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1. Introduction

In the present paper we shall consider a series of questions connected with
local properties of sample functions of stationary stochastically continuous sepa-
rable Gaussian processes. The words stochastically continuous and separable
will be omitted. The results given below were previously published in [1] without
proofs. In section 2 we show that for stationary Gaussian processes the following
alternatives take place: either all the sample functions are continuous, or all
the sample functions are unbounded in every interval of finite length. The
hypothesis about the existence of such alternatives was stated long ago by
Kolmogorov (see also [2]). In section 3, conditions sufficient for the continuity
of sample functions which were obtained by Hunt [3] are formulated in terms
of correlation functions in formulas (44) and (45). In the same section examples
are given of Gaussian processes that are unbounded with probability one in
intervals of finite length. These examples show that conditions (44) and (45)
cannot be strengthened materially. Conditions sufficient for almost all sample
functions to satisfy a Holder condition are discussed in section 4. The author
wishes to express his deep gratitude to A. N. Kolmogorov for proposing the
problems.

2. Alternatives

Let t(t) be a stationary Gaussian process with a continuous correlation func-
tion, assuming real values. The main result of this section is
THEOREM 1. For every Gaussian stochastically continuous stationary process

t(t) one of the following alternatives holds: either with probability one the sample
functions t(t) are continuous or with probability one they are unbounded in every
finite interval.

In order to prove this theorem we need two lemmas.
LEMMA 1. Let ¢(t) be a random process such that in the interval A = (t', t")
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(I) P{sup¢(t) > a} > p.

Thent thlere exists a set of points S,, = {t,, t,(4 such that

(2) P {max P(tj) > a} > p.

LEMMA 2. Let p1(t), *, Dm(t), * *, M¢m(t) = 0 be a sequence of mutually in-
dependent stationary Gaussian processes for which in some interval A = (tl, t2) and
for f > 0, 6 > 0,

(3) P (sup Pk(t) > a} > p, sup P { Pi(t) < -B} <j2e,

where m is defined by (1 - p)7n < E/2.
Then

(4) p sup Et(t) > a-a >> Ce

The proof of these auxiliary lemmas is elementary and is omitted here.
As is known, the modulus of continuity of the function f(t) in the interval A

is defined as the function
(5) w1(A, 5) = sup if(t') - f(t")I.

t"tst G=,&jt-t11l <8

In the case that almost all the sample functions are continuous in the interval
A we have

(6) lim P{w(A,5) > E} = 0

for every E > 0. In this notation it is sufficient to show that if

(7) lim P{wt(Al, 6) > b} > p'
aO

for some b = 2a > 0, p' > 0, and for some interval A', then for any interval A
and for any N > 0

(8) P (sup It(t) > N} = 1.

If (7) is satisfied then, making use of the stationary nature of the process t(t),
it can be shown that for any interval A = (t1, tl) and for some p = p(tl- t) > 0,
(7') lim P{w(A, 5) > b' > p.

We now note that if for some interval A = (ti, tl) we have b = 2a > 0, p > 0,
P{wj(A, 5) > 2a} > p, then

(9) P (sup |(t)- (t1) > a} > p.
LeA

Taking into account the symmetry of Gaussian distributions it follows that

(10) P {sup [t(t)- (t)] > a} > 2P-
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It follows from (7') that the spectrum of the process t(t) is unbounded, since in
the opposite case almost all the sample functions would be entire and analytic
[4]. Therefore (7') holds for any L > 0 for the process

(11) {L(t) = |AI 2L eitMT(dA).

Here 41(dX) is the spectral probability measure corresponding to the process t(t).
Therefore, for the process {L(t) we have

(12) P {suP [L(t) L(tl)] >a} >

Suppose that we are given E > 0, 5 > 0. First we select an interval A = (t1, tO)
sufficiently small and then L sufficiently large that

inf P{t(t) - (t1) > -5} > 1 -
(13) teA

inf P{iL(t) -L(tl) > -5} > 1 - 2-
tEA ~~~~2m

where m is an integer such that

(14) (1- P) < -

It follows from lemma 1 and from (12) that for some finite set T, C A

(15) P {max [4L(ti) - L(tl)] > a} > P'
tiE-Ti 2

But

(16) L(t) = l.i.m. e (A),

where l.i.m. means convergence in the mean square.
Therefore, a sufficiently large N1 can be found such that for

(17) fl(t)= JN >IJI 2LeitL(dX)
we have

(18) P {max [% (ti) -{1(t1)] > a} > P
tGETt 2

Since for the process

(19) p1(t) = eitAx?(dA)
we have
(20) lim P{wr,(A, 5) > 2a} > p,

ao

we can find by the same method an N2 > N1 and in fact a finite set T2 C A such
that for
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(21) (t) = fN >jXlkN ei'4(dX)
we have

(22) P {max [42(ti) -t2(t1)] > a >
tiET2 2

Proceeding further in the same way we can construct a sequence of mutually
independent stationary Gaussian processes

(23) tk(t) = fNh>I>XNk eI 4(dX), k = 3, 4, ***,

for which

(24) P {sup [(k(t) - tk(tl)] > a >

If we denote by Mk(t) = k(t) - tk(t1), for k = 1, ***, then, making use of (13)
and (14) and lemma 2, it can be seen easily that

(25) P {sup [t(t) -t(t1)] > a - 25} > 1 -2E.
tE,&

Since e > 0, a > 0, and the interval A can be chosen arbitrarily small, it follows
that for any interval A = (ti, tl) we have

(26) P {sup [t(t) - t(ti)] > a} = 1

This completes the first step in the proof of the theorem.
We now show that it follows from (26) that

(27) P {sup [t(t) - t(ti)] > na} = 1, n = 2, 3,
tEA&

We present the argument for n = 2. Suppose that (26) holds. Again assign
arbitrarily small numbers E > 0, 5 > 0. It follows from (26) and lemma 1 that
there exists a finite set of points S C A for which

(28) P {max [t(tj) - t(t)] > al 1 4

Since

(29) I(t)= l.i.m. f eitN(dX),M--+ Il<M
we can select a sufficiently large M > 0, such that for

(30) fQll)= IX<M eit(dX)

we have

(31) P{max ['i(ti) -tl(ti)] > a} > 1 -

and such that for
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(32) X'2(t) fx4>Meix(dX)
we have

(33) inf P{172(t) - 2(t) > -6} > 1-
tEA 2

The process ql(t) has a bounded spectrum. It follows that almost all the sample
functions of this process are continuous. Therefore, near every point tk E S =
{t2, * , tN} with tN < tl, it is possible to find a sufficiently small interval
Ak= (tk - 6', tk + 8') C A, such that in case fl1(tk) - ql(t) > a, then
rn(t) - q7(t1) > a, everywhere in the interval Ak for all k simultaneously with
probability greater than 1 - e/4. Taking (31) into account, this gives

(34) " { k-2 ( inf [X1(t) -n(tl)] > a)}> 1 -
We now consider the process 112(t). Repeating the argument in the first part of
the theorem, it can be shown that for the interval Ak, for k = 2, ***, N, we have

(35) P {sup ['72(t) - '72(tk - 8')] > a} = 1.
tI Ak

From this equation and from (33) it follows that for the event Ak determined by

(36) sup ['72(t) - 172(t1)] > a -,
t EAk

we have

(37) P{Ak} _ P {SuP [X72(t) - 72(tk - ')] > a}
~t EAA

- P{172(tk - ) 172(11) < -} _ 1 2
Let Bk be the event that for 2 . i < k,

(38) inf [,71(t) - 7,(ti)] < a, inf [171(t) - 71(t)] > a.
tEAi iEtAk

In this notation (34) can be written in the form
Nf

(34) E P{Bkj > 1--
k=2 2

Taking (34') into account, we have

(39) P {sup [t(t) -(tj)] > 2a - 6} P {U BkAk}ftE fk=lI
N N

= E P{BkAk} = E P {Bk}P{Ak} _ 1 - f.
k=1 k=1

Since e > 0 and a > 0 can be selected arbitrarily small, (27) follows for n = 2.
Repeating the argument it is possible, beginning with (27) for n = 2, to establish
(27) for n = 4, and so on. Therefore, for any interval and for any N > 0, we
have



28 FOURTH BERKELEY SYMPOSIIJM: BE'LAYE V

(40) 1' {sup t(t) > N} = 1
I C=A

The theorem is proved.

3. Sufficient conditions for continuity. Examples of everywhere
unbounded processes

We shall now consider conditions sufficient for the continuity of sample
functions of stationary Gaussian processes. The strongest result known to the
writer at present is due to Hunt [3]. The sufficient conditions obtained by Hunt
are formulated in terms of spectral functions. In order to reformulate these con-
ditions in terms of correlation functions the following lemma is useful.
LEMMA 3. If F(X) is a nondecreasing function of bounded variation and if

(41) so(h) = fo (1 - cos Xh) dF(X),
and if for some C > 0, a > 0 and for all suffiiently small h iwc harc

(42) c(h)
< ghc(42) <(h) ~~~~~~~-Iloglhl la

then it follows that for all b < a

(43) |f [log (1 + X)]b dF(X) <cx.

Conversely, if (43) holds for some b > 0, then (42) holds for all a < b C > 0, and
for all sufficiently small h, where lhl < a = b(C, a).

Hunt showed that if the spectral function F(X) of the stationary Gaussian
process t(t) satisfies condition (43) for some b > 1, then almost all sample
functions of the process t(t) are continuous. On the other hand, by lemma 3
above and by (42) with a > 1, it follows that (43) holds for all b, with 1 < b < a.
Therefore, condition (42) for a > 1 is also sufficient for the continuity of sample
functions. Hence we have
THEOREM 2. In order that almost all sample functions of the stationary

Gaussian process t(t) be continuous it is sufficient that one of the follouwing equliva-
lent conditions be satisfied either for some b > 1

(44) f [log (1 + X)]b dF(X) < c

or for sonie a, > I, ( > 0, and for1all sufficiently small h

(45) 3I1W(t + h) - (t)12 _ Ig!hla

We 1o0W derive some conditiolns sufficient for almost all sample functioins of a
stationary Gaussian process to be unbounded in every finite interval.
THEOREM 3. If for a stationary Gaussian process t(t) the spectral density f(X)

exists and is such that for some C > 0, No > 0 and for all X _ A,
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C(46) f(X) - X(logX)2
then almost all sample functions are unbounded in every interval of finite length.
The method of proof of this theorem is as follows. Let 71n(t) be mutually inde-

pendent stationary Gaussian processes with

(47) MIvN(t) = 0, n = 1, 2, **,

that have spectral densities fn^(X) = 1/2"+l for 0 < X < 1/2n, and fn,(X) = 0 for
X _ 1/2n. Consider the random process

(48) 17 (t) = E C-nn(t), E C = ] E Cn=1 I k=m m

for all m > mO and for some C' > 0. It can be verified that, for this process,

1*(49) lim P{w,(A, 6) > V/', _
as 0 - 2

It follows from the alternatives established in section 2 that almost all sample
functions of the process q(t) are unbounded in every finite interval. The spectral
density f,(X) of the random process q(t) satisfies the inequalities

(50) X(log X)2-f=( X(log X)2
for some 0 < k1 < k2. The stationary Gaussian process 1 (t), with spectral
density g.(X) = 0 for X < w, and g.(X) = f,(X) for X > w, possesses the same
property of unboundedness. Noting that the process t(t) can be represented as
the sum of two mutually independent stationary Gaussian processes, one of
which has spectral density of the form aggw(X), where a > 0 and w > 0, we
obtain the theorem.

It is possible to construct examples of unbounded Gaussian processes from
the properties of correlation functions. The following lemma, proved by A. D.
Ventcel, is very useful.
LEMMA 4. Let -* *, n,, be Gaussian random variables

(51) Mti = 0, M(2 = a2, M{tj = rij < 0, i $4j; i,ji , , n.
Then

(52) P {max {i a} _ J f e-X2/2oi2 dx.fl -<i:n i=l /27r ai -

If the correlation function B(h) = M((t + h)t(t) of the stationary random
process t(t) is convex for 0 < h < 5, where a > 0, then

(53) M[t(tj + h) -t.(tj)][t(t2 + h) - (t2)] < 0, t2 - tlI < S.

Using lemma 4 we can show that if for a stationary Gaussian process (t),
C(54) Mj~(t + h) - ~(t) II >= logIhlI' C > 0,
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for all sufficiently small h, and if B(h) is a convex function, then

(55) lim P{w (A, 5) > aC} = 1.
80

Again applying the alternatives of section 2, we obtain
THEOREM 4. If the correlation function B(h) of the stationary Gaussian process

t(t) is convex for h E (0, 5), where 5 > 0, and if (54) holds, then almost all sample
functions of the process t(t) are unbounded in all intervals of finite length.

4. Holder's conditions

In the case of stationary Gaussian processes that are continuous with proba-
bility one, there arises the problem of studying the modulus of continuity of
sample functions. From general results we can note the following. If f(h) > 0
and h/f(h) O-0 as h -0 , then the probability of the event

(56) f11~~~~I;--iimI(t + h) - ~(t) I >(56) mho f hfh-O ~ f(h)
can be either zero or one. Another theorem of the same nature is a generalization
of a result of Baxter [5] in the case of stationary Gaussian processes.
THEOREM 5. Let {i(t), for i = 1, 2, be two stationary Gaussian processes

with Mlti(t + h) - ti(t)12 = fi(h) such that h2/lp(h) -O 0, as h -O 0, and
limh-,o [so1(h)/lp2(h)] = a> 1. Then a sequence of numbers hJ, I 0, as n -

,

can be found such that with probability one

(57) lim 1 [t1(t + hn) -i(t)]
m M n=1 (Pi(h.)

and
(58) lim 1 m [02(t + hn) -t2(t)]2 1

m--- m n=l1 Pi(hn) a

The proof of this theorem can be obtained by using the fact that for a station-
ary Gaussian process ¢(t), which is not differentiable in the mean square, the
values

(59) P(t + hi) -¢(t)
[MAf(t + hi) -(t)12]1/2

and
()(t + h2) -(t)(60) [Mlr(t + h2) - -(t)12]1/2

asymptotically become mutually independent random variables when
hi = constant and h2 Ml 0-
We shall say that a random process t(t) E H(a, C), with 0 < a < 1, C > 0,

if for every C' > C, with probability one uniformly over all t in every interval
A of finite length, there exists a b(A, C') such that for all h < 6(A, C')

(61) It(t + h) - t(t)j _ C'Ihla.
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The following theorem holds for processes of this general type.
THEOREM 6. In order that a stochastically continuous random process

t(t) E H(a, C) it is sufficient that

(62) ~n=1 k=O {\(2n ) 2n) 2nQ}
where KQ = (2a - 1)/21+2a. If for some a > 0, we have Mlt(t + h) -t(t)ja <
p(h) J,j Ofor h - O, thenfrom

(63) E na()p
n=1 n

it follows that t(t) E H(a, C) for every C > 0.
The proof of this theorem is analogous to the proof of a well-known theorem of

Kolmogorov [6] about the continuity of sample functions (see also the Russian
edition of Doob [7], p. 576).
THEOREM 7. If the correlation function B(h) of a stationary Gaussian process

is such that for all sufficiently small h

(64) MIt(t + h) -t(t)12 < Cl, hl2Ilog hi

then t(t) E H(a, 'V2C1/K.). If, however, for h E (0, 6), a > 0, B(h) is a convex
function such that for all sufficently small h and for 0 < C2 < C1 we have

(65) C2 jiohlj - Mlt(t + h) -t(t)12 < C1 loghllE

then t(t) E H(a, -V2C/KQ), but t(t) q H(a, C') with probability one, if C' < -/2iC2.
PROOF. If (64) holds then

(66) P { (k+1) (k) > CK }_ exp {- C2nKa og2}

Therefore, the series (62) converges when C > V2C,/K.. In order to prove that
t(t) q H(a, C'), when C' < \,2 we make use of lemma 4. By this lemma and
by (65) we have that if

(67) logn 2 -[C (lo,n)++ + asn X,

then

(68) P { max [(+ l_ (k1)] <C

-[p {[t ( n))-t (n) ::!
le}

_ [1- exp {-[C'(l ) + 1 O
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as n - oo. This wvill be the case if C' < \/2C2. Hlence (t) II(a(a,') for C' <

V2 . This proves the theorem.
In the following theorem the coinditionis for t(t) C II(a, C') are foinmulated in

terms of spectral functions.
THEOREM 8. If the spectral fuinctionI F(X) of a statioutary Ganssian process t(t)

is such that

(69) 10 2X log (1 + X) (lx(A) < !

then t(t) E H(a, C) for every C > 0.
PROOF. It can be shown that if (69) hiolds, theni for e\ery Ci > 0 an1d for

sufficiently small h, with Ihi < b(CI), (64) holds and the statement of theorem 8
is a consequence of theorem 7.

Analogously we prove the followinig result whlicl was first obtainied by aniother
method by Hunt [3].
THEOREM 9. If the spectral function F(X) of a stationat(ry Gaussian process t(t)

is such that

(70) | X2X dF(x) <

then almost all sample.functions satisfy a generalized Holder condition of the form

(71) l(t + h) - (t)I < C hIa (log 1)1

untiformly over all t in any interval of finite length for every C > 0 anld all 8uffi-
ciently small h.

In the case of stationary Gaussiani processes continuotus differentiability with
probability onie is equivalent to a Lipshitz condition. In fact, if for a sufficiently
small h the inequality

(72)l (t + 11) t(t) < C1 U!IhI
is satisfied uniiformily ill t in some interval of finite lenlgth with probability onle,
wlhere Cw > 0 is a random variable, theni almiiost all sample funictions are abso-
lutely continuous. Mforeover, the derivative, which is also a statioaiiry Gaussiaii
process, is bounded with probability onie. The continiuity of the derivative is
a consequence of theorem 1.

In conclusion we note that for Gaussiani processes whose correlationl fulctiolns
are analytic, almost all sample functions are also anialytic and possess mally
properties (see [1] and [4]).
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