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1. General remarks

This note is a postscript to our paper [1]. It deals with a problem having close connec-
tion with the topics discussed there, and uses similar methods. However, to make the
note more readable, we make it self-contained at the expense of a repetition of some of
the arguments in [1]. For the sake of proper perspective we begin by restating some of
the results of that paper. '

Consider a general trigonometric polynomial of order #,

(1.1) }ao+ X (ax cos kx+ by sin kx),

k=1

with, say, real coefficients. Let ¢1(2), @2(f), -, @a(f)," - - be the Rademacher functions
(1.2) ¢n (8) =sign sin 2"xt 0st=1,

which represent independent random variables taking values + 1, each with probability
1/2. We write N

(1.3) P, (x,t) =%ao+i (ar cos kx+ bisin kx) ¢ (1),
=1
(1.4) M, (t) =max|P,(x,?) |.

One of the problems discussed in [1] was that of the order of magnitude of M,(z) for
n— « and almost all ¢ (this presupposes, of course, that the a; and &; are defined for

all k). It turns out (see pp. 270-271 in [1]) that, if tke series 2 (a? + %) diverges, and

(1.5) R,.=%§: (ai+ 8D,
k=1
t ®
. M,
(1.6) hgl-?gp R, log né 2

for almost all &.
This result was obtained under the sole assumption that 2 (ak + b3%) diverges. If

we want to obtain an estimate for M,(f) from below we must introduce further restric-
tions on @, b,. Write

(1.7 To=] (ak+bD).

k=1
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It was shown in [1] that, if

T, (1
(1.8) IT?."O(Z)’
then

(1.9) lim inf —280__> _1

o VR.logn— 26

for almost all ¢ [incidentally, we can also then in the right-hand side of (1.6) replace 2
by 1]. Thus, under the hypothesis (1.8), M,(¢) is for almost all ¢ strictly of order
(R, log m)v2,

Clearly (1.8) implies the divergence of E (a2 + b2), and is, in turn, a consequence

of this divergence if (a2 + b2)'/2 is bounded above and away from 0. In particular, the
M, (?) for the series

(1.10) 3+ D0, () coswt

y=1

for almost all ¢ are strictly of order (» log n)V/2
We add, parenthetically, that the problem of whether there exists at least one ¢ = ¢,
(to not diadically rational), such that (1.10) satisfies M,(to) = O(+/7), seems to be open.
We now pass to the proper topic of this note. Subdivide the interval (0, 27) into
2n + 1 equal parts and write
() 2xv

(111) o =a =_2_”__ﬁ, V=0, 1’...’2".

Consider the trigonometric interpolating polynomial of order # which at the point @,
takes the value ¢,(f), » = 0, 1, - -, 2n. Such a polynomial exists and is uniquely deter-
mined. We denote it by I,(x, £) or sometimes, for brevity, by 7, and write

(1.12) M, (1) =max|I.(x,?) |
[thus M ,(¢) no longer has the meaning (1.4)]. We are going to prove the following result.
TrEOREM. For almost all t we have

. M.t
(1.13) h?—fgp—(_lW:z'

2. Proof of the theorem
Denote by D,(x) the Dirichlet kernel

_sin(n+3) «
(2.1) } D,.(x) -——2 sin §_x—_-
We have then the classical formula
1 2n
(2.2) I, ) =7 250, Du(z—a).

For any finite sum S = 2 a,0,(t) of Rademacher functions with real coefficients,
and any positive A, we have

(2.3) [e0ar=TT [ éomar= T4 (&% + ™)
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and since (2p)! = 27p!, the last product does not exceed

2'a 2
(2.4 (S5-I
This leads to the very well known inequality
1 2o 2

2.5 XanpydtS A Ea'/2.
(2.5) £ ¢ <e

If we apply it to (2.2) we get

1 1 A2 4
1| -\ < s - —

2.6) f owar< [ (14 e dr= 2 exp[ 3 TESVEI IR 2) .

Now, D? being a trigonometric polynomial of order 2n, its discrete average over any
system of 2n 4 1 equidistant points is the same. Hence

@ A3 Pe-e) — i3 ) =y po <2

by (2.1) and (1.11), so that

4
(2.8) WZ Dz(x—a’) =1
and (2.6) takes the form
1
2.9 g <22,
(2.9) f0 AlldL< 2 &

Integrating this with respect to x and inverting the order of integration we obtain
1 2
2.10 dt Hdx £ 4w 2.
(2.10) Jar [ oz ane
Our next step will be to deduce from this an estimate for the integral
1
2.11 M dt,
(2.11) A

This deduction is based on the very well known theorem of S. Bernstein which asserts
that for any trigonometric polynomial T(x) of order » we have

(2.12) max| T’ (x) | £ 7 max| T (%) |.

[A proof of this theorem may be found, for example, in [2] (see p. 90, Vol. 2).]

Fix ¢, write M = M,(¢) and denote by x¢ = 2o(f) a point x at which |I| attains its
maximum M,(¢). Take any number 6 positive and less than 1, and consider the interval
%0 S 2 S x4+ (1 — 8)/n. Since the slope of the curve ¥y = I does not exceed M, the
value of || in the interval just written cannot change more than (1 — 6)M, and so is
at least M in that interval. When in the inner integral (2.10) we replace the interval
of integration (0, 27) by [xo, 2o + (1 — 6)/n], it follows that

1 1—9
AM, (.- J1< 2/2
(2.13) fo e —diSaxon,

or .
4rn 4r

AAM, (1) Y2 = 3/2+log n

(2.14) [ e dats = oe" =1 ae" g "
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So far A has been arbitrary. We now set A = (2¢ log #)/2, where ¢ will be determined
. in a moment. We obtain successively

1 4r
n (et+1)log n
(2.15) -/o‘ 1—6° i
and
1 4z 47
n(t)— —(1+elogn — —l—e
(2.16) ./0- 1—0e ‘ 1—0” !

where € > 0. Since the series with terms #~1¢ converges, the sum of the integrals on the
left of (2.16) is finite. This implies that the series with terms exp[N0M, — (¢ + 2 + ¢)]
converges, for almost all ¢, and in particular that, for almost all ¢ and » large enough,

(c+2+elogn_ Vig - c+2+€
(2.17) M,(1) = 8 (2¢log n) /2 9\/2

Selecting now for ¢ the value 2 (which ‘minimizes the sum ¢*/2 4 20—’/2) we deduce that

: M.
(2.18) im $UP Tiog ;))1/2— ]

(2+ 3¢

for almost all £. Since we may take e arbitrarily small and 6 arbitrarily close to 1, (1.13)
follows and the theorem is established.

It is very likely that for almost all ¢, M,(¢) is exactly of the order (log #)"/2 but, so far,
this is an open problem.
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