16), is an (£, m, Q)-
system, and G, given by (29), is the Green kernel of a process M which satisfies
(M.1) ~ (M.3). Let (M* ¢* m* Q*) be the boundary system of M; then
N(K) = NK*), and K.g = K1/ + m + n)g, £* = (/£ + m + n), m* =
(m/€ + m + n), and Q* = (1/€ + m + n)Qf, for any g € B(V) and f € B(D),
except for functions in N(K) = N(K*). Here {K2} is a system of kernels defined
by M (as in definition 5.2) and n = Q(-, D).

Proor. The first part has already been proved. Since

(43) Gof = G3f + H.K (L + (m + QHf
= Gof + HKU(¢* + (m* + QL)
for any g € B(V) and K.g = Kx(£*/{)g. Therefore, N(K) = N(K*) and
(44) K (G €+ o+ Q1)) = Kater + (4 Q0.
Noting (M.4), by [5.14] we have m = m* and Qf = @*f, except for functions in
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N(K*). Since £* + m* + Q*(-, D) = L(N(K*)), £*/t = (1/¢ + m + n)(N(K*)),
and N(K) = N(K*). Thus, we have the last part.

7.4. The general case. Let the system (M, ¢, m, Q) satisfy the conditions
(M.1)~(M.7) and (M.C). Let Gy be the Green kernel of M. Then the system
(M, 1 + ¢, m, Q) satisfies the conditions in proposition 15. By proposition 15,
there exist a (1 + ¢, m, Q)-system K3 such that &* = G and a Markov process M
on S whose boundary system (M, ¢, m, @) satisfies

(45) {= ITH: m = g: Qf = %f (for any f € B(D)), a.e.w,
u6) B[ e=sx) d®) = 2K.10), (feBWV),t€ V),

where » is a measure appearing in (M.2) and & = T, (in B).
[7.17] Let ® = 13; then KXf(§) = Eg( fo ® gm a2 (z,) d¢).

Proor. Let K2f = E.(J§ e~«—**®f d®). Then by [5.1], and the definition
of ®, {K2} is a (1 + £, m, Q)-system and K, = K,. Thus, by [5.11], K} = K}
for any a and A.

In particular, we have

[7.18] @) = By( 7 ewrae) = By ["e3yadt) (¢ V). There-

fore, M is a process whose velocity is exactly twice times that of M.
Let

47) u(-) = g jmw(g{),
where E = {£: £ 4+ m > 0}.

[7.19] Pg(j:udé =0, > O) =1,forany £€ V.
Proor. Let 7(t) = sup {s: ®(s) < t}. By (M.5) and [7.18],

(48) Py ﬁ(‘) w(z,) d® = o, for any ¢ > o)

= }z)g(% ﬁ u(§,) ds = o, for any ¢t > 0)

pg(ﬁ u(§;) ds = «, for any t > 0) =1,

for ¢ € V. Noting that Py(7(0) = ¢ = 0) = 1, we have [7.19].
[7.20] Let (P, L) be a Lévy system of M and & = op. Then

(49) Es( ﬁ s (g—’;) d<I>) — By(e=f(zs): 75 € D),

(50) E;( j; 7 e rm d<I>) =0,

where ¢ € V and f € B(S).
Proor. Since z, € V for 0 < ¢t < 7. By [7.2] and (31) in section 5,
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(51) Ef(e_7&f(xi): T € D) = Ef(a;& e_wa(l's—)XD(xe)f(xS))

= Ee( L& e 'xyPof dL)
([ ea(t))
([ a(2))

Thus (50) is proved. Letting f = g, in (49),
2 B[] erQC, D)de) = Beg,(we): 2z € D)

= Eg([: e Yixp dl)
= Eg( ﬁ: e "'xp dt)

= Eg( ﬁ) evi(m + QA1 d<I>)
Since A,1 = 1, we see that

(3) E ( [) ® e1Q(&,, D) dcb) -E ( L " er(m + Q) d<1>)-
Therefore, we have proved (50).

Let
(54) ¥ ={%+xpT,
then
(55) T=IT_H<T>+XD~T=<I>+\II.

[7.211 Letp = sup {t: ¥(t) = 0}; then p = 0, a.e. (M).
Proor. If t>3 =0p, V()2 [sxpdt >0 and p <& a.e. Therefore,
P p=0)=1forzeD. Fort eV, E(f§£dd) — E:(¥(p)) = 0, and by (50)

(56) E;(j(;p erm dtb) < Eg(];p er'm dcp) = 0.

Thus, P:(f5 (1/1 — xz) d® < o for any ¢t < p) = 1. On the other hand, by
(49),

r
(57) Eg(/(; e'Q (gl) d<I>) < Ege~: r,,e€D) L1,
R4
and P;(f5 Q(1/g,) d® < « for any t < p) = 1. Therefore,
(58) Pg(ﬁud<1><ooforanyt<p)=1

and, comparing this equality with [7.19], we have Py(p = 0) = 1.
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[7.22] The function ¥(¢) is strictly increasing for ¢ € [0, ¢) a.e. (The proof of
[7.22] was given by K. Sato.)
Proor. By [7.21], we have

(59) Pt < p(wt) = 0) = E(x(t < {)Pzfp = 0) = Py, t<®
for every fixed t. Hence
(60) P.(p(wit) = 0 for all rational t < {) = 1.

Relation [7.22] is proved.
Therefore, by [9] there exists a right-continuous Markov process M on S such
that, for each A belonging to the Borel field generated by cylinder sets,

(61) P,(A) = P.(w € A),

where the mapping w — @ is defined by x,(®) = z.e)(w) and u(s) =
sup {t: ¥(¢) < s}. Moreover, the Green kernel G, of M is given by

62) G.f@) = B [ e*0fz) av ).

Noting B.(f? e=*fxp dt) = E.(f§ e*(m + Q)H.fd®) and ¥ = T — &, by [5.2],
we have

63) B[ evoraw) = B[ emvopean) + B 7 e-vrxo dt)

= B[ "¢ + (m + QA d2)-
Since ¥(t) = tfort < ¢ A ¢, we have

(64) Gof = Gof + HKa(t + (m + QHL)f
where K. f(¢) = EE( ﬁ) ® e—a¥Of(z,) dcb)-

Letting
(65) K = B [, e-v020f(z,) da ),

by [5.1], we can easily see that {K}} is an (£, m, @)-system and K* = K* is the
Green kernel of M. Therefore by [5.10] and (M.C),

[7.23] G.f e C(8)if f € C(S).

Combining [7.23] and the right continuity of M, we see that M is a Hunt
process. By (62), for a measure such that f-¥ = 0 is equivalent to f = 0 a.e.,
(f € B*(S)), we also see that M satisfies (M.2). (Such a measure exists by [4].)
Finally, by the definition of ¥, the stopped process of M coincides with that
of M. Hence, we have that

[7.24] M satisfies the conditions (M.1) ~ (M.3).

Let (M*, £*, m*, @*) be the boundary system of M, and let * = T, (in M),
that is, E,(J2 et dt) = E.(J§ et d®). Let K2f(¢) = E:([5 e~ MO —atf(z,) d);
then K* is the Green kernel of M* and

(66) Gof = Gof + H.KX(* + (m* + QYHL).
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Comparing this with (64), we have
(67) Ko+ (m + QH)f = Ki(&* + (m* + @A)

Letting f = (I + (a — v)G9)1 (hence, H.f = A,1 = 1) and noting (M.3), we
obtain K,1 = KZ1; that is,

(68) E( ﬁ)” ¢—a¥ (0 d<I>) - E( L‘” ¢at dq>*).

[7.25] For any f € B(V), K.f = Kf.
Proor. It is sufficient to prove the result for f € C(S). Let

(69) P = inf £: lf(xt) - f(xl))l > € po= 01 pny1 = pn + P(w:’:)'
Since ¥(t) is strictly increasing, o(®) = ¥(p(w), w) and p(w) = u(p(®), w);

hence, E.(g(z;)e) = E.(g(x,)e~=¥®). Since ¥(pn41) = ¥(pa) + ¥(p(wh), wih),
we can prove by induction that

(70) Ea(g(@o)e=n) = E(g(zp,)e=¥0n), g € B(S).
Therefore, writing ¢(x) for both sides of (68), we have
@) B e-onien) [ et ae)
= E(X ¢=*f(20.) (¢(20) — Een(e(2:)e*)))
= Ey(X e~V ef(2,,) (¢(%p) — Ezna(e(z,)e==¥®)))
= B e v0(a,) [ e=¥0 o).

Write I, for the first member of the above equality and 7, for the last member.
Noting

(72) |E£( ﬁ)"’ =if (z) dc1>*) ~ I,|< K21
and
(73) B )" e=*0s@) a2) — L] < Ko,

we have K.f = K:f.

Now, by [5.13], we have { = £*, m = m*, and Qf = Q*f, (f € B(D)) up to
functions of N(K) = N(X*). And by [5.11] and [5.13], K* = K*; that is,
M* coincides with the given process M.

THEOREM 16. Let (M, ¢, m, Q) be a system salisfying (M.1) ~ (M.7) and
(M.C). Then, there exists a (unique) process M on S which satisfies (M.1) ~ (M.3)
and (M.C) and whose boundary system is (M, £, m, Q).

Noting proposition 2 and proposition 14, the following theorems are conse-
quences of theorem 16.

THEOREM 17. Let M be a process on V. Then M is a U-process of a certain
process M on S which satisfies (M.1) ~ (M.5) and (M.C) if and only if M satisfies
(M.1), (M.2), and
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(M.4) G\H.xv = 0forsome X > 0and a > 0,

(M.6) (P,L)» 1, T),

M7 4A,.>06-T,

(M.C) GfecCV)iffeC(V).

The process M is uniquely determined by M.

THEOREM 18. Suppose that M, salisfies (Mo.1) ~ (Mo.5) and

(M,.6*) the set {H.f: f € C(S) and f = 0 on V} s dense in C(8S).

Then, (M, £, m, 0) is a boundary system of a certain process M which satisfies
(M.1) ~ (M.3), (M.5) and (M.C) if and only if (M, ¢, m,0) satisfies (B1.1),
(M.2), and

(M.3) £+m =1, a.e.

(M.4) mHB.xv =0, a.e. v,

(M.6) (P,L)> (mo,T),

M.7) A,>mb-T,

(M.C) Guff, Gumf € C(V) if f € C(V).

(In the above theorems, Gy is the Green kernel of M, » is a measure appearing
in (M.2), and (P, I) and 4, are the Lévy system and the killing functionals of
M respectively.) Combining these theorems with propositions 2, 8, and 9, we
can obtain many alternatives, of which we state the following one alone.

TaeoreM 19. Let M satisfy (M.1) ~ (M.5).

(1) The path of M s continuous for t € [0, ¢) if and only if the path of M, is
continuous and (P, L) =~ (0, T);
(i) M s conservative if and only if My is conservative and A, ~06-T.

O N Y

APPENDIX 1. Proof of [7.4]

Let M be a process satisfying (M.1) and (M.2). Let P and @ be (not neces-
sarily bounded) kernels on S X S, and let L and M be continuous additive
functionals. Suppose that

(*) there exists an increasing sequence of sets {F.}, (F. C S X 8) such that
xr. T 1, (n > ») and E.(J§ e **Pxr, dL) are bounded in n for a fixed a > 0.

(The condition (*) is satisfied if (P, L) is the Lévy system of M (see [11]
and [2.3]).)

[I.1] IfPf-L> Qf -M forallf € B+(S X 8), then there exists k € B+(S X S)
such that P(kf)-L ~ Qf-M for all f € B+(S X S).

Before proving [1.1], we note the following.

[I.2] Let m be a measure appearing in (M.2), and let L and M be
any continuous additive functionals. If

1) E,,,( L ® e—atde) = E,,,( A” —eif dM) <
for all f € B+(S) and z € S, then I ~ M. Here o > 0 is fixed.
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Proor. Let N = L 4 M; then L~ k-N and M ~¢-C for some k and
£ € B*(S) (see [4]). Let

@) @) = B [," e=x(k > O@L — ai))

- E( ﬁ) ® ety (k > Ok — £) sz).

Then u(z) is an a-excessive function and, by assumption, u = 0, a.e. m. Thus,
u(z) = 0 for all z € S. Similarly, we can see that

3) E( [, ex(6 < O@L — ail)) = 0
for all z, and that

(4) E( L ” e—atdz) = E( ﬁ) ® gmat dM)

for all z, that is, L ~ M.
Proor of [I.1]. Forany F C S X 8§, let

wF) = En( [ e=tPxe dLl),

y(F) = Em( ﬁ) ° et Qxp dL).

Then u(F) > »(F), and by (*), u and v are o-finite measures on S X S. There-
fore there exists a function k € B(S X 8),0 < k < 1 such that »(F) = [ xzk dp.
Hence,

(6) E,,,( L e—athdM) = [fdv = / kf du
= B ﬁ) * = Q(kf) dM).

Therefore, for any g € B*(S) and h € B*(S X S) such that E.(J§ e **Ph dL)
s bounded in z, letting f(x, y) = g(x)h{z, y), one obtains

) E,,.( j; ® eatgP(kh) dL) = E,,,( ﬁ] ® eatgQh dM).
By (*) and [1.2], we have [L.1].

(5)

o0 0 0 0
APPENDIX II. Dependency of the boundary system on vy

Let M be a process satisfying (M.1) ~ (M.3), and let v and v* be two positive
constants. Let (M, ¢, m, Q) and (M*, £* m* Q*) be boundary systems of M
corresponding to ¥ and y*, respectively, and ® ~ T, and ®* ~ T'». Let

(1) c@) = c(v,v*2) = g%:%-
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Then ¢ can be considered as a function in C(S) and

(2) ., = ch:.
By theorem 3,
@) Gof = GO + H K (£ + (m + Q1)

= G + H.Ki(t* + (m* + Q*H).
Letting @« = v* and f = 1 in (3), we have

@ PR+ (m+ Q)
and
®) K0 = K (7o a0 9) ¢ € B)).
Applying [5.14], we have
© O rmrer " T IT T or
@h = o) (1€ BOD)),

except for functions in N (K) = N(K*).

O Y

APPENDIX III. Lateral conditions

Let M be a process on S which satisfies (M.1) ~ (M.3), and let (M, ¢, m, Q)
be the boundary system of M. In this appendix, we shall assume that M satisfies
(M.C) and (}?I, £, m, Q) satisfies

o gelV) if gel(V),

MO Fecw) if fe ),
where C, = £ + (m 4+ nQ)H, and U, = aC,H (see section 6.4).

Let A (or A) be an infinitesimal generator of the strongly continuous semi-
group of M (or M) on C(S) (or C(V)), and D(A) (or D(4)) be its domain. Then
by [5.9] and (M.C*), we see that

[I11.1] DA) = {v = Kig: g € C(V)}
and Av = \\ 4+ U — g ifv = K)g.

Let
(1) Dy = {u: u— Hu = Gof, f € C(S)},
and for u € Dy, such that u — H.u = G3f, let
Afu = au — §,
@ ou=au—f

Nu = H,(aHu — f).

By (2), (3) and (5) of section 2, we have that
[II1.2] D,, A%, and N are independent of «.
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Now, by theorem 3, we can easily prove

[8] (i) A < A%; (i) let w € Do. Then u € D(A) if and only if uy € D(4)
and

() Auy = (A% + (m + Q)Nu,
where uy is the restriction of w on V.

By Appendix II, we can see that the equation (**) is independent of 7.
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