A NOTE ON RANDOM TRIGONO-METRIC POLYNOMIALS

R. SALEM AND A. ZYGMUND UNIVERSITY OF PARIS AND THE UNIVERSITY OF CHICAGO

1. General remarks

This note is a postscript to our paper [1]. It deals with a problem having close connection with the topics discussed there, and uses similar methods. However, to make the note more readable, we make it self-contained at the expense of a repetition of some of the arguments in [1]. For the sake of proper perspective we begin by restating some of the results of that paper.

Consider a general trigonometric polynomial of order n,

(1.1)
$$\frac{1}{2}a_0 + \sum_{k=1}^n (a_k \cos kx + b_k \sin kx),$$

with, say, real coefficients. Let $\varphi_1(t)$, $\varphi_2(t)$, \cdots , $\varphi_n(t)$, \cdots be the Rademacher functions

(1.2)
$$\varphi_n(t) = \operatorname{sign sin} \, 2^n \pi t \,, \qquad 0 \le t \le 1 \,,$$

which represent independent random variables taking values ± 1 , each with probability 1/2. We write

(1.3)
$$P_n(x, t) = \frac{1}{2}a_0 + \sum_{k=1}^n (a_k \cos kx + b_k \sin kx) \varphi_k(t),$$

(1.4)
$$M_n(t) = \max_{x} |P_n(x, t)|.$$

One of the problems discussed in [1] was that of the order of magnitude of $M_n(t)$ for $n \to \infty$ and almost all t (this presupposes, of course, that the a_k and b_k are defined for all k). It turns out (see pp. 270–271 in [1]) that, if the series $\sum (a_k^2 + b_k^2)$ diverges, and

(1.5)
$$R_n = \frac{1}{2} \sum_{k=1}^n (a_k^2 + b_k^2),$$

then

(1.6)
$$\limsup_{n\to\infty} \frac{M_n(t)}{\sqrt{R_n \log n}} \le 2$$

for almost all t.

This result was obtained under the sole assumption that $\sum (a_k^2 + b_k^2)$ diverges. If we want to obtain an estimate for $M_n(t)$ from below we must introduce further restrictions on a_n , b_n . Write

(1.7)
$$T_n = \sum_{k=1}^n (a_k^4 + b_k^4).$$

It was shown in [1] that, if

$$\frac{T_n}{R_n^2} = O\left(\frac{1}{n}\right),\,$$

then

(1.9)
$$\liminf_{n\to\infty} \frac{M_n(t)}{\sqrt{R_n \log n}} \ge \frac{1}{2\sqrt{6}}$$

for almost all t [incidentally, we can also then in the right-hand side of (1.6) replace 2 by 1]. Thus, under the hypothesis (1.8), $M_n(t)$ is for almost all t strictly of order $(R_n \log n)^{1/2}$.

Clearly (1.8) implies the divergence of $\sum (a_k^2 + b_k^2)$, and is, in turn, a consequence of this divergence if $(a_n^2 + b_n^2)^{1/2}$ is bounded above and away from 0. In particular, the $M_n(t)$ for the series

$$(1.10) \qquad \qquad \frac{1}{2} + \sum_{\nu=1}^{\infty} \varphi_{\nu}(t) \cos \nu t$$

for almost all t are strictly of order $(n \log n)^{1/2}$.

We add, parenthetically, that the problem of whether there exists at least one $t = t_0$ (t_0 not diadically rational), such that (1.10) satisfies $M_n(t_0) = O(\sqrt{n})$, seems to be open.

We now pass to the proper topic of this note. Subdivide the interval $(0, 2\pi)$ into 2n + 1 equal parts and write

(1.11)
$$a_{\nu} = a_{\nu}^{(n)} = \frac{2\pi\nu}{2n+1}, \qquad \nu = 0, 1, \dots, 2n.$$

Consider the trigonometric interpolating polynomial of order n which at the point a_r takes the value $\varphi_r(t)$, $\nu = 0, 1, \dots, 2n$. Such a polynomial exists and is uniquely determined. We denote it by $I_n(x, t)$ or sometimes, for brevity, by I, and write

(1.12)
$$M_n(t) = \max |I_n(x, t)|$$

[thus $M_n(t)$ no longer has the meaning (1.4)]. We are going to prove the following result. THEOREM. For almost all t we have

$$\limsup_{n\to\infty}\frac{M_n(t)}{(\log n)^{1/2}} \leq 2.$$

2. Proof of the theorem

Denote by $D_n(x)$ the Dirichlet kernel

(2.1)
$$D_n(x) = \frac{\sin(n + \frac{1}{2})x}{2\sin\frac{1}{2}x}.$$

We have then the classical formula

(2.2)
$$I_n(x,t) = \frac{1}{2n+1} \sum_{n=0}^{2n} \varphi_p(t) D_n(x-\alpha_p).$$

For any finite sum $S = \sum a_{\nu} \varphi_{\nu}(t)$ of Rademacher functions with real coefficients, and any positive λ , we have

(2.3)
$$\int_{0}^{1} e^{\lambda S} dt = \prod_{p} \int_{0}^{1} e^{\lambda a_{p} \varphi_{p}} dt = \prod_{p} \frac{1}{2} \left(e^{\lambda a_{p}} + e^{-\lambda a_{p}} \right)$$
$$= \prod_{p} \left(1 + \frac{\lambda^{2} a_{p}^{2}}{2!} + \frac{\lambda^{4} a_{p}^{4}}{4!} + \cdots \right),$$

and since $(2p)! \ge 2^p p!$, the last product does not exceed

(2.4)
$$\prod_{\nu} \left(\sum_{n=0}^{\infty} \frac{\lambda^{2p} a_{\nu}^{2p}}{2^{p} p!} \right) = \prod_{\nu} e^{\lambda^{1} a_{\nu}^{1/2}}.$$

This leads to the very well known inequality

(2.5)
$$\int_{0}^{1} e^{\lambda \sum_{a_{\nu}} \varphi_{\nu}} dt \leq e^{\lambda^{2} \sum_{a_{\nu}} 2}.$$

If we apply it to (2.2) we get

$$(2.6) \quad \int_0^1 e^{\lambda |I|} dt < \int_0^1 \left(e^{\lambda I} + e^{-\lambda I} \right) dt \le 2 \exp \left[\frac{\lambda^2}{2} \frac{4}{(2n+1)^2} \sum_{n} D^2 \left(x - a_n \right) \right].$$

Now, D_n^2 being a trigonometric polynomial of order 2n, its discrete average over any system of 2n + 1 equidistant points is the same. Hence

$$(2.7) \quad \frac{2}{2n+1} \sum_{\nu=0}^{2n} D^2(x-a_{\nu}) = \frac{2}{2n+1} \sum_{\nu=0}^{2n} D^2(a_{\nu}) = \frac{2}{2n+1} D^2(0) = \frac{2n+1}{2},$$

by (2.1) and (1.11), so that

(2.8)
$$\frac{4}{(2n+1)^2} \sum_{r} D^2 (x-a_r) = 1$$

and (2.6) takes the form

Integrating this with respect to x and inverting the order of integration we obtain

Our next step will be to deduce from this an estimate for the integral

$$(2.11) \qquad \int_{a}^{1} e^{\lambda M_{n}(t)} dt.$$

This deduction is based on the very well known theorem of S. Bernstein which asserts that for any trigonometric polynomial T(x) of order n we have

(2.12)
$$\max_{x} |T'(x)| \leq n \max_{x} |T(x)|.$$

[A proof of this theorem may be found, for example, in [2] (see p. 90, Vol. 2).]

Fix t, write $M = M_n(t)$ and denote by $x_0 = x_0(t)$ a point x at which |I| attains its maximum $M_n(t)$. Take any number θ positive and less than 1, and consider the interval $x_0 \le x \le x_0 + (1 - \theta)/n$. Since the slope of the curve y = I does not exceed M, the value of |I| in the interval just written cannot change more than $(1 - \theta)M$, and so is at least θM in that interval. When in the inner integral (2.10) we replace the interval of integration $(0, 2\pi)$ by $[x_0, x_0 + (1 - \theta)/n]$, it follows that

(2.13)
$$\int_0^1 e^{\theta \lambda M_n(t)} \cdot \frac{1-\theta}{n} dt \le 4\pi e^{\lambda^2/2} ,$$

or (2.14)
$$\int_0^1 e^{\theta \lambda M_n(t)} dt \le \frac{4\pi n}{1-\theta} e^{\lambda^2/2} = \frac{4\pi}{1-\theta} e^{\lambda^2/2 + \log n}.$$

So far λ has been arbitrary. We now set $\lambda = (2c \log n)^{1/2}$, where c will be determined in a moment. We obtain successively

(2.15)
$$\int_0^1 e^{\lambda \theta M_n(t)} dt < \frac{4\pi}{1-\theta} e^{(c+1)\log n},$$

and

(2.16)
$$\int_0^1 e^{\lambda \theta M_n(t) - (c+2+\epsilon)} dt < \frac{4\pi}{1-\theta} e^{-(1+\epsilon) \log n} = \frac{4\pi}{1-\theta} n^{-1-\epsilon},$$

where $\epsilon > 0$. Since the series with terms $n^{-1-\epsilon}$ converges, the sum of the integrals on the left of (2.16) is finite. This implies that the series with terms $\exp[\lambda \theta M_n - (c+2+\epsilon)]$ converges, for almost all t, and in particular that, for almost all t and n large enough,

$$(2.17) M_n(t) \leq \frac{(c+2+\epsilon)\log n}{\theta (2c\log n)^{1/2}} = \frac{1}{\theta \sqrt{2}} \sqrt{\log n} \cdot \frac{c+2+\epsilon}{\sqrt{c}}.$$

Selecting now for c the value 2 (which minimizes the sum $c^{1/2} + 2c^{-1/2}$) we deduce that

(2.18)
$$\limsup_{n \to \infty} \frac{M_n(t)}{(\log n)^{1/2}} \le \frac{1}{\theta} (2 + \frac{1}{2}\epsilon)$$

for almost all t. Since we may take ϵ arbitrarily small and θ arbitrarily close to 1, (1.13) follows and the theorem is established.

It is very likely that for almost all t, $M_n(t)$ is exactly of the order $(\log n)^{1/2}$ but, so far, this is an open problem.

REFERENCES

- R. SALEM and A. ZYGMUND, "Some properties of trigonometric series whose terms have random signs," Acta Math., Vol. 91 (1954), pp. 245-301.
- [2] G. PÓLYA and G. SZEGÖ, Aufgaben und Lehrsätze aus der Analysis, Vols. 1 and 2, New York, Dover Publications, 1945.