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1. Introduction .

In the present paper we shall consider a series of questions connected with
local properties of sample functions of stationary stochastically continuous sepa-
rable Gaussian processes. The words stochastically continuous and separable
will be omitted. The results given below were previously published in [1] without
proofs. In section 2 we show that for stationary Gaussian processes the following
alternatives take place: either all the sample functions are continuous, or all
the sample functions are unbounded in every interval of finite length. The
hypothesis about the existence of such alternatives was stated long ago by
Kolmogorov (see also [2]). In section 3, conditions sufficient for the continuity
of sample functions which were obtained by Hunt [3] are formulated in terms
of correlation funections in formulas (44) and (45). In the same section examples
are given of Gaussian processes that are unbounded with probability one in
intervals of finite length. These examples show that conditions (44) and (45)
cannot be strengthened materially. Conditions sufficient for almost all sample
functions to satisfy a Hélder condition are discussed in section 4. The author
wishes to express his deep gratitude to A. N. Kolmogorov for proposing the
problems.

2. Alternatives

Let £(t) be a stationary Gaussian process with a continuous correlation func-
tion, assuming real values. The main result of this section is

THEOREM 1. For every Gaussian stochastically continuous stationary process
£(t) one of the following alternatives holds: either with probability one the sample
Sfunctions £(t) are continuous or with probability one they are unbounded in every
finite interval.

In order to prove this theorem we need two lemmas.

LemMa 1. Let {() be a random process such that in the interval A = (¢, ")
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(1) r {sup () > a} > p.

teh
Then there exists a set of points S, = {ti, - - -, t.} such that
@) P {max ¢t > a} > p.

ti ESn

LEmma 2. Let £1(t), -+, ta(t), -, Mta(t) = 0 be a sequence of mutually in-
dependent stationary Gaussian processes for which in some interval A = (i1, t3) and
fore> 0,8 >0,

® ) €
3) P {§g§ () > ah > p, sup P 32 £:(0) < 8 < g
where m s defined by (1 — p)™ < ¢/2.
Then
4) Psupfg‘.-(t)>a——6}>1—e.
tea =1

The proof of these auxiliary lemmas is elementary and is omitted here.
As is known, the modulus of continuity of the function f(¢) in the interval A
is defined as the function

®) w4, 8) = sup - |f(t) — f@E)I.

l',l"EA,lt’—t"l <5

In the case that almost all the sample functions are continuous in the interval
A we have

(6) Pﬂ} P{wi(A,8) >e =0
for every ¢ > 0. In this notation it is sufficient to show that if
@ ?f‘(} P{wg(&’,8) > b} > p’

for some b = 2a > 0, p’ > 0, and for some interval A’, then for any interval A
and for any N > 0

(8) P {§1611A) EO] > N} = 1.

If (7) is satisfied then, making use of the stationary nature of the process £(t),
it can be shown that for any interval A = (4, #1) and for some p = p(t;i — &) > 0,

(7 li{% P{w(4, 8) > b} > p.
8

We now note that if for some interval A = (#;, t1) we have b = 2a > 0, p > 0,
P{wy(4, 8) > 2a} > p, then

© P {sup [5(t) — £@)] > a} > p.
tea
Taking into account the symmetry of Gaussian distributions it follows that

(10) Psup (5) — §®)] > af > &
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It follows from (7’) that the speetrum of the process () is unbounded, since in
the opposite case almost all the sample functions would be entire and analytic
[4]. Therefore (7’) holds for any L > 0 for the process :

(11) £() = ﬁ eB(dN).

Nz=L

Here ®(d\) is the spectral probability measure corresponding to the process £(2).
Therefore, for the process £.(f) we have

12) P{sup [e:) — £:6)] > a} > &
tea

Suppose that we are given ¢ > 0, 8 > 0. First we select an interval A = (4, t1)
sufficiently small and then L sufficiently large that

inf P{(t) — () > =8} > 1 — ¢
(13) tea |
tié"f; P{gL(t) — &0(t) > —8} > 1 — 2%1

where m is an integer such that

1 \» €
(14) (1 —-ép) <§'
It follows from lemma 1 and from (12) that for some finite set Th C A
(15) P {max (60 - &) > o} > &
e
But
(16) £.(t) = Lim. e P(d)N),

Ni—e NS 2L

where Li.m. means convergence in the mean square.
Therefore, a sufficiently large N; can be found such that for

(17) 80 = [y nas ©2EE@)

we have

18) P {max 66 — 0] > o} > L
e

Since for the process

(19) 60) = [y, 02N

we have

(20) }iﬁ}P{wﬁ(Ay 8) > 20'} > D,

we can find by the same method an N; > N, and in fact a finite set T, C A such
that for . e ,
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21) 80O = [, 0 s €22
we have
(22) P {max (6t) — )] > a} > &

Proceeding further in the same way we can construct a sequence of mutually
independent stationary Gaussian processes

(23) 8O = [gpzm, €22, k=34,
for which
(24) P{sup [6:) — 5] > a} > &

tca

If we denote by {x(t) = &) — &), for k = 1, - - -, then, making use of (13)
and (14) and lemma 2, it can be seen easily that

(25) P {sup [£() — £&)] > a — 28} > 1 — 2
tcA
Since ¢ > 0, 6 > 0, and the interval A can be chosen arbitrarily small, it follows
that for any interval A = (4, t1) we have
(26) P {sup [¢() — £(t)] > a} = 1.
tea
This completes the first step in the proof of the theorem.
We now show that it follows from (26) that
@) P {sup [£(t) — &) > naj = 1, n=23,-
tcA
We present the argument for n = 2. Suppose that (26) holds. Again assign

arbitrarily small numbers ¢ > 0, § > 0. It follows from (26) and lemma 1 that
there exists a finite set of points S C A for which

(28) P {{ng;( [£(t) — £(t)] > a} >1-§
Since
(29) £1t) = lim. ™ d(dN),

M- <M

we can select a sufficiently large M > 0, such that for

(30) M) = [ <o @2
we have
(31) P {max in(t) ~ m@) > a}> 15

and such that for
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(32) m() = [, o)
we have
(33) tig{ P{m(t) — m(t) > —8} > 1 — 5

The process n1(f) has a bounded spectrum. It follows that almost all the sample
functions of this process are continuous. Therefore, near every point {, € S =
{tsy - -, ty} with &y < i, it is possible to find a sufficiently small interval
Ay = (& — &, 6 + 8) C A, such that in case m(t:) — m(h) > a, then
m() — m(t) > @, everywhere in the interval A; for all k simultaneously with
probability greater than 1 — ¢/4. Taking (31) into account, this gives -

(34) P{0,(jnt 0 - @1 > a)b > 1 -

We now consider the process 7.(f). Repeating the argument in the first part of
the theorem, it can be shown that for the interval A, fork = 2, -- -, N, we have

(35) P {sup [m() — m@ — )] > af = 1.
tEAx .
From this equation and from (33) it follows that for the event A, determined by
(36) sup [7(t) — m(t)] > a — 5,
tEA:
we have

@ P{A}zP {fsélg [m2(t) — mete — )] > a}

— Pt — &) —me(t) < =8} 21—
Let By be the event that for 2 < 7 < k,
(38) inf [m() — mt)] £ aq, inf [m(t) — m(t)] > a.
tEAs tEA:

£
2

In this notation (34) can be written in the form
N €
(34" > P{Bi} >1—;
k=2 2
Taking (34’) into account, we have
N
69 P{suple0) - 0] > 2 — o} 2 P{ U Budi}
t =
N N
= k;l P{B.A:} = k; P{Bi}P{A:} 21 — e
Since ¢ > 0 and & > 0 can be selected arbitrarily small, (27) follows for n = 2.
Repeating the argument it is possible, beginning with (27) for n = 2, to establish

(27) for n = 4, and so on. Therefore, for any interval and for any N > 0, we
have
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(40) r {sup £t > N} = 1.
tEA

The theorem is proved.

3. Sufficient conditions for continuity. Examples of everywhere
unbounded processes

We shall now consider conditions sufficient for the continuity of sample
functions of stationary Gaussian processes. The strongest result known to the
writer at present is due to Hunt [3]. The sufficient conditions obtained by Hunt
are formulated in terms of spectral functions. In order to reformulate these con-
ditions in terms of correlation functions the following lemma is useful.

Lemma 3. If F(\) is a nondecreasing function of bounded variation and if

(41) o(h) = ﬁ) (1 — cos M) dF(M),
and if for some C > 0, a > 0 and for all sufficiently small h we hare
C
(h) < ———r
(42) oh) = o

then it follows that for all b < a
(43) fo * Nog (1 + NP dFQ\) < .

Conversely, if (43) holds for some b > 0, then (42) holds for alla < b, C > 0, and
for all sufficiently small h, where |h| < & = §(C, a).

Hunt showed that if the spectral function F(A) of the stationary Gaussian
process £(f) satisfies condition (43) for some b > 1, then almost all sample
functions of the process £(t) are continuous. On the other hand, by lemma 3
above and by (42) with a > 1, it follows that (43) holds forall b, with 1 < b < a.
Therefore, condition (42) for @ > 1 is also sufficient for the continuity of sample
functions. Hence we have

THEOREM 2. In order that almost all sample functions of the stationary
Gaussian process £(t) be continuous it is suffictent that one of the following equiva-
lent conditions be satisfied either for some b > 1

(44) ﬁ) * og (1 + NP dFQ\) < =

or for some a > 1, (' > 0, and for all suffictently small h
C

A — 2L ——

(45) Mg+ 1) = 60 S ot

We now derive some conditions sufficient for almost all sample functions of a
stationary Gaussian process to be unbounded in every finite interval.

THEOREM 3. If for a stationary Gaussian process £(t) the spectral density f(\)
exists and is such that for some C > 0, Ao > 0 and for all X = N\
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C
b
Mlog )2

then almost all sample functions are unbounded in every interval of finite length.
The method of proof of this theorem is as follows. Let 5,(t) be mutually inde-
pendent stationary Gaussian processes with

(47) Mn.(t) =0, n=12 -

that have spectral densities f,(\) = 1/2** for 0 < XA < 1/2*, and f,(A) = 0 for
A = 1/2# Consider the random process

48) =% Cm@, TCi=1, ¥ iz

(46) ' o) z

C‘\

for all m = m, and for some Cf > 0. It can be verified that, for this process,
(49) lim P {w,(8, 8) > V) = 1
540 2

It follows from the alternatives established in section 2 that almost all sample
functions of the process 5(f) are unbounded in every finite interval. The spectral
density f,(A) of the random process 5(f) satisfies the inequalities

kl ]l2
Nog 0 =1 = Sog

for some 0 < k; < ko. The stationary Gaussian process n.,(f), with spectral
density g.(\) = 0 for A < w, and ¢g.(A) = f,(A) for A > w, possesses the same
property of unboundedness. Noting that the process £(f) can be represented as
the sum of two mutually independent stationary Gaussian processes, one of
which has spectral density of the form «g,(\), where « > 0 and w > 0, we
obtain the theorem.

It is possible to construct examples of unbounded Gaussian processes from
the properties of correlation functions. The following lemma, proved by A. D.
Venteel, is very useful.

(50)

LemMma 4. Let &, - - -, £, be Gaussian random variables
(B1) Mg =0, Mgi=o% Met=r,; <0, t#EjLj=1--,n
Then
52 j3 < g gy,
(52) 112?;;5 _a} II \/21ra,/-we v

If the correlation function B(h) = MEt(t + h)£(f) of the stationary random
process £(f) is convex for 0 < h < 8, where 6§ > 0, then

(63) M[st + k) — E@)1[EGE + h) — ()] £ 0, ltz — ta] < 8.

Using lemma 4 we can show that if for a stationary Gaussian process £(1),

(54) Mgt + 1) — O 2 ¢ >0,

[log[Al| glhll
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for all sufficiently small &, and if B(h) is a convex function, then
(55) 1%PM@&>V@=L

L]

Again applying the alternatives of section 2, we obtain

THEOREM 4. If the correlation function B(h) of the stationary Gaussian process
£(t) 7s convex for h € (0, &), where & > 0, and if (54) holds, then almost all sample
functions of the process £(t) are unbounded in all intervals of finite length.

4. Holder’s conditions

In the case of stationary Gaussian processes that are continuous with proba-
bility one, there arises the problem of studying the modulus of continuity of
sample functions. From general results we can note the following. If f(h) = 0
and h/f(h) — 0 as h — 0, then the probability of the event

[£@ + h) — &) 3]
(56) == > 1}

can be either zero or one. Another theorem of the same nature is a generalization
of a result of Baxter [5] in the case of stationary Gaussian processes.

TaEOREM 5. Let §(t), for 1 = 1, 2, be two stationary Gaussian processes
with M|t + h) — &@))2 = ¢i(h) such that h?/gi(h) — 0, as h — 0, and
Timi—o [e1(h)/e2(h)] = a > 1. Then a sequence of numbers hn L 0, as n— 0,
can be found such that with probabzhty one

. (61t + ha) — E@O) _
(57) nlll—lbr}n m ngl ‘Pl(hn) =1
and
1 & [slt+h) — 8O _ 1
(58) "1‘1_120 m nzl er1(hx) T«

The proof of this theorem can be obtained by using the fact that for a station-
ary Gaussian process ¢(f), which is not differentiable in the mean square, the
values

' tt 4 k) = ()
(59 D156 + ) — SOFT

and
£+ he) = £()
(60) (15 + ha) — SOFT

asymptotically become mutually independent random variables when
hy = constant and hy | O.

We shall say that a random process £(f) € H(e,, C), with0 < a < 1, C > 0,
if for every €’ > C, with probability one uniformly over all ¢ in every interval
A of finite length, there exists a §(A, C’) such that for all b < (4, C7)

(61) |5t + k) — EB)] = C'lhl~
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The following theorem holds for processes of this general type.
TueoreM 6. In order that a stochastically continuous random process

£(0) € H(a, C) it s sufficient that

@ ERr{(e) o) > Komt <o

where K, = (20 — 1)/2'*2= If for some a > 0, we have M|&(t + h) — E@)|® <
eo(h) | 0 for h — 0, then from

1t follows that £(t) € H(a, C) for every C > 0.

The proof of this theorem is analogous to the proof of a well-known theorem of
Kolmogorov [6] about the continuity of sample functions (see also the Russian
edition of Doob [7], p. 576).

THEOREM 7. If the correlation function B(h) of a stationary Gaussian process
18 such that for all sufficiently small h

2 AP

then £(t) € H(a, V2Ci/K.). If, however, for h € (0, ), > 0, B(h) is a convex
Junction such that for all sufficiently small h and for 0 < C; < C, we have

~ _|hf= TN Ll
(65) Ce I [hH = MIS(t + h) f(t)l llOglh”

then £(t) € H(a, V2C/K,), but £(t) & H(a, C") with probability one, if C' < V2C,.
Proor. If (64) holds then

(66) P{’s(k+1)—s(§>>cx,2—l—m exp{ 201 }

Therefore, the series (62) converges when C > v/2C,/K.. In order to prove that

£(t) & H(e, C'), when C' < V2Cs, we make use of lemma 4. By this lemma and
by (65) we have that if

' /2 2
(67) logn—l[gM+1]——>+oo as n — o,

()] =)
s[p{s(5) - @) =]

)
<[~ oo (H[E852 1T} 0

then
©8) P max [g(’“::l> -

1sksn
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as n — o, This will be the case if (' < \/2(’9 Hence E(t) & l(a. (") for ¢V <

Vv2C,. This proves the theorem.

In the following theorem the conditions for £(t) € H(a, ') arc formulated in
terms of spectral functions.

THEOREM 8. If the spectral funciion F(\) of a stationary Gaussian process £(t)
18 such that

(69) ﬁ) * Nelog (1 +\) dF(\) < =,

then £(t) € H(a, C) for every C > 0.

Proor. It can be shown that if (69) holds, then for every (1 > 0 and for
sufficiently small h, with || < §(C)), (64) holds and the statement of theorem 8
is a consequence of theorem 7.

Analogously we prove the following result which was first obtained by another
method by Hunt [3].

THEOREM 9. If the spectral function F(\) of a stationary Gaussian process £(1)
1s such that

(70) fo ® Ne dF(\) < o,
then almost all sample functions satisfy a generalized Holder condition of the form

() e+ ) — &) < Clhi= (log 1)

2

2

uniformly over all t in any interval of finite length for every C > 0 and all suffi-
ciently small h.

In the case of stationary Gaussian processes continuous differentiability with
probability one is equivalent to a Lipshitz condition. In fact, if for a sufficiently
small A the inequality

(72) e+ h) — EO] < CulA,

is satisfied uniformly in ¢ in some interval of finite length with probability one,
where C,, > 0 is a random variable, then almost all sample functions are abso-
lutely continuous. Moreover, the derivative, which is also a stationary Gaussian
process, is bounded with probability one. The continuity of the derivative is
a consequence of theorem 1.

In conclusion we note that for Gaussian processes whose correlation functions
are analytie, almost all sample functions are also analytic and possess many
properties (see [1] and [4]).
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