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1. Introduction

In this paper are considered some problems in the estimation and inference
on unknown parameters in a linear model under various assumptions on the
error term. We write the linear model in the form

(1) Y= Xr+e

where Y is a p X 1 vector of observable random variables, X is p X m matrix
of known coefficients, 7 is a p X 1 vector of unknown (nonstochastic) param-
eters, and e is a p X 1 vector of errors. If X, the dispersion matrix of e, is known,
then there is no problem, as the method of least squares (for the correlated case)
can be applied to estimate and draw inferences on linear parametric functions
of r. We shall consider the case where 2 is unknown but an estimate , of 9 is
available, which may be computed from previous data or from the present data
without making any assumption on x, and discuss how this information can be
used. In other words, we will discuss the theory of least squares using an estimated
dispersion matrix. It is shown that the estimator of 7, obtained by merely
substituting t for 2 in the least squares estimator of X when 2 is known, is not
necessarily the best. Certain improvements can be made depending on the known
or inferred structure of 2S.
Let us denote by E, D, and C the operators for expectation, dispersion, and

covariance respectively. We consider the following specific structures for E.
Case 1. The matrix D(Y) = 2i is an unknown arbitrary positive definite

matrix.
Case 2. The matrix 2 = XFX' + ZOZ' + O2I, where r, e, and o,2 are un-

known, and Z is a matrix such that X'Z = 0. Such a situation arises when we
consider the mixed model

(2) Y = X7+ Xyy+Zt+ e

where -y, t, and e are all uncorrelated random vectors such that E(y) = 0,
D(,y) = r, E(t) = 0, D(t) = 0, and D(e) = a2I.
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Case 3. The matrix E = CrC' + q21, where r and o.2 are unknown and C is
a known matrix. Such a situation arises when we consider the mixed model

(3) Y = XT+Cy+e
where y is a random vector such that E(-y) = 0, D(y) = r, D(e) = O2I and
C(Qy, e) = 0. A model of the type (3) has been considered by Duncan [3],
Henderson et al. [5], and others under a different set of assumptions on the
variables y and e.

Case 4. The matrix 2 = CMc' + a2I, where C, F, and a2 are unknown, but
the rank of C is known or can be inferred from an estimate of 2S. Or, in other
words, the error vector e in (1) has a factor analytic structure with a common
specific variance for the components.

Case 5. Let Y' = (yi, - *, y,) and e' = (el, * , e,). The component ye has
the representation
(4) ye = Pk(t) + et

where the nonrandom part is a polynomial of the k-th degree in time, Pk(t) =
3o + #3t + *-* + 3ktk, and the error terms et have an autoregressive scheme

(5) et = pleg-i + * + pmet-m + tit
where 7t are uncorrelated errors with a common variance a2. The parameters f3
representing the coefficients of the polynomial Pk(t), the autoregressive param-
eters pi, and a2 are all unknown. The problem is to estimate the parameters pi
from a single series of observations on y, and in the absence of an independent
estimate of Z.

In practice, we have the additional problem of checking the accuracy of an
assumed model before estimating the unknown parameters. Appropriate tests
for this purpose have been suggested in each case. Such tests are possible if an
independent estimate of Z is available.
An independent estimate ofZ may be available from past data or from multiple

observations on vector Y of model (1). In the latter case, the observations are
replaced by the average vector for which model (1) is true and the sample
variance covariance (dispersion) matrix provides an estimate of 27. Note that
if Y and (n - l)-lS represent the sample average and dispersion matrix, then
the model (1) applied to Y is written Y = Xr + e, and an estimate of D(Y) is
[n(n - l)]-1S where n is the sample size. Thus, the problem is reduced to the
standard form with a linear model for a single vector random variable for which
an estimate of the dispersion matrix is available.

In the general case we shall represent the dispersion matrix of Y by Z and its
estimator byf-lS. For purposes of tests of significance and computing confidence
intervals for unknown parameters we shall assume the following distributions
for Y and S:

(6) y N,(r, Z),
(7) S Wp(f, Z),
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where N,(r, Z) denotes a p-variate normal distribution with mean and dis-
persion matrix as indicated in the brackets, and W,(f, 9) denotes Wishart's
distribution on degrees of freedom and expected matrix as indicated in the
brackets. The symbol - is used for "distributed as."
We let p denote the dimension (or the number of components) of Y, and k

that of r. Without loss of generality, we shall assume that rank X is also k.
The methods discussed in this paper have wide applicability, although the

specific problem of signal measurement is considered in the last section. Other
areas in which these methods may be applied are in the estimation of polynomial
trends of growth curves and time series, and prediction in time series.
Sometimes it may be possible to make a preliminary transformation of

model (1) by multiplying both sides by So l/22 where 2o is a guessed, or an
a priori dispersion matrix of e. The new model is Y* = X*7 + e* where
y* = 1o 1/2Y, e* = 27 1/2e and X* = SO "/2X. The estimated dispersion matrix
of Y* is f-1S* where S* = SO l/2SZo 1/2. We can then apply the methods of this
paper assuming similar models for D(Y*).

2. Some algebraic lemnmas
Now we will prove some algebraic lemmas which are used in later sections of

the paper.
LEMMA 2a. Let A be a positive definite matrix partitioned as

(8) (A11 A12\
with its inverse as

All A12\
(9) QA21 A22)

Then All - (A,,)-' is nonnegative definite.
Multiplying (8) by (9) we have

(10) AnAll + A12A21 = I, A,IA12 + A12A22 = 0.

Multiplying both the equations in (10) by Al11,
(11) All + Alj'A12A21 = Aj1-, A12 =- Ai'A12A22.
Rearranging the terms in the first and substituting for A2' = (Al2)' from the
second equation of (11), we have
(12) All- Al' = -AlIlAl2A2l = Al-'A,1A22A2,A-111.
The last matrix in (12) is nonnegative definite, which proves the required result.
As a corollary we have the following result. Let the partitioned matrix

A(1 A12 A:,
(13) ~~~A21 A22 A2*-1

(13) ~~~~~A31 A32 A33 .-./
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be positive definite. Denote by A,1 the partition in the leading position in the
reciprocal of the submatrix of (13) obtained by considering the first i row and
column partitions. Then the matrix Atl - Aj' is nonnegative definite for any
i and j such that i > j.
LEMMA 2b. Let X be a p X k matrix of rank k, and let Z be a p X (p-k)

matrix of rank (p - k) such that X'Z = 0. Then

(14) (XtE-1g)-lZ27-1 = (X'X)->X' - (X'X)-,'X'Z(Z'62Z)-1Z'

where s is any p X p positive definite matrix.
Multiplying both sides of (14) by X, it is easily seen that the equality holds.

If multiplication by Z also results in equality, then (14) is true. Multiplying
by Z from the right and by (X'r-'X) from the left we have

(15) X'2-IZ = -X'r7-1X(X'X)-lX'Zz[(Z'Z)-lZ'2z]-l,
(16) X'Z-'Z[(Z'Z)-Z'5Z] = -X'Z-1X(X'X)-1X'2Z,

(17) X'Z-'[Z(Z'Z)-1Z' + X(X'X)-lX']27z = 0,

which is true, since the expression within the square brackets of (17) is I and
X'Z = 0
LEMMA 2c. With X and Z as in lemma 2b, the matrix

(18) (X'X)-1X'ZX(X'X)-1 - (X/;-lX)-1
is nonnegative definite.

Consider the matrix

(19) (Z'Z-lX Z'-iz) = ( E-(X Z).

The reciprocal of the right-hand side is

(20) (X Z)-1Z(X)
But

(21) (g . Z)-i = ((X'X)-'Xt)

Substituting the result (21) in (20), we have the leading partition in the recip-
rocal of (19) as
(22) (XIX)->X;X(X'X)-l.
Hence, (18) follows by applying the result of lemma la.

Finally we need some results on restricted eigenvectors of a symmetric matrix
as developed by the author elsewhere (Rao [12]).
LEMMA 2d. Let 2 and X be as in lemma 2b and consider the nonzero eigenvalues

and right eigenvectors of the matrix (I - X(X'X)-1X')L'. Let Xi > X2, * 2 XI > 0
be the eigenvalues and L1, - * * , Lr be the corresponding eigenvectors which can be
chosen to be mutually orthogonal. Then we have the following results:
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(23) L'X = O, i = 1,***,r,

L'2Lj = 0, i ij.
The results are easy to prove. The Li are said to be restricted eigenvectors of L7

with the restriction LfX = 0.
LEMMA 2e. Let s = CrC' + u2I and let L be a restricted eigenvector of L' corre-

sponding to the restricted eigenvalue cT2 so that L'X = 0. Then
(24) L'2X = 0.
By definition,

(25) (I - X(X'X)-1X')(CrC' + a2I)L = a2L,
which on simplification gives
(26) (I - X(X'X)-1X')CFC'L = 0.
Multiplying by L' and putting L'X = 0, we have
(27) L'CrC'L = 0 X CFC'L = 0 =X X'ZL = 0.

3. Covariance adjustment

In this paper, we frequently refer to covariance adjustment in an estimator
using another statistic (with zero expectation) as a concomitant variable. The
procedure is described as follows.

Let T1 and T2 be two vector statistics of orders k and r such that E(T1) = X
and E(T2) = 0, where x is a vector of k unknown parameters. The vector T1 is
an estimator of x, but if C(T1, T2) $ 0, then a better estimator of r can be
found when the dispersion matrix

(28) A = (Al1 A12)
of (T1, T2) is known. Thus, if we consider the estimator
(29) T*= -A12A2-21T2,
then
(30) D(r*) = All - A12A2-2A21 = D(T) -A12A22'A21;
that is, D(T1) - D(r*) is always nonnegative definite. Hence r* is more efficient
than Ti.

If only an estimate of A,

(31) U- (Ull U1
(31) ~~~~~~(U21U22),

is available, we may substitute Uij for Aij in the formula (29) and obtain the
(covariance) adjusted estimator as

(32) X = T- U12U2-21T2.
It is seen that when Uij are distributed independently of TX,
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(33) E(r) = E(T1 - U,21JUiT2) = T

so that the adjusted estimator r is also unbiased for r. Now
(34) D(x) = D(T1) + E[Ul2U:2-1D(T2)U2-U21]- E[Ul2U12-'C(T2, T1)]

- E[C(T1, T2)Ui1U22]
= A11 + E[Ul2U2-2_A22Ui1U2]- E[Ul2Ui1A21]-E[A12U21U21]

where the expectations are taken over the variations of Uij. We are no longer
in a position to claim that D(T1) - D(f) is always nonnegative definite as in
the case of D(T1) - D(T*). As a matter of fact, it is seen from (34) that if
A21 = 0, or very nearly 0, then D(T1) - D(4r) is negative definite; that is, T1 is
more efficient than -.

Thus, covariance adjustment can result in a decrease in efficiency when an
estimated dispersion matrix is used in the place of the unknown matrix. How-
ever, if A12 is not close to zero, we should expect D(T1) - D(s) to be nonnegative
definite.
There is, however, an important problem. It is possible that the use of T2 as

a whole for covariance adjustment is not optimum, and a suitable choice of
functions of T2 for this purpose may provide maximum efficiency. In the absence
of an exact knowledge about A the optimum solution cannot be found. However,
an estimate of A may provide some guidance in the choice of suitable functions
of T2. We consider such problems in the rest of the sections.
We were able to draw some conclusions on the basis of the formula (34) for

D(T) without making an explicit evaluation of the expectations involved. We
shall now complete the discussion by making the following assumptions on the
distributions of (T1, T2) and U:

(35) (T) Nk+, [(7), A][
(36) fU -Wk+,(f, A).
In the rest of the present section we lay down procedures for drawing inferences
on X on the basis of the estimator - obtained by adjusting a given estimator T1
with respect to a given concomitant variable T2 under the assumptions (35)
and (36). An important result in this direction is contained in lemma 3a.
LEMMA 3a. The conditional distributions of ? and G = f(Ull -Un2-2'Un),

given T2 and U22, are independent, and the conditional distributions are

(37) Nk(7, (1 + T'1)F),
(38) G -- Wk(f-r, F),

where fTr = T2U2-2'T2 and r = All - A12A2-21A21.
As a consequence of lemma 3a, we have the results of lemma 3b.
LEMMA 3b. Let

(39) Uk- 2+G T
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(40) Vk= T)G1(T - T).

Then

(41) f r k + 1 Uk- F(k,f- r - k + 1);k

that is, a variance ratio distribution on k and f - r - k + 1 degrees of freedom,
and Vk has the distribution

(42) const. Vk/ (1 + Vk)-kr+3)22Fl( rf - r + 1 f + k + 1 Vk) dV

The distributions of lemmas 3a and 3b follow from the basic results derived
in earlier papers by the author (Rao [7], [8], [9], [11]).
The (1 - a) probability concentration ellipsoids for the unknown param-

eter T based on Uk and Vk are

k2y(43) (T- )'G'( - T) .f k r + 1 Fa(1 + Tr),
(44) ( - T)'G1 (T - r) < Vka,
where Fa and Vka are the upper a-probability points of the F and Vk distributions
given in (41) and (42), respectively. It has been shown in the earlier paper
(Rao [8]) that the inferences based on the F and Vk distributions are not very
different, although there is slight advantage in using the Vk distribution. How-
ever, the percentage points of the Vk distribution are not yet available.

Observing that
-1(f T) (P'~- P7

(45) ( r- T)'G1(T - T) = max P'GP

we find that the simultaneous confidence intervals for linear functions P'r of r
are provided by

(46) P'4T i [P'GPkFa(1 + T2)/(f - r + 1)]1/2
(47) P dT Z [P'GPVka]'12
using (43) or (44).

If the confidence interval for a particular linear function P'r is needed, we
replace k by unity in the expressions (46) and (47). The number Fa is then the
upper a-probability value of F on 1 and f - r degrees of freedom, and Vja is
the upper a-probability value of the V, distribution.
The knowledge of the actual distributions of (T1, T2) and U enable us to find

the exact expression for D(T) which is left in a symbolic form in (34). Using
the result (37),
(48) D(PIT2, U22) = (1 + Tr)v.
Now, observing that
(49) f-r 1 Tr F(r,f - r + 1),
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we find
(50) D(X) = E[(1+ T) f-
When A is known, the best estimator r* has the dispersion matrix r so that the
loss of efficiency in using an estimate of A is r/(f - r - 1), which is zero when
r = 0, and which tends to zero as f tends to infinity.

Further, if A12 = 0, r = All and therefore T1 is more efficient than x for any
fixed values of r and f. The situation will be the same if A12 is close to 0.

In the cases considered in this paper we shall first reduce the problem to that
of making covariance adjustment in an estimator T1 using a concomitant var-
iable T2 and an estimated dispersion matrix of T1, T2. Then the inference follows
on the lines discussed in this section.

4. Case 1: An arbitrary matrix E

4.1. Test for specification of the model. Let us recall that the linear model is
Y = XT + e where D(e) = Z, an arbitrary positive definite matrix. An inde-
pendent estimate f-IS of i is available. Assume that Y and S have the distribu-
tions (7) and (8) respectively. The theory and appropriate statistical methods
in such a case have been worked out in an earlier paper (Rao [11]). However,
we shall make some important comments and also discuss an alternative way
of expressing the precision of the estimators.
LEMMA4a. Let k be the rank of X, r = p - k, and

(51) T2r = min (Y - Xr)'S-1(Y - Xr).

Then under the assumptions (7) and (8) on the distributions of Y and S,

(52) ~~f-r+1T2
r F(r,f-r+1)(52) ~~~~~~r

The result of lemma 4a is proved in [11]. The test criterion Tr examines the
adequacy of the model, Y = X7 + e, with respect to the nonrandom part.

4.2. Estimation of parameters. If L were known, the least squares estimator
of the unknown vector X is obtained by minimizing
(53) (Y - Xr)'Z-1(Y - Xr)
with respect to r. A natural method of estimation when only an estimate of Z
is available is to apply the method of least squares, substituting f-IS for 2.
Thus, we are led to minimize the expression
(54) (Y - X7)'S-(Y -Xr),
and to obtain the normal equations
(55) (X'S-1X)r = X'S-1Y.
Then we have the estimator
(56) -= (X'S-1X)-1X'S-Sy
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under the assumption that rank X is k, the dimension of T (without loss of
generality).
To study the properties of X and to draw inferences on x, we make the following

transformation of the model:
(57) T, = (X'X)-'X'Y, E(T1) =

(58) T2 = Z'Y, E(T2) = 0,
where Z is p X r matrix of rank r such that Z'X = 0. The estimated dispersion
matrix of (T1, T2) is U where

((X'X)-1X'SX(X'X)-1 (X'X)-'X'SZ
(59) fu-=Z'SX(X'X)-1 Z'SZ)
Then the theory and methods developed in section 3 apply. The adjusted esti-
mator, according to the formula (32), is

(60) T,- U12U221T2 = (X'X)-1X'Y- (X'X)>'X'SZ(Z'SZ)'1Z'Y
= (X'S-1X)-'XS-1Y,

using the identity of lemma 2b. Thus, the estimators (56) and (60) are the same.
The formula (56) is useful in that it provides the estimator directly in terms of
given quantities X, S, and Y (that is, not involving Z).
We shall now apply the formulae of section 3 to obtain explicit expressions in

terms of X, S, and Y for drawing inferences on r. The quantities that appear in
the formulae (43), (44), (46), and (47) providing confidence intervals are

(61) Tr = f-T2'U221T2 = Y'S-1Y -'X'S-lY,
(62) G = f(Ull - U12U22U21) = (X'S-1X)-1.
The identity in (62) is derived from the identity (14) of lemma 2b. We now
have x, T2, and G all expressed in terms of X, S, and Y, and the methods of
section 3 can be applied using the computed values of '9, Tr, and G.

5. A lemma on least squares estimators

In section 4 we have exhibited the estimator (56) as derived from T,=
(X'X)-'X'Y after making covariance adjustment with respect to T2 = Z'Y. As
a matter of fact, the choice of T, can be arbitrary subject to the condition that
E(TJ) = x, and the choice of Z defining T2 can be arbitrary subject to the
condition Z'X = 0; the adjusted estimator using the appropriate dispersion
matrix in each case is the same. We have seen that there are situations where
covariance adjustment may not lead to better estimators, but such questions
cannot be examined unless there are preassigned choices of T, and T2. We can
then raise the specific question as to what components or functions of T2 would
be useful for covariance adjustment. We shall consider some special structures
for s which enable us to make a choice of T, and T2, and then look for relevant
concomitant variables.
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Let us observe that the choice T, = (X'X)-'X'Y is the best linear estimator
of 7 when E, the dispersion matrix of Y, has the special form a2I (that is, when
the components of the error vector e in the model (1) are uncorrelated). We
shall now determine the class of 2 matrices for which (X'X)-1X'Y is the best
linear estimator of r. The object is to characterize the class of Z matrices for
which covariance adjustment in T1 results in a loss of efficiency. For given L',
the best linear estimator of x is (X'Z-'X)-'X'Z-'Y. Then the question raised is
equivalent to the problem of determining Z so that it satisfies the equation

(63) (X'Z-1X)-1X'Z-l = (X'X)-'X'.
Lemma 5a provides the set of solutions to (63).
LEMMA 5a. Let Z be a p X r matrix of rank r = (p - rank X) such that

Z'X = 0, and R be the set of s matrices of the form
(64) 9 = X1'X' + ZOZ' + 02I
where r, e, and a2 are arbitrary. Then the necessary and sufficent condition that
the least squares estimator of x, in the model Y = Xr + e with D(e) = 9, is the
same as that for the special choice D(e) = a2I is that 5 E R.
The result of lemma 5a shows that for any Z of the form (64) the least squares

estimator of T is (X'X)-1X'Y (which is well known for the special case of uncor-
related errors) and vice versa.
We note that the complete class of linear functions of Y with zero expectation

is provided by Z'Y. Hence, if (X'X)-1X'Y is the least squares estimate of x, then
(65) coy [(X'X)-'X'Y, Z'Y] = 0;
that is,
(66) (X'X)-1X'2Z = O XX'0 Z = 0.

Then it is easy to verify that
(67) X'12Z = 0 XE = X1'X + ZOZ' + a21.
In the proof X is taken to be of full rank. But this is unnecessary as all the steps
are valid with a general inverse of X'X (Rao [14]). Further, rmay be singular.

As a corollary, we find that for any 2 of the form

(68) i = xrx' + ZoZ0Z'Zo + o0,
the least squares estimator is the same as that for Mo.
Let us compare the estimators T, = (X'X)-1X'Y and ' = (X'S-1X)-1X'S-1Y

of x under the assumption that Z E R. It is seen that

(69) D[(X'X)-'X'Y] =(X'--1X)-

(70) D[(X'S-1X)-'X'S-'Y] = f - 1 (X,Z1X)_f-r- 1

so that the effect of using an estimate of X, when in fact s E R, or to a slightly
extended class, is to decrease efficiency. For E q R equation (70) remains the
same, while (69) changes to
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(71) D[(X'X)-1X'Y] = (X'X)-'X'ZX(X'X)-l.
From the result (18) we find that the estimator using an estimate of s has a
smaller dispersion matrix only if
(72) (X'X)-1X'ZX(X'X)-
is somewhat larger than

(73) (g,Z_lX)_l
to compensate for the multiplying factor in (70).

6. Case 2: D(Y) = XrX' + Z 0 Z' + 02I
As mentioned in the introduction, the dispersion matrix of case 2 arises from

the mixed model
(74) Y = XT+Xy+Z+e
where -y, t, e are all uncorrelated random vectors with zero expectations and
dispersion matrices r, 0, and o_21, respectively. These r, 0, and O2 are all un-
known, but an independent estimate f-1S of s is available. By choosing F or 0
or both to be zero we obtain special cases.

It was seen in earlier sections that the problem considered is essentially one
of making covariance adjustments in the estimator (X'X)-'X'Y using the con-
comitant variables Z'Y. The decrease in efficiency arises when the association
between the estimator (X'X)-1X'Y and the concomitant variables Z'Y is weak.
Our aim is then to make a selection of suitable concomitant variables or their
functions for covariance adjustment on the basis of a given structure for s.
It is clear that any selection made on the basis of observed association (using
f-1S) does not improve the situation, for the effect of such a selection has to be
considered in the estimation of precision of the adjusted estimator.
In the case of model (74), we find that

(75) C[(X'X)-1X'Y, Z'Y] = (X'X)-1X'ZZ = 0,
and therefore, there is definite loss in efficiency by covariance adjustment. Indeed
T, = (X'X)-1X'Y is the least squares estimate of r since Z has the structure of
lemma 5a. Now
(76) T,- NA(r, H)
where H = (X'X)-1X'2X(X'X)-l. For drawing inferences on 7, we need an esti-
mate of H. This is supplied by
(77) H = f-1(X'X)-1X'SX(X'X)-
with the distribution
(78) fH - Wk(f, H).
Hence the inference on T follows on standard lines using the distributions (76)
and (78), as indicated in section 3.
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7. Case 3: D(Y) = CrC' + a2I (C known)

Such a situation arises when we consider a mixed model

(79) Y = XT + Cy+ e

where y and e are uncorrelated, E(y) = 0, D(y) = F and E(e) = 0, D(e) = 2uI.
The matrices X and C are known. Such a model was studied by a number of
authors (see Duncan [2]) under a different set of assumptions on r. In the
present problem, lemma 7a provides a first reduction of the problem.
LEMMA 7a. Let B be a matrix such that X'(C - XB) = 0; that is,

B = (X'X)-'X'C,
and let the rank of C - XB be m. Consider the linear functions

T = (X'X)-'X'Y,

(80) T2 = (C - XB)'Y,

T3 = G'Y, where G'X = 0, G'(C - XB) = 0,

which provide a linear transformation of Y. Then E(T3) = 0, C(T,, T3) = 0, and
C(T2, T3) = 0. Further, T, and T2 are correlated, unless C'X = 0 or C - XB = 0.
The results are easy to verify. Lemma 7a shows that T3 does not throw any

information on T and should be discarded. Since E(TI) = T, E(T2) = 0, and
T, and T2 are possibly correlated, covariance adjustment in T, using T2 as
concomitant variable might provide good estimators. The estimated dispersion
matrix of Ti, T2 is

(81) U- -l ((X'X)-'X'SX(X'X)-l (X'X)-'X'S(C - XB)
(81) U f-~ \, (C - XB)'SX(X'X)-l (C - XB)'S(C - XB))
with the distribution

(82) fU Wk+m(f, A)

where A is the true dispersion matrix of (T,, T2). The inference on r, then
proceeds on standard lines making covariance adjustment in (X'X)-'X'Y using
the concomitant variable (C - XB)'Y and the estimated dispersion matrix (81).

Note 1. The difference between case 1 and case 3 is that (C - XB)'Y consti-
tutes a subset of all linear functions of Z'Y. In case 1, no selection out of Z'Y
was possible, as nothing was known about the structure of 2. The structure
for 2, as in case 3, enabled us to choose suitable functions of Z'Y for covariance
adjustment.
Note 2. The validity of the structure for 2 as in case 3 can be examined on

the basis of S by testing the equality of the last (p - b) eigenvectors of S, where
b is the rank of C. Appropriate test criteria for this purpose have been given by
Bartlett [1] and Rao [10].
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8. Case 4: D(Y) = CC' + a2I (C unknown)

Let us first consider the case of E known. Then we can determine the restricted
eigenvalues and eigenvectors of Z subject to the condition that the eigenvectors
are orthogonal to the columns of X, as considered in lemmas 2d and 2e of sec-
tion 2. The restricted eigenvalues and eigenvectors are the nonzero eigenvalues
and their corresponding eigenvectors of the matrix (I - X(X'X)-1X')Z.

For the special choice r = CFC' + a-21, we have the following results. The
smallest nonzero eigenvalue of (I - X(X'X)-1X')2 is a-2. Let the multiplicity of
this root be m and represent the corresponding eigenvectors by G1, * , Gm.
Let G be the matrix with Gi as its columns.
There are (p - k) nonzero eigenvalues on the total. Let the eigenvectors

corresponding to the eigenvalues different from o-2 be B1, * , Bp_k_m. Let B be
the matrix with Bi as its columns.
With B and G as defined above, we have from lemma 2e

(83) X'G = X'2G = 0, B'G = B'rG = 0.
The conditions (83) imply that the linear functions
(84) T3 = G'Y
have zero expectation and are uncorrelated with the linear functions
(85) Ti = (X'X)-1X'Y, T2 = B'Y.
Further, E(T2) = 0, but T2 is possibly correlated with T1. Hence, the best esti-
mate of X can be obtained by making covariance adjustment in T1 using T2 only
as concomitant variables (that is, discarding T3).

If Z is unknown, we proceed as follows. First determine the eigenvalues and
eigenvectors of the matrix (I - X(X'X)-'X')S and choose all the (say q) eigen-
vectors corresponding to dominant roots. Let B, * * , B, be the eigenvectors
chosen and B the matrix with Bi as columns. Now consider the linear functions:
(86) Ti = (X'X)-'X'Y, T2 = B'Y.
Note that since B is an estimated matrix, no exact theory exists for making covariance
adjustment using T2. For covariance adjustment we consider the estimated dis-
persion matrix of T,, T2, treating B as fixed, which is

(87) fI ((X'X)-1X'SX(X'X)-l (X'X)-'X'SB\
\B'SX(X'X)-' B'SB

The basic theory of covariance adjustment (in T, using T2 as a concomitant
variable) and expressions for the precision of the estimates as discussed in
section 3 are applicable, in an approximate way. Note that B'Y is selected not
on the basis of the observed association with (X'X)-1X'Y, but in a manner which
does not overestimate precision due to covariance adjustment. The value of q
is taken as the number of eigenroots of (I - X(X'X)-'X)S judged to be dominant
by an appropriate test, if necessary.
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9. Case 5: Autoregressive errors

The model assumed is

(88) yt = PI(t) + et, t = 1,***p
where Pk(t) is a k-th degree po'ynomial in time

(89) Pk(t) = P0 + Olt + * + I3ktk,
and e, have the autoregressive scheme

(90) et = piet,- + *-- + Pmet-m + 'it.
The proposed method of estimation of the coefficients of the polynomial trend
and the autoregressive parameters pi, * * *, pm is an extension of the least squares
method considered by Mann and Wald [6]. The estimating equatons are
obtained by minimizing 271q' where
(91)
X7, = et-pie,- - p-pmet-m

= Yt - Pk(t) - Pl[yt-1 - Pk(t - 1)] - - pm[Yt-m - Pk(t - mi)]
-= y - Plyt- - *- ,--[1 -Pi- *---A[t - p(t-1)- *--] - *--.

When p, and flj are all unknown, q, is nonlinear in the parameters, and therefore,
the estimating equations obtained by minimizing Mot' become nonlinear. For-
tunately the problem can be reduced to yield a definitive solution. First we
transform the parameters in such a way that 77, is linear in the new parameters.
Thus we cari write

(92) ?It = Yt- P]Yt-i * - pmYt-m - 'Yo - Yit - * - ,

which is linear in pi and yj, where yj are defined as follo)w Let

(93) bi =p, + 2iP2 + * MiP+mp lot i >

~ 1= I Pi Pn
r en

Yk = 83k&

Yk-1 = (1) Ikl + 1k-16o

(94 zk-2= - (k) 002 + (k 1) #k-1l + I3k-230

'Yk-i = (1)i+l() 3k5i + -1)i(t _ /3k-18i-1 +

8° = (-l)k+lj3kS + (-l)k-15k-1 +
First we estimate pi and -yj by minimizing

(95) E 7+2= 1 (y,-plyt_l yo -ylt .)2
m+l m+l
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with respect to pi, i = 1, * * , m, and yi, j = 1, * - *, k. Let Ai, -j be the solutions
of the normal equations. Then we obtain Si from the equation (93), and then
successively k, 3k-1, ..., Ido from the equations (94).
The normal equations obtained by minimizing (95) provide consistent esti-

mators of pi, yj, and the least sum of squares a consistent estimator of o2. The
inverse of the matrix of normal equations multiplied by the estimator of a2
provides the asymptotic dispersion matrix of the estimators A,, Ij. We observe
that r are simple functions of Ai, ij and, therefore, the asymptotic dispersion
matrix of /3 can be computed by the well known formula (see [13], p. 322).
We shall give the explicit formula for the estimated dispersion matrix of

&31, * * , &io in terms of the estimated dispersion matrix of lk, * 0* ; P1b ...* Xpm

(96) (All A12)
Note that to obtain the matrix in (96), it is convenient to write down the

normal equations by deriving (95) with respect to Yk, * * -, yo pi) ... , pm in the
order indicated. Let B be the matrix of coefficients of /3k, * o* */ on the right-
hand side of (94), and C be the matrix of coefficients of 60, * k, 5 on the right-
hand side of (94). Finally, let F be the matrix

-1 -1 *-- -1\
(97) ( 1 2 ... )

1 2k . .. mk/

Then we have the relation connecting the differentials di, dp and d4 as
(98) die-CF dp = B di

where the vectors , p, and A are

(99) A, p=( , p=(.)

lo P go
From (98),
(100) d = B-1 de-B-1CF dp= H de-G dp

writing H = B-1 and G = B-1CF. Then the asymptotic dispersion matrix of A is

(101) D(A) = &2(HA11H' + GA.G' - HA12G' - GA21H').

Let us note that, in practice, the order of the autoregressive scheme for the
errors may not be preassigned and may have to be inferred from data. If the
chosen order is higher than the true one, then an application of lemma 2a shows
that the estimators of -yi and pj lose in efficiency. For determining the appropriate
order, the residual sum of squares providing the estimate of a2 has to be exam-
ined. If there is no significant reduction in the residual sum of squares by
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increasing the number of autoregressive parameters, then a lower order is
indicated.
We observe that the linearization of the parameters in q, is not possible if the

nonstochastic part in yt is not a polynomial in t, but is simply linear in the
unknown parameters f,j with given coefficients. An appropriate method in such
a case is given by Durbin [3].

10. Estimation of phase and amplitude

In the estimation of signal parameters, models of the type (1) are used. Thus,
if ,B and 0 represent amplitude and phase of a signal, the t-th observation is
written

(102) Y, = xtO sin 0 + xt2O cosO + et, t = 1, , p
where xii are known coefficients. Writing T1 = / sin 0, 72 = cos 0, and 7' =
(Ti, 72), X = (xai), Y' = (y,, * *, yr,), and e' = (el, * , e,), we have the linear
model

(103) Y = Xr + e.

Let us suppose that under suitable assumption on 9, estimates f1, f2 of ri, r2
have been obtained as discussed in the present paper. Further, let

(104) (all a12
(a2, a22/

be the estimated dispersion matrix of the estimates T1, T2.
We are interested in estimating / and 0 which are nonlinear functions of rl

and 72. We may estimate ,B and 0 by

=(f2 + ~2)1I2,(105) 2tan1/>2),

and compute their large sample standard errors (or asymptotic variance). Using
the formula (see [13], p. 322) for asymptotic variance

(106) V(:) = (an I + 2al2flf2 + a22T)/(T + 2),

V(O) = (all2 - 2al2T'02 + a22l)/(T + T)2)
Exact confidence intervals of a given probability level (1 - a) can be obtained

for X = tan 0 (and hence for 0), provided that under the assumptions made on
the errors there exists an exact test for the linear hypothesis Tl - Xr2 = 0. In
all cases, except that of autoregressive errors, such an exact test is possible using
a t distribution on appropriate degrees of freedom. Then the confidence limits
for X are obtained by solving the equation in X

(107) ~~~~~(~1- Xr2)2 =ta/2(107) all- 2Xal2 + X2a22
where tX,l2 is the upper (a/2) probability value of t on degrees of freedom appli-
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cable for a t test of a linear hypothesis on 7. When an exact test is not available,
we may use the upper (a/2) probability value of the standard normal distribu-
tion in the place of taS2 in (107). Thus we obtain asymptotic confidence limits
for X from which those of 0 can be computed.
There is, however, no exact method for determining confidence intervals for ,

even when exact tests of linear hypotheses on r are possible. One may have to
use the estimator for A as in (105), and the asymptotic variance V(A) as in (106),
to obtain an asymptotic confidence interval.

Simultaneous confidence intervals for /3 and 0 may be deduced from a confi-
dence ellipsoid (exact or asymptotic) of Ti and T2. Let

(108) a 1(T1 - Ti)2 + 2a12(f1 - T1)(T2 - T2) + a22(?2 - T2)2 < c

be the confidence ellipsoid of Ti, T2 with a given probability (1 - a). The confi-
dence interval for A with probability 2 1 - a is

(109) (m\ T + T2j, Vmax (r1 + T2))
where the minimum and maximum are obtained subject to the restriction (108)
on Ti and T2 for given T, and f2. A satisfactory solution to such a problem of
finding the extrema of a quadratic form on an ellipsoid in many dimensions has
been recently given by Forsyth and Golub [4]. The confidence interval for 0
is given by the angles which the pair of tangents from the origin to the ellipsoid
(108) make with the T2 axis.
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