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1. Introduction

Let X be a real valued random variable with probability measure P and
distribution function F. It will be convenient to take F as the intermediate
distribution function defined by

(1.1) F(x) = 1 [P{X < x} + P{X < x4].
In mathematical analysis it is a little more convenient to use this function
rather than
(1.2) F,(x) = P{X < x4 or F2(x) = P{X < x),
which arise more naturally in probability theory. With this definition, if the
distribution function of X is F(x), then the distribution function of -X is
1 - F(-x). The distribution of X is symmetrical about 0 if F(x) = 1 - F(-x).
For F, and F2 the corresponding relations are more complicated at points of
discontinuity.
The characteristic function of X, or of F, is

(1.3) +(t) = eitx dF(x),

defined and uniformly continuous for all real t. The function 4 is uniquely deter-
mined by F. Conversely, F is uniquely determined by 0. Every property of F
must be implicit in 4 and vice versa. It is often an interesting but difficult prob-
lem to determine what property of one function corresponds to a specified prop-
erty of its transform.
We know that in a general way the behavior of F(x) for large x is related to

the behavior of +(t) in the neighborhood of t = 0. The main object of this
]aper is to make some precise and rather simple statements about this relation.
We are interested in the behavior of +(t) in the neighborhood of t = 0 because
upon this depend all limit theorems on sums of random variables. For example,
suppose that X1, X2, * * * is a sequence of independent, identically distributed
random variables with distribution function F(x) and characteristic function
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0(t). rrhe sunI X1 + X2 + * * * + X,, has characteristic function 0(t) '. Suppose,
to take the simplest case, that

(1.4) W, Xl + X2 + **+ X.(1.4) ~~~~~~~~~~B,,
has a limit distribution as n - oo, where B. is a function of n which -*+oo as
n -> o*. The characteristic function of W. is 0(t/B,,)n, and must -* a charac-
teristic function #,(t) as n -* co. For fixed t, t/Bn,-0 as n -4oo, and so the
existence and the nature of the limit 4i(t) will depend only on the behavior of
(/(t) in the neighborhood of t = 0.
For x > 0, put

(1.5) H(x) = 1 - F(x) + F(-x), the tail sum,

K(x) = 1 - F(x) - F(-x), the tail difference.
If the distribution is symmetrical about 0, then K(x) is identically zero. If X is
a nonnegative random variable, F(x) = 0 when x < 0, and K(x) = H(x) for
x >O.
We may write

(1.6) <)(t) = eixdF(x) + f ieid[F(x)-1].
Integrating by parts and putting

(1.7) f(t) = U(t) + iV(t),
where U, V are real for real t, we finally obtain

(1.8)1- U(t) =fAH(x) sin tx dx,

(1.8)
V(t) = f K(x) cos tx dx.

t J
We have the inversion formulas,

H(x) =2 I1 -U(t) sin xt dt,
(1.9) ~~~~~~~~rJo t

2~V(t)K(x) = _ J cos xt dt.
7 o

For real t, the real part of +(t) depends only on H, anid the unreal part only
on K. A necessary and sufficient condition for +(t) to be real for all real t is that
K(x) be identically 0, that is, that the distribution be symmetrical about 0.
U(t) is itself a characteristic function; the corresponding distribution function
is [F(x) + 1 - F(-x)]/2. In investigating the behavior of +(t) in the neighbor-
hood of t = 0, it is advisable to consider U(t) and V(t) separately. For real
values of t these are not closely connected because the former depends only on
H(x) and the latter only on K(x), and the only connection between H(x) and
K(x) is the relation H(x) _ IK(x)l.
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Consider H(x) and U(t). If the distribution has a finite standard deviation oa,
then

(1.10) U(t) 1 2t + o(t2), t-0.

Hence,
(1.11) 1 - U(t) =2-o2t2 - 0(t2) 2-a2t2, t 0.

Later we shall have some statements about the term 0(t2), but now let us note
that in order to get anything different from

(1.12) 1 - U(t) lI a2t22

we must have a distribution of infinite standard deviation.

2. Distributions of infinite standard deviation

1-U(t) | H(x) sin tx dx;
(2.1)

1 -U(t) = f H(u/t) sin u du.

The sort of result we get is

(2.2) 1 - U(t) - cH(1/t), t j 0,

where c is a constant depending on the distribution. Under what conditions can
we expect this?

1 - U(t) f~H(u/t)
(2.3) H(I/t) = J H(1/t) sin u du.

We want the right side to tend to a limit when t . 0. We can expect this only if

(2.4) H(u/t) -+ a limit h(u) when t 4 0,
H(1/t)

and the limit of the integral is the integral of the limit. If all goes well, the limit
of the right side of (2.3) will be

(2.5) fo h(u) sin u du = c,

say, and we shall have

(2.6) 1 - U(t) t cH(1/t), t I O.

For u > 0, we want to have

(2.7) H(u/t) - h(u) as t I °-
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Changing the notation, we require for every X > 0 that

H(Xx)(2.8) H(x) -- ( ) as x o

For X, ju > 0, we have

(2.9) H(XAx) _ H(Xux) H(px)
H(x) H(Ax) H(x)

and so we must have
(2.10) h(X.u) = h(X)h(p).
It is a classical theorem that for a measurable h the only solution of this func-
tional equation is
(2.11) h(X) = Xk
where k is a constant.

Thus, for the present, we are interested in distributions for which the tail sum
H(x) has the property that for every X > 0,

(2.12) H(Xx) Xk as xH(x)
We shall express this property of H by saying that H(x) is of index k as x-0o.
A function L(x) of index 0 is sometimes called a function of slow growth. It has
the property that L(Xx)/L(x) -* 1 as x -X oo for X > 0. The functions log x,
log log x, 1 + 1/x are all of index 0 and so is any constant. Clearly, if H(x) is of
index k, then H(x)/xk is of index 0 and so

(2.13) H(x) = xkL(x),
where L(x) is of index 0. Similarly we say that a function G(x) is of index k as
x J 0 if for every X > 0,

(2.14) G(Xx)Xk as x X 0.G(x)
It is easy to show that if the distribution has infinite standard deviation and

if H(x) is of index k as x --, then -2 k < 0. Theorems 1 and 2 are con-
cerned with this case. Theorem 3 gives corresponding results for K(x). The
proofs of these three theorems are not given here but will be published elsewhere.
Write

r 1

| 2m , m > 0,
S(m) = j r(m) sin 1- mmr

(2.15) L1, m = 0,
1

C(m) = 1 >m>0.
r(m) cos Mr
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S(m) is finite for m not an even positive integer and, for 0 < m < 2,

(2.16) S(m) = f - dx.

C(m) is finite for m not an odd positive integer and, for 0 < m < 1,

(2.17) C(m) = f c dx.Jo xm

THEOREM 1. If H(x) is of index -m when x -oo and
(i) 0 < m < 2, then 1 - U(t) - S(m)H(1/t) as t I 0;

(ii) m = 0 and H(x + h) _ [H(x) + H(x + 2h)]/2 when x and hare sufficiently
great, then 1 - U(t) - H(1/t) as t 4 0;

(iii) m = 2, then 1- U(t) _ t2 f0 txH(x) dx as t I 0.

The condition (ii) is the extension of (i) to the case m = 0 with an additional
condition. It can be shown by a counterexample that some such additional
condition is required for m = 0. Statement (i) is an extension of a result of
Titchmarsh on Fourier transforms.

There are also comparison theorems of the type

(2.18) H,(x)= OxH(x)}, X -*,
X - U1(t)=o{ - U(t)}, t 4 0,

where H satisfies condition (i), (ii) or (iii).
We have the converse
THEOREM 2. If 1 - U(t) is of index m as t 4 Oand 0 _ m < 2, then

(2.19) H(x) 1-U(1/X) x. ;

and if m = 2, then

(2.20) fx uH()du_2[1 - U(1/x)], x*oo.

This is more difficult to prove.
For the unreal part of +(t), we have
THEOREM 3. If K(x) is ultimately monotonic and of index -m and

(i) 0 < m < 1, then V(t) - C(m)K(1/t) as t 4 0;
(ii) m = 0, then

(2.21) V(u) du '-'17K(1/t) as t X 0;

(iii) m = 1, then V(t) - t fo l K(x) dx as t 4 0.

If K(x) is of index -m and
(iv) 1 < m < 3, then V(t) - ,A*t- C(m)K(1/t) as t 4 0, where
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(2.22) ff K(x) dx = l fm T x dF(x).

There are converse theoremis.

3. Application

As an application of these results, consider a distribution which is symmetrical
about 0 and for which

(3.1) 11(x) logx x -4 0o.

H(x) is of index -1 anld ¢(t) = U(t). Thus

(3.2) 1 - S(t) = 1 S(1)H(l 7rt log ( It)
as t l 0. Hence

(3.3) ¢(t) = 1 - 77(t)Itl log (/Iltl),
where q(t) -r/2 as t -O 0.

If X1, X2, *.. are independent random variables, each with this distribution,
and B,, is a positive function of n, then

(3.4) Xl+X2 + *** +Xn

will have characteristic function

(3.5)
I l= {1 - (1) t|(log B,, - log ItI)}n

This will tend to a limit as n x if B,/log B,, - n. This will be so if the func-
tion B,, = n log n.
Thus the characteristic function of

(3.6) X1l+ X2 +x2 ... +Xt
(3.6) nlogn

is asymptotically equal to

(3.7) {- J'

which tends to the limit exp (-rltl/2) as n -4 oo, and so (3.6) has a limit dis-
tribution which is a Cauchy distribution.

4. Distributions of finite standard deviation

We now consider theorems applicable to distributions of finite standard
deviation. The nth moment, if it exists, will be denoted by IA,, and we shall write

(4.1) 1n = x" dF(x), 4+t = g xn dF(x).



CHARACTERISTIC FUNCTIONS 399

Define
fo(x) =J{F(x) for x <O,

for x >O;

fn(x) = {J x f,n-i(u) du for x < 0,
O.9 for x > O,

(4.2) n= 1,2,3,
go(x) = for x <O,

1- F(x) for x > 0;

0O for x < 0,
9n(X) =qc

lJ gn_1(u) du for x > 0,
it = 1, 2, 3,

From the relations

J x+lfnl(x) dx = -((m + 1) 1 xmf.(x) dx,

f0 xm+lg.-1(x) dx = (m + 1) f0 xm-g(x) dx,
we can show that

(4.4) fM(O) =g;I, 9n(°) =

We may write

(4.5) 4(t) = eix dfo(x) -Jo eitx dgo(x)

= 1- it | eitxfo(x) dx + it f0* eixgo(x) dx.

By continued integration by parts, we obtain
THEOREM 4. If A. exists and is finite,

n-1iOit A+02t(4.6) +(t) = 1 + E j (it)r + An(it)
I r. n

where 4'1(t) is the characteristic function of the continuous distribution with density
function n!f._i(x)/l,un and 0n2(t) is the characteristic function of the continuous
distribution with density function n!gn_i(x)/,t+. Both distributions are unimodal
with mode at the origin; the former is a purely negative distribution and the latter a
purely positive distribution.

If n is even,

(4.7) 'n(t) - ,A;qb1(t) + A10,4n.2(t)
Axn

is the characteristic function of the continuous distribution with density function
n![f,,(x) + gn-i(x)]//.,. This distribution is unimodal with mode at the origin.
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We may restate this result as followvs.
THEOREM 4A. If A2n < °°,

(4.8) I(t)= 1 + 2 IL (it)r + /;2n (it)2nq2.(t)

where )2n (t) is the characteristic function of the continuous distribution with density
function (2n) ![f2n_1(X) + 92.-1(X)]/s2-.

Put
(4 9) p2n(it) 2 =2 (it) 2 W(t) + iV(t),

where W, V are real for real t. We then have

(4.10) + (t) = 1 +
2n

(it)- W(t) + iV(t).rn
By applying theorem 1 to 02n(t), we obtain
THEOREM 5. Suppose is2n < oo and that H(x) is of index - nz as x oo.
(i) If 2n <m < 2n + 2, then W(t) - S(m)H(1/t) as t I 0.

(ii) If m = 2n and H(x + h) _ [H(x) + H(x + 2h)]/2 when x and h are
sufficiently great, then

(4.11) W(t) ~~(tt)2 f x2n-H(x) eix as t 0.(4.11) W(t) -
(2n - 1)! It (t

(iii) If m = 2n + 2, then

(4.12) W(t) )2+2 /t as t O.(2n+ 1)! J 2+Hxd st,.0

Corresponding results can be obtained for V(t).

5. The derivatives of a characteristic function

The existence of a finite first moment is a sufficient condition for +(t) to have
a finite derivative for every real value of t. This condition is not necessary.
Necessary and sufficient conditions for +(t) to have a finite derivative at t = 0
are given in [1]. Theorem 6 gives a sufficient condition for +(t) to have a finite
derivative at every real value of t except possibly t = 0. Theorem 7 gives the
corresponding result for a lattice distribution.
THEOREM 6. Let the distribution function F(x) be absolutely continuous with a

density function f(x). If a, b exist such that xf(x) is of bounded variation in x _ a
and also in x > b, then the characteristic function +(t) has a finite derivative at
every real value of t except possibly t = 0. The condition on f(x) will be satisfied in
either interval if f(x) is monotonic and finite in that interval.

PROOF.

(5.1) +(t) = |a eitxf(x) dx + b eitxf(x) dx + | eitzf(x) dx.
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If t s 0,

(5.2) +'(t) = i f eitrxf(x) dx + i
b eitxxf(x) dx + i J eitxxf(x) dx

because, as shown in the next paragraph, the first and last integral on the right
side are both uniformly convergent with respect to t in Iti > h > 0. Thus +'(t)
exists and is finite if t # 0.

Since xf(x) is of bounded variation in x > b, it tends to a finite limit as
x -- oo. This limit must be 0 because fb f(x) dx <

(5.3) f eilxxf(x) dx _ ettccf(c) - eitbbf(b) eTd(xf(x)).

If c > b, and Itl > h > 0, the modulus of this is not greater than

(5.4) cf(c) + bf(b) + 1 A d(xf(x)) ,

which -O 0 as b -- oo. We have assumed, as we may, that b > 0. Thus

(5.5) f X eilxxf(x) dx

is uniformly convergent with respect to t in Itl > h > 0. A similar proof applies
to the other integral.

If f(x) is monotonic in the interval x > b it must be nonincreasing in that
interval. If x > b,

(5.6) 1 > f f(u) du = xf(x) - bf(b) - fbx u df(u).
Therefore,
(5.7) 1 + bf(b) > -fb udf(u).
Hence,

(5.8) 0° --bf udf(u) <0o.
Also,
(5.9) xf(x) = bf(b) + fbxf(u) du + uxU df(u),

and therefore xf(x) is of bounded variation in the interval x 2 b.
THEOREM 7. Let X be a lattice variable which takes only the values h + nX,

where n runs through integral values, and let

(5.10) P{X = h + nX} = f(n).
If nf(n) is of bounded variation for n < a and also for n > b, then the characteristic
function +(t) has a finite derivative for all real t except possibly t = 2nir/)X, where
n is integral. The condition on f(n) will be satisfied in either range if f(n) is mono-
tonic in that range.
The proof is similar to that for theorem 6.
Finally, we note
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THEOREM 8. If P2n < °, then +(t) has a 2nth derivative 4(2n)(t) and

(5.11) =*2)() ,¢(n t
0(2.)(t),0(2n)(0) (ln/.,2.

is the characteristic function of the distribution with distribution function

(5.12) J_ u2"dF(u)
1A2n
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