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1. Summary

This paper presents a number of separate but interrelated results concerned
with estimates for the symmetric one-sample location problem. (1) Devices are
discussed which, in the normal case, increase the information obtainable by
random sampling experiments by a factor of hundreds or thousands. (2) Using
these devices, sampling evidence is presented that supports the asymptotic
theory for a recently introduced estimate, here called 7. (3) A linear estimate,
called W, is proposed as a natural analog of T, and is used to check the sampling
experiment. (4) The estimate T is recognized as a member of a class of esti-
mates, and the class is explored for other members that are easier to compute.
(5) One of the simplest of these, called D, is seen to correspond to the one-sample
analog of Galton’s test, whose null distribution is given. (6) The same samples
used with T are applied to D, with closely similar results. (7) A simple numerical
measure of tolerance to extreme values is proposed, and methods of evaluating
it are presented in two classes of cases that cover the estimates here discussed.
(8) A number of estimates, including X, T, D, and the trimmed and Winsorized
means, are compared with regard to normal efficiency, ease of computation, and
extreme value tolerance.

2. Introduction

Consider the problem of estimating the center p of a symmetric population
on the basis of a sample X3, - - - , X,.. It was pointed out by Hodges and Lehmann
[6] that, in a natural way, an estimate for u could be formed from any of a
class of rank tests of the value of u. Perhaps the most interesting of the
estimates there considered is the one which corresponds to the Wilcoxon one-
sample test. This estimate, denoted here by 7 and defined in the next section,
was shown to be asymptotically normal as n — «, and to have attractive large-
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sample properties relative to X = (X; + -+ + X,)/n. If we denote the
asymptotic efficiency of T relative to X by ae(T), then ae(T) is identical with
the asymptotic efficiency of the Wilcoxon test relative to the ¢-test. This means,
in particular, that ae(T) will exceed one for populations with tails somewhat
heavier than the normal. Further, it is shown in [5] that no matter what the
shape of the population, ae(T) > .864. Finally, in the ideal normal case for
which X is the optimum estimate, ae(T) = 3/x = .955.

Since these properties are all asymptotic, it becomes important to know to
what extent they hold good in samples of moderate size. For example, one would
like to know, for moderate samples drawn from a normal population, how close
t0 .955 is the efficiency of T? How near is its distribution to the limiting normal
form? Some results relevant to the first of these questions may be quoted from
the literature. In [6] it was noted that when n = 3, T becomes a linear function
of the three order statistics, and has an efficiency (in the sense of variance ratio)
of .979. The possibly related question of the power efficiency of the Wilcoxon
test against normal shift was investigated numerically by Klotz [8]. He
found, for sample sizes 5 < n < 10 and significance levels near .05, values near
.955 and even usually somewhat above this limit value.

These results are encouraging, but the case n = 3 is rather degenerate, and
test efficiency need not reflect estimate efficiency. It was thought worthwhile
to carry out a sampling experiment for an intermediate value of n, and the
value n = 18 was chosen for the reasons given in section 4. In general, the
precise study of properties of an estimate by sampling would require enormous
numbers of samples. Taking advantage of special features of the normal popula-
tion, it was possible to obtain with the aid of only 100 samples the close estimate
of the efficiency of T reported in section 7, and also to examine the approach of
the distribution of T to the normal shape (section 8). (Corresponding results
are given for a variant U of the estimate 7.) These findings, together with the
asymptotic theory and the facts for very small samples stated in section 3,
suggest that the asymptotic properties of 7' may be trusted for normal samples
of any size. The adequacy of the sampling is supported by its use on an esti-
mate W of known variance; this estimate has independent interest because it
may be viewed as a linear analogue to the nonlinear 7' (section 5).

The main drawback of the estimate T is that it is troublesome to compute
except when n is small. For this reason, it seems desirable to try to simplify
the estimate while retaining its good distributional properties. To this end, we
give in section 9 a class of estimates of which T is a typical member, and con-
sider two methods of finding in the class estimates that are simpler than T,
but which on intuitive grounds should have similar distributional properties.

One of these, called D, is examined in section 10, using the same 100 samples.
It appears that, at least for normal samples of 18, the estimate D is about as
good as the more laborious T'. It is shown that, according to the general principle
cited above, D corresponds to a rank test that is analogous to the Galton test,
and the null distribution of this test is derived.
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Behavior of an estimate such as T or D in normal samples is, of course, only
part of the story, and one would like to know, for example, how well it stands
up in the presence of extreme values. As a contribution to this difficult problem,
a simple measure of tolerance of extreme values is introduced in section 11, and
this measure is evaluated for two classes of estimates, including those considered
in this paper and also the trimmed and Winsorized means. Finally, in section 12
various estimates are compared with regard both to extreme value tolerance
and normal efficiency. The estimate D appears to have attractive properties,
and to be worth further study. In particular, it would be very desirable to
discover its asymptotic distribution.

3. The estimates T and U

Let us denote the sample X, - - - , X,, when arranged in order of increasing
size, by Y1 < .-+ < Y,. Denote by @ the set of all pairs (7, ) such that 1 <7 <
j < n. For each (4, j) € @, form the mean M;; = 3(Y; 4+ Y;). The statistic 7
is defined as the median of these means,

(31) T = med {M,’ji ('L, ]) (S (1}.

If the number #(@) = in(n 4+ 1) of these means is even, we shall, as is cus-
tomary, define the median T as the value midway between the two central values
of the set of means.

It seems natural to consider also the slightly different estimate that results
when the identity means M;; = Y, are excluded. Let & denote the set of all
pairs (7, ) with 1 < ¢ < j < n, and define

(3.2) U = med {M;: (3,)) € ®},

with the same convention if #®) = in(n — 1) is even.

Both T and U can, of course, be defined directly in terms of the unordered
observations, but the definitions as given will unify the treatment with that of
section 9. Furthermore, when computing the estimates (section 6) it is more
convenient to work with the ordered sample.

For certain very small sample sizes, the estimates T and U degenerate to
linear functions of the order statistics. In these cases, and for normal samples,
their variances can be computed from table I of Sarhan and Greenberg [10].

TABLE 1

Linear CasEs

n T e(T) U e(U)
1 Y, 1 undefined —
2 (Y1 + Yo) 1 3(Yy + Yo) 1
3 1Y, + 1Y, 1Y, 979 (Y, + Yy) 920
4 nonlinear ? WY 14+ Y+ Y3+ Yy) 1
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To anchor the lower end of the range of n, these cases are summarized in table I,
where ¢(T) and e(U) are the efficiencies of T and U relative to X, as defined by
variance ratio.

The fact that e(U) is substantially higher at n = 4 than at n = 3 may be
related to a “parity effect’”” which was influential in choosing the value of n for
the sampling experiment. At n = 3, #(®) = 3 is odd, so U is a “pure” median;
at n = 4, #(®) = 6 is even, and U is the average of two means M;;. It seems
intuitive that such averaging would improve the estimate when sampling from
a normal population.

This phenomenon is easier to display in the case of the sample median X,
efficiency values of which are given in table II. When 7 is even, X is the average
of two order statistics, and its normal efficiency is substantially higher than
indicated by the adjacent odd values, by about .6/n for 10 < n < 20. For these
reasons, it was thought that 7 and U would have a somewhat higher normal
efficiency when #(@) and #(®) are even than when they are odd.

TABLE II

Normar Erriciency or X ror n < 20

n e(X) n eX) n e(X) n e(X)

1 1.000 000 6 776 123 11 662 784 16 .691 561
2 1.000 000 7 678 828 12 709 122 17 .653 257
3 742 935 8 743 247 13 .658 594 18 .685 630
4 838 365 9 .668 936 14 699 130 19 651 454
5 697 268 10 722 928 15 655 557 20 680 855

4, The sampling design

Since precise information about normal efficiency for one value of n seemed
more valuable than diffuse information for several, it was decided to concentrate
on a single value, taking one large enough to escape the degenerate behavior
of very small sample sizes and to reflect the sort of moderate sizes often encoun-
tered in practice. The linear check W described in section 5 was possible only
for n < 20 because of the range of the Sarhan-Greenberg table. The value
chosen, n = 18, is the largest in this range for which both T' and U are pure
medians; fortunately, for this value the estimate D considered in section 10
is also an unaveraged median. As explained in section 3, this choice should lead
to conservative results.

The motivation for the somewhat complex sampling design will be given in
terms of T, with similar remarks applying to U, W, and D. Since a linear trans-
formation applied to the sample also affects T and X, there is no loss of generality
in using the standard normal population 91(0, 1), for which extensive tables of
random deviates are available.

To obtain precise estimates of the distribution of 7' would require an enormous
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number of samples if we proceeded directly, by simply finding the values of T
in each such sample. Fortunately, special features of the normal population
permit a drastic economy.

Consider a sample of n from 91(0, 1) and let X and 7' denote estimates com-
puted from this sample. Write A = T — X, so that T = X + A. If each observa-
tion X is increased by c, so are T and X, and hence A is unchanged. Therefore
A is a function only of the sample differences X; — X3, ¢ = 2, --- , n, which
implies that A is independent of X. The distribution of T is the convolution of
the distribution of A with the known distribution 91(0, 1/n) of X. We may
therefore proceed indirectly as follows: Draw a number of samples of size n
from 91(0, 1). For each sample compute X and 7, and thus find the value of A.
Use these observed A-values to estimate the distribution of A. Finally, convolute
the estimated distribution of A with the known distribution of X to obtain an
estimate of the distribution of 7'.

The advantage of this indirect method resides in the fact that 7' is a highly
efficient estimate, and therefore highly correlated with X. This means that A has
a spread much smaller than that of X. Consequently, an estimate for the distri-
bution of A, based on few samples and crude, relative to the spread of A, can
give us an estimate for the distribution of 7' which is precise, relative to its
much larger spread.

This indirect approach depends on special features of the normal population,
but an additional refinement is of more general applicability. When estimating
the distribution of A, we may classify the samples into strata, and draw separate
samples from each stratum. If k, samples are drawn from stratum s, resulting
in values A,; of A, 7 = 1,2, - -+ | k,, these values may be used to estimate the
conditional distribution of A in stratum s. If P, is the probability that a random
sample of n comes from stratum s, then the weights P, may be used to combine
the estimates of the conditional distributions, to produce an estimate of the
(unconditional) distribution of A.

Such stratification is feasible only if two conditions are met: it must be pos-
sible to calculate the probabilities P,, and it must be possible to obtain samples
which are randomly drawn conditionally from each stratum. By general prin-
ciples of stratified sampling, stratification is really effective only if a third
condition holds: the conditional distributions of A in the different strata must
be substantially different.

An outstanding feature of 7 is its insensitivity to extreme values (section 11).
On the other hand, X is rather sensitive to them, especially if they occur on
only one end of the sample. We may therefore expect |A| to be large when the
sample has values far out in one tail but not in the other. In contrast, X and
T will tend to be close, and |A| to be small, if the sample is nearly symmetric,
and especially if it lies in a narrow range.

A method of stratification which meets all three conditions consists in dividing
the axis into a finite number of intervals, and classifying the samples into strata
according to the numbers H; of observations from the various intervals. The
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probabilities P, of such strata can be calculated from the multinomial distri-
bution. It is easy to see at a glance in which stratum a sample falls. Finally,
the values of H; in the extreme intervals will characterize the range and asym-
metry of the sample.

In the experiment as performed, the axis was divided into seven intervals
by the points £2.5, +2.0, £=1.8. Let Hy, H, - - - denote the numbers of the
n = 18 observations falling in (—, —2.5), (—2.5, —2.0), --- . In terms of
these numbers, twelve strata were defined by the following conditions:

Stratum 1: H; + H, + Hs = 18,

Strata2—7: H1+H7=O, H2+H6>O,
Stratum 2: (Ho=1,H; > 0,Hs =0)or (He=1,H; > 0, H, = 0),
Stratum 3: (Hy; =1, H; =0,H¢=0)or (Hs=1,H; =0, H, = 0),
Stratum 4: Hy, = Hg = 1,
Stratum 5: (H2 = 2, HG = O) or (Hs = 2, H2 = 0),
Stratum 6: (Hy = 3, H; = 0) or (Hg = 3, H, = 0),

Strata 8-12: H, + H; > 0;
Stratum 8: (H; =1,H: > 0,H; =0) or (H; = 1,Hs > 0, H; = 0),
Stratum 9: (H1=1,H,=0,H; =0)or (H; =1,Hs = 0, H, = 0),
Stratum 10: H, = H; = 0,
Stratum 11: (H; =2, H; =0) or (H; = 2, H; = 0).

The probability of any stratum can easily be expressed in terms of the standard
normal cumulative ® by simple formulas. For example,

(4.1) P, = P; = 306[®(2.5) — ©(2.0)]2[®(2.0) — &(—2.0)]1¢.
The probabilities of the twelve strata are shown in table III.

TABLE III

STRATA PROBABILITIES AND SAMPLE NUMBERS

s P, ke s P, ke s P, ke
1 432 479 15 5 .039 740 8 9 135 645 15
2 .056 798 10 6 .003 673 2 10 .009 661 2
3 .213 000 25 7 .013 128 2 11 .009 661 4
4 .039 740 4 8 .045 116 10 12 .001 359 3

One hundred samples were drawn, allocated among the strata as shown by
the numbers £, in table ITI. This allocation was governed by the desire to insure
adequate representation of the strata in which it was anticipated that |A| would
be large and variable, at the expense of strata where |A| might tend to be small
and constant. Thus stratum 1, consisting of samples from the interval (—2, 2),
constitutes 439 of all samples. But, since |A| should tend to be small here, only
ky = 15 of the 100 samples were taken from stratum 1. On the other hand, the
samples in stratum 11 have two extreme observations, (|X,| > 2.5) at one end
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not balanced by any at the other end. Here |A| should be large and variable, so
kun = 4 samples were drawn; a number that by proportional allocation would
correspond to an experiment of ky/Py = 414 samples instead of 100.

A random sample from one of the strata can be obtained by either of two
methods. One may draw unrestricted random samples of size 18 until a sample
is obtained which falls in the stratum. Alternatively, one may independently
draw observations from the various intervals and combine them. Both methods
were used. The 87 samples from strata 1-5, 8, and 9 were obtained from [12] as
follows. Beginning on page 142, the first 18 deviates in each column were regarded
as a sample from 91(0, 1). The first k; = 15 of these samples which fell in (—2, 2)
were used as the samples from stratum 1, and so on. In table V, the page and
column numbers of each of these 87 samples are given, permitting the reader to
check any value. Because samples of the types of strata 6, 7, and 10-12 are
rare, these 13 samples were drawn by the alternative method. For strata 6 and 7,
the few extreme values needed were drawn from page 1 of [12] taking the first
observations with 2 < |X,| < 2.5; these were combined with the required num-
bers of observations |X,| < 2 from the columns indicated in table V. Similarly
the values |X,| < 2 for strata 10 and 11 were taken from pages 3 and 4, and
the values for stratum 12 from page 1. For the five samples in the catch-ail
strata 7 and 12, an independent randomization was used to determine the
number of extreme values to be taken.

B. A linear estimate

It is always comforting when using random samples to be able to check the
quality of the samples by using them to estimate a known quantity, especially
one that is closely related to the quantity under investigation. From the tables
of variances and covariances of normal order statistics, one can readily compute
the variance of any linear combination W = Y w.;Y; of the 18 order statistics.
If 3 w; = 1, the variance of W can be estimated by the method discussed in
section 4, and then be compared with the correct value.

The check is relevant to the extent that weights w; can be chosen to make W
behave like T (and hence like the closely related U). An heuristic argument,
given below, suggests that in the normal case a good choice is w; a ¢(z;) where
z; = E(Y,). Using for simplicity weights that closely approximate these, let
us define

1
(5-1) W = % (2A[1,18 + 4M2.17 + 6M3,16 + 7M4,15 + 8M5,14
+ 9M6.13 + 10M7,12 + 10M8.11 + 10M9.1o)-

The success of this choice of weights is reported in section 7. We now give its
heuristic motivation, dealing with the more general problem of a smooth positive
density f symmetric about zero. This argument has independent interest in that
it suggests the reason for the good properties of the estimate 7.



170 FIFTH BERKELEY SYMPOSIUM: HODGES

Let us consider the points (7, j) as arranged in rows, associating with each
diagonal point (¢, n + 1 — ¢) the points (: + a,n + 1 — ¢ + a) for a = 0, 1,
+2, - .- . For a large, but small compared with n, there is a simple approximate
relation between the means at ({,n +1 — <) and at G+ a,n + 1 — 2 + a).
It can be seen that Yo — Y; and Y,11iya — Yny1—: are both approximately
equal to a/nf(x;). Hence,

(5.2) Miranir—iza = Mg+ a/nf(x;).

Now M ;4,146 1S an increasing function of a, rising from below T to above T.
Let b(z) denote that value of a for which the mean is closest to 7, so that
M ivociy mt1~itsn = T. Substitution in (5.2) gives

(5.3) b@) = nf(@)[T — My

By the definition of T, there are as many points with M;; > Taswith M;; < T.
Imposing this condition on (5.3) gives T as, approximately, a weighted average
of the Y; with weights proportional to f(z;).

While no attempt has been made to rigorize this intuitive discussion, it does
help to explain the success of the estimate T', by suggesting that it will tend to
behave like a weighted average of the order statistics with weights that are small
in the tails of a population with long tails. In practice, of course, f is unknown,;
the virtue of 7 is that it accomplishes a reasonable weighting without requiring
knowledge of f.

6. The sampling results

For each of the 100 samples of 18, drawn as described in section 4, the esti-
mates X, U, T, and W were computed. The values of the differences U — X,
T — X, and W — X, multiplied by 1000, are shown in table V, as well as the
values of 1000(D — X) for the estimate D to be described in section 10. To
simplify the table, the signs of all four differences were changed if U — X
happened to be negative; this is permissible because of the symmetry of all
distributions about zero.

The computations of T and U were carried out by the method of Hgyland
[7], and may be illustrated on the first sample of stratum 1. The first 18
deviates of ([12], p. 142, column 2) (each multiplied by 1000 to avoid decimals)
are arranged in decreasing order as shown in table IV, from Y;s = 1.686 to
Yy = —1.632. Each number in the body of the table is the sum S;; of Y, below
it and Y; to its left. (The arrangement of the Y/s in a “broken line”’ pattern
instead of diagonally saves space and also brings the Y’s nearer their sums.)
Linear combinations of the nine diagonal sums Sy 0 = —.004, - - -, S;15 = .054
provide the values X = —.0049 and W = .0195, and hence W — X = .024.

To find U, one must find the median of the sums S;;, 7 < j, and this is done
by trial and error, guided by the fact that S.; > Sy whenever ¢ > k and j > £.
The line in table IV, passing through the sum 87, = .100, goes as often above
as below the row of diagonal sums, and thus divides the 153 sums into 76.5
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TABLE 1V

CompuraTION OF T AND U

1686 366 54

616 —152 —704
572 —196
571 189
571 200 189
341 147 —30
/
198 100 4
e
172 125 74
25 —4
—-29

—47 —98 —194 —-371 —382 768 —1320 —1632

that are above the line, all at least equal to .100, and the 76.5 that are below
the line, none greater than .100. Therefore U = 3(.100) = .0500 and
U—X = .055.

To find T, we add in the 18 identity sums S;; = 2Y,. The dashed extension
of the line passes between Sy .10 = 2(.025) and Sy, = 2(.172). As this line has
8 of the newly added sums above it and 10 below it, the median of the augmented
set will be the sum next smaller than Sy . By inspection this is seen to be
Sz = .074, so that T = 1(.074) = .0370, and U — X = .042.

As U — X is positive, no sign change is required. The entries in the first row
of table V give the differences, multiplied by 1000 to simplify the setting. These
entries form the bases of the computations reported in sections 7, 8, and 10.

7. Efficiencies

As a first application of the sampling results reported in section 6, we give
estimates of the efficiencies of T and U for normal samples of size n = 18. Again,
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the theoretical discussion will be given in terms of the estimate 7', with analogous
remarks holding for U.

We define, as is customary, the efficiency of T relative to X by the variance
ratio e(T) = Var (X)/Var (T) = 1/n Var (T). Because of the independence of
Xand A =T — X, Var (T) = 1/n + Var (A). Suppose we have an estimate §
for Var (A), to which is attached an (estimated) standard error, say € & o.
Then 1/n 4+ & &+ o is an estimate for Var (7). Since ¢ is small compared to
1/n + & we may expand linearly and use

1 noe
1+n8:l:(1—|-n£)2

(7.1)

as an estimate for ¢(7).

The desired estimates & and o are obtained from our stratified sample as
follows. Since A is symmetrically distributed about zero, Var (A) = E(A?). If A,
denotes the random variable A conditioned to lie in stratum s, then

(7.2) E(A?) = Y P,E(AY).
The values of A,, say Ag, - -+ , Ast,, Observed in the sampling experiment, give in
(7.3) 83 = Z A?j/k’s

7

an (unbiased) estimate for E(AZ), with variance Var (A%)/k,. Combining these
estimates gives

(7.4) & =3 P¢&,

as the desired (unbiased) estimate for Var (A).
Since the estimates &, are independent, the variance of € is

(7.5) > P%Var (&) = ¥ P2 Var (A} /k..

Regarding the A% as observed values of A3,

(7.6) 0'% = [ks Z Agj - (z A?j 2]/ks(ks - 1)
2 7

is the usual (unbiased) estimate for Var (A%). Hence we may use
7.7) o? = X Pioi/k,

as an (unbiased) estimate for the variance of the estimate & Using the observed
values recorded in table V, these calculations were performed for the estimates
T, U, and W, giving the following estimated efficiencies:

e(T) = .949 & .007,
(7.8) e(U) = .956 = .006,
e(W) = .969 £ .004.

The standard errors are crude, but may serve to indicate the high precision of
these estimates.
The check provided by the linear estimate W now comes into play. From



TABLE V

VaLugs oF 1000A ror Four ESTIMATES

P c U T D w P c U T D w
Stratum 1 Stratum 4
142 2 55 42 55 24 142 10 50 50 36 21
4 48 48 52 42 146 7 12 12 12 —26
5 13 13 -9 8 147 6 13 27 13 2
8 3 16 43 —18 150 7 22 19 19 22
9 20 56  —32 12
143 2 17 18 18 -2 Stratum §
3 35 35 35 12 142 6 95 103 —52 45
5 25 25 20 26 143 10 20 61 61 76
144 4 13 27 —41 33 144 5 24 26 26 40
8 32 32 35 8 145 1 18 -2 -2 0
145 2 5 —4 —4 0 147 1 67 67 114 60
3 73 73 73 54 148 6 68 68 64 17
4 21 21 -2 —92 149 1 75 84 50 41
5 31 32 32 15 162 4 20 24 16 27
6 6 6 “ 22 Stratum 6
Stratum 2 100 1 48 48 —117 66
43 4 73 46 —15 19 100 2 5 —4 14 78
144 1 62 62 159 89 Stratum 7
147 3 7 7 60 —6
148 3 8 88 123 72 01 1 33 33 3 2
152 6 51 51 8 14 101 2 21 21 —6 —b58
153 8 11 83  —19 51
14 1 18 14 18 4 oy g gl w0
155 10 112 112 84 74 144 7 66 66 85 50
1%6 ¢4 4 0 15 -15 9 133 118 116 9
157 2 71 71 3 88
10 79 97 3 82
Stratum 3 148 2 2 2 —6 50
43 8 30 30 -4 28 12 1 &% @ w19
® 2 3 35 10 9 73 73 18 52
145 8 12 2 =20 161 4 36 59 —33 2
47 5 718 74 162 8 62 66 120 88
7 20 43 —43 53
8 59 59 59 21 Stratum 9
148 1 8 12 12 10 142 1 45 45 51 70
149 3 26 26 26 —33 3 35 46 26 56
7 9 9 8 9 7 65 66 111 66
9 16 15 —-12 41 143 1 67 67 67 49
10 95 159 76 98 7 64 64 62 50
150 3 23 27 -2 36 144 2 70 63 36 59
5 3 3 3 10 3 42 55 42 43
9 11 47 6 18 6 78 75 78 56
151 6 107 146 163 101 145 10 55 55 —86 8
7 70 91 1 86 146 1 54 54 59 48
9 54 14 -9 26 3 31 31 18 25
152 2 69 71 7 40 4 17 0 -14 -8
153 2 25 13 8 22 147 2 83 83 60 75
3 38 38 38 40 9 153 153 142 115
5 8 8 -1 30 148 5 72 72 72 57
6 43 34 4 31
7 19 4 27 -8 Stratum 10
154 7 17 11 11 19 120 1 1 1 9 2
9 21 23 20 38 2 152 152 152 100

173



174 FIFTH BERKELEY SYMPOSIUM: HODGES

TABLE V (Continued)

P c U T D w P c U T D w
Stratum 11 Stratum 12
120 3 171 178 14 109 130 1 64 64 16 44
4 59 59 29 27 2 164 183 —80 94
5 207 226 237 126 3 23 —2 —4 39
6 92 92 72 69

table I of [10], it is possible to compute the actual variance of W, and hence to
find that e(W) = .9649. The efficiency estimated from the samples is within
one standard error.

It will be recalled that the estimate W was chosen in an attempt to find a
linear estimate that would be highly correlated with T and U. If we write
W = X + T, then the pair (A, T) is independent of X, and E(A) = E(T) = 0,
so that

(7.9) Cov (T, W) = 71; + E(AT) = }L + 3 PEQLT,).

This formula permits us to use the sampling results to estimate the correlation
between T and W, and similarly for U and W. The computed results are

(7.10) (T, W) = 994, pU, W) = .995.

These high correlations indicate that W does indeed behave very similarly to
T and U, which lends relevance to the success of the estimate for e(W). (Since
the estimate for ¢(W) is high by .004, one may wish to lower the estimates for
¢(T) and e(U) by this amount, which does not change the picture appreciably.)

The sampling results suggest that U is somewhat more efficient than 7.
(Since table V makes it clear that T — X and U — X are highly correlated,
the estimated value of e(U) — e(T) is more precise than the separate standard
errors indicate.) This agrees with intuition. The estimate T differs from U by
including, in the set of means whose median is taken, the identity means
M,;; = Y, This inclusion may be said to move T from U in the direction of
the median X, whose efficiency is only .686. This should, however, also mean
that 7T has slightly less sensitivity than U to extreme values, as the investigation
of section 11 shows to be the case.

The effectiveness of our indirect method of estimating the efficiencies is made
clear by noting how many samples would be required to obtain estimates of
similar precision by directly observing k values of the estimates themselves. For
illustration, suppose V is normally distributed about zero and has efficiency e(V).
If Vi, ---, Vi, are observations on V, this efficiency may be estimated by
k/nY Vi For this estimate to have standard error r, we would need
k = 2¢%(V)/72 For the values ¢(U) = .956 and = .006, corresponding to our
estimate for e(U), this gives £ = 50,000, compared with the 100 samples actually
used.
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8. Normality

Asymptotically, as n — «, the estimates 7 and U are known to become nor-
mally distributed. It is the approximate normality of the estimates which, to a
large extent, justifies our use of variance ratio as a measure of efficiency. If the
estimate 7 based on n observations has (approximately) the distribution
N0, Var (7)), and if the efficiency of T relative to the arithmetic mean is
defined to be ¢ = 1/n Var (T), then T will have (approximately) the same
distribution as the mean of ne observations. It is accordingly desirable to know,
when using 1/76¢%(T) as an indication of the efficiency of T, the extent to which
the actual distribution of 7" agrees with the normal approximation 9U(0, ¢*(T)).
Questions of this kind are usually difficult to answer with precision, but the
special features of the normal population again make it possible to use our
samples to throw a good deal of light on it for normal samples of size 18.

Because T is symmetrically distributed about zero, it suffices to compare
P(|T| > c) with the corresponding probability for the fitted normal 9(0, ¢2(T)).
Let

81)  p@B,¢) = P(X + 8| > ¢) = ®(—Vnlc + ) + &(—Valc — ).

Then, because of the independence of X and A = T — X, integration with
respect to the distribution of A gives

8.2) P(T| > ©) = Ep(8, o).
Conditioning on the strata gives
(83) EP(A; C) = 2 PsEP(As; c)’
P .

Using the observed values A,; of our stratified sample, we therefore have in
(8.4) ; Pc[z P(Asi; C)/ks]

7
an unbiased estimate for P(|T| > ¢). Clearly,
(8.5) 2 Pi{k, X p*(Aj, ©) — [X p(Asj, 0)]8 /K3 (K, — 1)

is an unbiased estimate for the variance of (8.4).

The comparison between the actual distribution of 7" and the fitted normal
is especially worthwhile in the tails of the distribution, since experience indicates
that the approach to normality is usually slowest there. The calculations were
made for both estimates, for ¢ = .7 and ¢ = .9, corresponding to about 2.9
and 3.7 standard deviations for 7' and U. The results are shown below.

TABLE VI

ProBaBILITY OUTSIDE (—c¢, ¢)

c Estimate From (8.4) From Fitted Normal
7 T 00386 =+ .00013 .00382

U .00371 <+ .00010 .00368
9 T .000205 + .000012 .000200

U 1000192 + .000009 .000188
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This excellent agreement, even in the extreme tails, indicates that the asymptotic
normality has taken hold at n = 18, and also supports the relevance of the esti-
mated efficiencies given in section 7.

The power of the methods we are using is even more striking here than in the
estimation of efficiency. To illustrate this point, consider the direct estimation
of P(JU| > .9) by observing the frequency with which |U| > .9. To produce an
estimate as good as that reported above would require something like 2,400,000
such samples, compared with the 100 samples we have used.

9. A family of estimates

While T and U have excellent distributional properties, they are laborious to
compute when # is large. This disadvantage may be mitigated by the develop-
ment of computer programs, but not every potential user will have easy access
to a computer. In this section we present a general class of estimates of which
T and U are special cases, and indicate other members of the class which are
simpler to compute and which also seem to have good distributional properties.

Corresponding to any nonempty subset § of @, we may define an estimate S by

(91) S = med {M,’jl (’L, ]) S S}
We shall assume throughout that § enjoys the symmetry property:
(9.2) (3,7) €8 implies (n+1—4n+1—-17)€s;

in view of the symmetry of the population about its center g, this assures that S
is symmetrically distributed about u. Note that T' and U are special cases of (9.1)
corresponding to 8§ = @ and § = ®.

The labor of computing S depends primarily on the number #(8) of means
whose median is sought, and rises somewhat faster than #(8). It is the fact that
#(@) and #(®) both increase at speed n? which makes T' and U difficult to com-
pute when 7 is large. Roughly speaking, the work required by these estimates
is proportional to n3. As indicated in section 6, it is not difficult to compute T
and U by hand at n = 18. The labor would be discouragingly heavy at n = 50.

Can we choose § so that #(8) is small, permitting S to be computed easily,
and still have S share the good distributional properties of T and U? We suggest
two approaches to this problem.

(i) Representative order statistics. A large sample drawn from a smooth popu-
lation can be adequately represented by a modest number of its order statisties.
The basic reasons for this are as follows. If we are given the values of two order
statistics, say Y; = u and Y. = v, then the intermediate order statistics
Y, - -+, Yija are conditionally distributed like an ordered random sample
drawn from that portion of the population in the interval (u, v). If the population
density is smooth and v — u is small, this conditional distribution is nearly
rectangular, so that the intermediate observations contain little information
about p. If a/n is small, Y4001 — Y is likely to be small, even if a itself is large.
If we choose a subset 9 of the sequence 1,2, ---,n, about equally spaced
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throughout the sequence, we may therefore expect {Y;: ¢ € 4} to carry nearly
all of the information in the sample, even if #(9) is modest.

Now let @(9) denote the set of pairs (z,7) € @ for which ¢ € 4 and j € 4,
and let 7'(9) denote the estimate (9.1) with $ replaced by @(9). If #(9) is modest,
the hand computation of T(9) will be feasible even if n is quite large. Suppose
for example n = 1000 and #(9) = 18. Once the representative order statistics
{Y;: 7 € 9} have been noted, the work of finding 7'(9) is the same as that for
finding T with n = 18, as illustrated in section 6. To the extent to which the
18 selected order statistics represent the sample, we may expect T'(d) to have
distributional properties similar to those of T computed from the entire set of
1000 observations. ‘

In an entirely analogous way we may define the estimate U(d). For two
special cases, this estimate coincides with estimates studied by Mosteller [9].
He proposed as an estimate for u the arithmetic mean, say Y3, of k selected order
statistics. From table I we see that when #(9) = 2, U(9) = Y, and when
#9) = 4, U(9) = Y,. Mosteller investigated the asymptotic efficiencies of his
estimates Y for the normal population, for several different methods of spacing
the selected order statistics. The asymptotic efficiency of ¥, was found to range
from .793 to .810, while that of ¥, ranged from .896 to .914, depending on the
spacing. These figures, and other figures given in his table II, suggest that in
normal samples one may suffer an efficiency loss of about one or two percent
as a result of replacing a large sample by about 20 equally spaced order statistics.

(if) Central means. We may expect a mean M,; to be near u if and only if
Y, and Y; are nearly symmetric in the sample, that is, if 7 + j is near n + 1.
This suggests that the estimates T and U would be little affected if we eliminated
from @ and ® those pairs (7, j) for which | + j — n — 1| is large. In general,
S may be a reasonable estimate if we use in (9.1) a set of central means M,;
where (%, 7) is near the diagonalz +j = n + 1.

As a preliminary, we note that @ and ® may be reduced substantially without
affecting T' and U at all. The discussion will be given in terms of &, with anal-
ogous remarks holding for @.

It is clear that M,; = 3(Y: + Y;) is an increasing function of both ¢ and j.
This means that, if 7 and j are small enough, we may be sure that M;; falls below
the central values in the set {M;: (3,j) € ®}, and hence below U, whatever
the values {Y,} may be. The number of means M,; in ® with a >4, b > j is
easily seen to be Ny;; = (n+ 1 — j)[3(n 4+ j) — 7). Let & denote the set of
pairs (7, 7) with Ny; > $[3n(n — 1) + 1], and let & be the set symmetric to §
about the line ¢ 4 7 = n + 1. Then it can be seen that any M,; with (7,7) € &
is below U, while any M,; with (¢, /) € & is above U, and hence that

(9.3) U =med {M;;: (,7) € @
where ®* = ® — &§ — &,
The reduction from & to ®* is substantial, and it can be shown that

9.4) #®¥)/#(®) = {1 — V2 — log (V2 — 1)} = 4672.
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In a computer program which finds U by comparing each pair of means M ;,
the use of ®&* instead of ® would reduce this work by 789,

Any reduction below ®* will change the estimate, but in the interest of sim-
plicity this may be worthwhile. The most extreme reduction would eonsist in
using only the diagonal means. The resulting estimate will be considered in the
next section.

Each of the estimates (9.1) corresponds to a test according to the method
expounded in section 2 of [6]. Without loss of generality we may consider tests
for the hypothesis u = 0. For any § satisfying (9.2), let £ denote the number of
positive means M;;, where (¢, j) € 8. It is obvious that Z is nondecreasing when
all sample values are increased by the same amount, thus meeting condition C
of the cited section. By the assumed symmetry of the population, we may under
the null hypothesis p = 0 associate with each sample X, --- , X, an equally
likely sample X; = —X;. In terms of order statistics ¥Y; = —Y,y1—; so that
My = —Mpi1-jn1—i. In view of (9.2), this means that T + 2’ = #(8); and
since Z and 2’ are equally likely, this equation implies that = is symmetrically
distributed about }#(8), as required by condition D. The estimate S corresponds
to the test statistic Z, in the sense of [6].

10. The estimate D

We now consider the estimate (9.1) with $ consisting only of diagonal points.
Let

(10.1) D = med {M;;: (4,7) € D}

where D consists of the diagonal pairs (7,7) with 1 <i<j<nandi+4+j=
n + 1. This estimate, the median of the means of symmetric order statistics,
is much easier to compute than 7 or U.

Computations analogous to those of sections 7 and 8 were carried out for D,
using the values of D — X recorded in table V. The estimated efficiency of D
relative to X, in normal samples of size n = 18, is .954 =+ .007. The results
comparable to those in table VI are the following.

TABLE VII

ProBaBILITY OUTSIDE (—¢, ¢)

¢ From (7.1) From Fitted Normal
7 .00375 =+ .00013 .00372
9 .000196 =+ .000012 .000192

It must be emphasized that, unlike 7' and U, the asymptotic properties of D
are not known. In particular, it may be questioned whether D is asymptotically
normal. However, the sampling experiment suggests strongly that, at least with
samples of moderate size drawn from a normal population, the behavior of D



NORMAL SAMPLES 179

is very close to that of T and U, both with regard to variance and shape of
distribution. Because D is substantially easier to compute than are T and U,
these sampling results suggest that the estimate D is worth further study. In
particular, it would be of interest to find its asymptotic properties.

The test corresponding to D is of some interest. For the case S = D, let us
denote the statistic = of section 9 by @; that is, G is the number of positive
symmetric means. To test the hypothesis 4 = 0 against the alternative u > 0,
we should reject when @ is large. This test may be viewed as a one-sample
analogue of the two-sample Galton test discussed in [4], with the upper and
lower halves of the single sample playing roles analogous to those of the two
equal samples in that test.

To derive the null distribution of G, consider a sample of n drawn from a
continuous population symmetric about 0. If a; > a2 > -+ > a, > 0 are the
absolute values in this sample, we may reconstitute a sample distributionally
equivalent to that drawn, by assigning independently and at random to these
absolute values the signs + and —. The sequence of n signs may now be used
to determine an n-step path in the manner discussed in chapter III of Feller
[3]. The 2% possible paths are equally likely, and the null distribution of G
may be found by relating G to properties of the path.

Let us establish a correspondence between the order statistics of the recon-
stituted sample and the steps of the path by letting the j-th step of the path
correspond to that order statistic which equals +a;, and denote by S; the step
path that thus corresponds to ¥;. Then the steps S;, S;, - - - are the successive
down-steps of the path, read from left to right, while S,, S,._3, -+ are the
successive up-steps.

Let us characterize the condition M; .1-; > 0, for 1 <4 < in, in terms of
the steps. Clearly, M; ..1—; > 0 means that |¥,| < ¥,,1-; which in turn assures
that S,i1— is an up-step; that S..;_; comes before S;; and that S, is preceded
by at most ¢ — 1 down-steps. From these facts it is clear that both S; and
Snt+1—¢ are positive steps, in the sense that both lie above the horizontal axis
drawn through the start of the path. Similarly, one can argue that M; .1 <0
implies that both S; and S,1_; are negative steps.

When 7 is even, say n = 2k, we now see that 2G is just the number of positive
steps in the path. To make this simple relation true also when n = 2k + 1, we
must modify the definition of G slightly, by adding to its value as previously
defined the number § in case Y41 > 0, which occurs if and only if Sy is the
(& + 1)-st up-step and hence a positive step.

The distribution of the number of positive steps has been investigated. For
the case n = 2k, it is given in ([3], p. 77) in a simple closed form, which is shown
(p. 80) to have the arc sine limit law. The case n = 2k + 1 is discussed in [1],
and from the remarks made there it is clear that the same limit law holds (as
would indeed be the case had we not modified the definition of @). The non-
normality of the limit law of G suggests that the estimate D may also have a
nonnormal limit distribution.
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While the test G is interesting because of its relations to D, to the Galton
test, and to random walks, it suffers from a practical disadvantage: the sample
size must be large before the customary small significance levels become avail-
able. This fact reflects the remarkable tendency, emphasized by Feller, for
random paths to remain always on one side of the axis.

11. Tolerance of extreme values

A principal motive behind the search in recent years for estimates of location
alternative to classical X has been the realization that X is sensitive to extreme
values. This motive is explicit in the proposal of trimmed and Winsorized means,
and it was also impelling in the development of estimates based on rank tests,
such as T. It is the purpose of this section to introduce a simple numerical
measure of the degree to which an estimate of location is able to tolerate extreme
values, and to use this measure to compare several estimates. No pretense is
made that the proposed measure exhausts the complex extreme-value problem;
however, it provides in some cases an easily computed solution to one aspect
of that problem.

As an example to motivate the definition, consider the trimmed mean

(11.1) R=(Y;+Y+Ys+Ys+ Y+ Ys)/6

where n = 9. It is obvious that ¥; < R < Ys, whatever be the sample values.
This implies that Y,, Y, and Y, may be as extreme as desired without causing
R to fall outside the range of the remaining six values. The estimate R is there-
fore able to withstand two extreme values on the left, or one extreme value on
the right, or both, however extreme they may be. It cannot however handle
more than this. For example, if there are two extreme values on the right, R will
be affected. Indeed, if Y5 (and hence Y) is made to tend to «, while the values
Yy, ---, Y remain fixed at arbitrary values, then R — . Similarly R — —o
if Y; — —o, whatever be the fixed values of Yy, - - - , ¥,. In these circumstances,
it seems natural to say that R can ‘“tolerate” just two extremes on the left and
one extreme on the right. ‘

Let us now formalize this idea in a definition. Let ¥ be an estimate based on
a sample of size n. Suppose there exist integers « > 0, 8 > 0 such that

(11.2) ' Yoy VLY, forall Yy ---,Y,;
(11.3) whatever be the fixed values of Yoys, + -, Ya,

Yor1— —0 implies V — —o;
(11.4) whatever be the fixed values of Yy, -+, Vo,

Y. g— o implies V — .

We shall then say that V can tolerate « extreme values on the left and 8 extreme
values on the right. If, as often happens, @« = 8, we shall denote their common
value by v. If it is desired to make explicit the dependence on n and V, we may
write a,(V) for «, and so on.
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Our quantities o and 8 do not exist for all estimates. In particular, they are
undefined for any estimate which can fall outside the sample range, since in
this case no choice of « and 8 will satisfy (11.2). Examples of such estimates
are given in theorem 1 below. Other examples are provided by certain Bayes
estimates, which can be arbitrarily far from the sample, if the sample should
fall sufficiently far from the region in which the population was believed, a priori,
to lie. The measures « and 8 do however exist for two classes of estimates, as
we shall now show.

First, let us consider the class of linear combinations of order statistics, say

(11'5) L= wlYl + - + wnYn-
The behavior of these estimates depends on the signs of the cumulative weights,
say
Ai=w+w + - 4+ w,
Bi = Wa_ijy1 + Wnig2 + -+ + Wy,
where7 =1,2, ---, n.
TueoREM 1. If A, # 1, or of any A; or B; is negative, a and B do not exist.

If A, =1and all A; > 0 and all B; > 0, then a,(L) is the smallest integer a for
which Aayy > 0, and B,.(L) is the smallest integer b for which By > 0.

(11.6)

Proor. If A, 1,then Y, = --- =Y, =y ## 0 makes L = A,y fall out-
side the range. If A; < O for some positive integerz,let Y, = .- = Y; =y <0
and Y,y =+ =Y,=0. Then L=A4y >0=7Y, so that L again falls

outside the range. A similar argument covers B; < 0, and the first statement
of the theorem is proved.
Now suppose A, =1 = B,, and 4; > 0 and B; > 0 for all 7. Since A, > 0,

there must be an integera, 1 < a < n,suchthat A, = --+ = 4, =0, 4,1 > 0,
and hence w; = --- = w, = 0 and w1 > 0. Similarly there exists b such that
Wy = -+ = Wy_py1 = 0 and w,_p > 0. We see that 4, = 1 = B,_.. We must

verify (11.2)-(11.4) with a, b and L replacing «, 8 and V.
Since A; > 0 and Y; < Y,,;, we must have

(117) A.‘Y,' + w¢+1Y,-+1 S A,’+1Yi+1 for 7 = 1, 2, ree,N — 1.
Applying (11.7) inductively on 7, we find
(11.8) L < AcpiYar1 + WapaYore + <+ + waYs
S An—an—b + wn—b+1Yn—b+l + t + wnyn-

The final term of (11.8) equals A, 3Y,—s = Y,_s, hence L < Y, The anal-
ogous argument shows Y., < L, so that (11.2) holds.

To verify (11.3), consider the first inequality of (11.8). If Y4, -+, ¥, are
fixed arbitrarily and Y,y — —, the middle member of (11.8) will tend to —w,
and therefore so must L. The analogous argument checks (11.4).

Several of the following corollaries are obvious, so proofs are omitted or only
sketched.
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Tukey has discussed the use of trimmed and Winsorized means for the location
problem (see section 14 of [11] and the references there given). The (e, b)-
trimmed mean is the arithmetic mean of the n — a — b observations that remain
after the a smallest and b largest observations have been removed. For example,
the estimate R above is a (2, 1)-trimmed mean.

CoroLLARY 1.1. If R s an (a, b)-irimmed mean, then a,(R) = a and
Bn(R) = b.

The (a, b)-Winsorized mean is the arithmetic mean of the n values after each
of Yy, ---, Y, has been replaced by Y,y1, and each of Y, 3,1, - -, ¥, has been
replaced by Y,_s.

CorOLLARY 1.2. If Z is an (a, b)-Winsorized mean, then a.(Z) = a and
Bn(Z) = b. _

CoROLLARY 1.3. The mean X has zero tolerance for every n.

Proor. The mean X is the special case of L with each w; = 1/7n. As remarked
above, X cannot tolerate even one extreme value.

CoROLLARY 1.4. The median X has tolerance y.(X) = [3(n — 1)].

Proor. We are using the customary notation, where [u] means the greatest
integer not greater than w. If n is even, say n = 2k, then X = 1Y, + 3Yiy1 50
that by theorem 1, a =8 =%k — 1 = [3(2k — 1)]. If nis odd, say n = 2k 4 1,
then X = Yipsothata = 8=k = [3(2k 4+ 1 — 1)].

It is clear from (11.2) that, whenever a and 8 exist, @ + 8 < n — 1. There-
fore, v, whenever it exists, must satisfy 2y < n — 1 or v < [$(n — 1)]. Thus
the median X has the maximum possible value of v, corresponding to the
intuitive idea that it tolerates extreme values as well as is possible for any
estimate that treats the two extremes symmetrically. (Of course other order
statistics may be more tolerant of extremes on one side only.)

CoROLLARY 1.5. The tolerance a,(Y;) =7 — 1 and 8.(Y,) = n — 4.

CoOROLLARY 1.6. The sample midrange has v, = 0.

CoroLLARY 1.7. The estimates discussed in section 5, where the weight of Y ;
1s proportional to f(EY;), have v = 0. This includes the estimate W of section 5.

As a second class of estimates for which « and g exist, consider the estimates S
defined in (9.1), where for the moment we do not impose (9.2). Denote by X.
the subset of 8 consisting of those pairs (7,7) € 8 for which 7 > a. Similarly,
let £; be the subset of § consisting of those pairs (7, j) € 8 for which j < b.

THEOREM 2. The tolerance o, (S) s the largest integer a such that

(11.9) ${#©) + 1} < #H(Ka).
We have that 8,(8) is the largest integer b such that
(11.10) ${#©) + 1} < #HLu)-

Proor. The argument depends slightly on the parity of #(8); we shall give
it for the even case, say #(8) = 2¢. Then, if a is the largest integer for which
(11.9) holds, #(Kaes1) > q + 1 and ¢ = #(Kay2). It is clear that Vs < M,; for
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every (,7) € Xuy1. Therefore, Y,41 is not greater than at least ¢ + 1 of the
2¢ means, the median of which is S. It follows that Y,y; < S. Similarly (11.10)
implies S < Y, and (11.2) holds.

Now fix Yo4e, -+, Y, and let Yyy1 — — 0. This implies M,;; — — for every
7 < a+ 1. At most #(Kay2) of the 2¢ 4+ 1 means whose median is S can avoid
tending to —, and hence at least ¢ + 1 means tend to —o, implying that
S — —o. This checks (11.3), and the argument for (11.4) is analogous.

If § satisfies the symmetry condition (9.2), then clearly ,(S) = 8.(8) = v.(S).
This applies to T, U, and D.

CoROLLARY 2.1. The tolerance v,(D) = [3(n — 2)].

The argument depends on n mod 4; we give it for n = 4k. Then #(®) = 2k
and #(Kay1) = 2k — a. The largest integer a for which (11.9) holdsis k — 1 =

[1(2k — 2)].
CoOROLLARY 2.2. We have
(11.11) vo(U) = [0 — 3 — 3 V2n? — 2n + 5).

Proor. Here #(®) = in(n — 1) and #(X.,) = i(n —a)(n —a +1). We
seek the largest integer a such that
(11.12) ntn—1)+3 <30 —a—1)(n—a).

In the range considered, the right side of (11.12) is a decreasing function of q,
treated as continuous. Therefore o, (U) is [d] where @ is the root of the quadratic
equation obtained by inserting an equality sign in (11.12).

CoroLLARY 2.3. We have

(11.13) va(T) = [n 4§ — 3 Vonr + 20 + 5].
The proof is similar.
We remark that v, (U) = va(T) > v.(U) > v.(D).

Table VIII compares the values of y,(V) forn = 11)20and V = X, T, U
and D.

TABLE VIII

TOLERANCE OF SEVERAL ESTIMATES
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If AM(V) = limu—e (v2(V)/n) exists, this limit represents the fraction of ex-
treme values which the estimate V can tolerate at each end of a large sample.
For large n,

R U —‘Q—E) (1+ 3) + 0 (nl) = 7.(U).

Thus

(11.15) AMU) = \T) =1 — ‘/75 = .293.

For comparison, A(X) = .5 and A(D) = .25.

12. Comparison of several estimates

We conclude by comparing several estimates with regard to three desiderata:
(i) efficiency in estimating the center of a normal population; (ii) tolerance of
extreme values in the sense of section 11; and (iii) ease of computation. These
are of course not the only considerations, but seem important ones. The com-
parison will be made primarily for sample size n = 18, since most is known for
that case, but one may suppose that similar results hold for » near 18.

If only (i) is considered, then X has a strong claim to be the best estimate,
as it is the optimum estimate for the normal location problem according to
several criteria. This classical estimate is also easy to compute. However X has
no tolerance of extreme values, and cannot be considered if (ii) is important.

If only (i) is considered, then X is the estimate of choice, as it maximizes 7.
It is again easy to compute. However, it is poor on criterion (i), with e(X) =
68563 at n = 18, and ae(X) = 2/7 = .63662. In most situations one would not
pay so great a price in efficiency for what may be an unnecessarily great protec-
tion against extreme values.

If we require good performance on both (i) and (ii), the estimates 7', U and D
are all satisfactory. At n = 18, all have efficiency near .95 according to the
sampling experiments, and v(T) = y(U) = 5, y(D) = 4. The slightly lower
tolerance of D may be balanced against the fact that it is considerably easier
to compute than T or U, and if all three desiderata are considered, D is perhaps
preferable to X, X, T and U.

Finally, let us compare D with the symmetrically trimmed and Winsorized
means. According to corollaries 1.1 and 1.2, these estimates achieve tolerance vy
if we trim or Winsorize v observations at each end. For n = 18, table I of [10]
permits us to find the variances, and hence the efficiencies, of the (y, ¥)-trimmed
and (v, v)-Winsorized means for each y. The results are given in table IX.
When v = 8, both estimates coincide with X; when y = 0, both estimates
coincide with X.

It has been pointed out by Dixon [2] that, for n < 20, the (v, v)-Winsorized
mean has efficiency that agrees to three figures with the optimum attainable
among all weighted averages of the order statistics which assign weight zero
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to the v smallest and v largest. By theorem 1, this implies that, to three figures,
the values of efficiency of the Winsorized mean in table IX may be taken to be
the efficiency of the optimum linear estimate with tolerance .

We see that, at n = 18, the efficiency of D is approximately the same as that
of the optimum linear estimate with vy = 2. As y(D) = 4, the estimate D pro-
vides substantially better tolerance of extreme values, while giving the same
normal efficiency. Put another way, if we desire tolerance vy = 4 the efficiency
of the optimum linear estimate is only .889 compared with e(D) = .955 + .007.
This indicates that the restriction to linear estimates entails a substantial cost
according to criteria (i) and (ii), and again suggests that the estimate D is worth
consideration in the symmetric location problem.

TABLE IX

EFrFIcIENCIES WITH NORMAL SAMPLES OF 18

Y Trimmed mean Winsorized mean
0 1.00000 1.00000
1 97462 98116
2 .94084 .95581
3 .90367 .92501
4 .86429 .88896
5 82314 84749
6 78030 .80021
7 73535 74649
8 .68563 68563
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