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1. General remarks
This note is a postscript to our paper [1]. It deals with a problem having close connec-

tion with the topics discussed there, and uses similar methods. However, to make the
note more readable, we make it self-contained at the expense of a repetition of some of
the arguments in [1]. For the sake of proper perspective we begin by restating some of
the results of that paper.

Consider a general trigonometric polynomial of order n,
n

(1.1) Iao+ E (ak cos kx+ bk sin kx),
k-=

with, say, real coefficients. Let soi(t), $s2(t),- * p,N(t),** be the Rademacher functions

(1.2) (pn (t) = sign sin 2nrt , 0_ t 1

which represent independent random variables taking values ± 1, each with probability
1/2. We write

(1.3) Pn (x, t) = ao+ (ak cos kx+ bk sin kx) pAk (t)X
k-1

( 1. 4) M. (t) = max P. ( x, t) .
z

One of the problems discussed in [1] was that of the order of magnitude of Mn(t) for
n -+ o and almost all t (this presupposes, of course, that the ak and bk are defined for
all k). It turns out (see pp. 270-271 in [1]) that, if the series k (a2 + b2) diverges, and

(1.5) R. (ak+ bk)
k-I

then

(1.6) limsup Mn(t)g 2
n--+cop Rn 109 ni

for almost all t.
This result was obtained under the sole assumption that ) (ak + bR) diverges. If

we want to obtain an estimate for Mn(t) from below we must introduce further restric-
tions on an, bn. Write

is

(1.7) Tnk=(ak+bk)-
k-i
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It was shown in [1] that, if
(1.8) =0()

then
(1.9) lim inf MR.(t) > 1

n-'CoVRn log = 2 V/-
for almost all t [incidentally, we can also then in the right-hand side of (1.6) replace 2
by 1]. Thus, under the hypothesis (1.8), Mn(t) is for almost all t strictly of order
(R. log n)1/2.

Clearly (1.8) implies the divergence of z (a2 + b2), and is, in turn, a consequence
of this divergence if (a' + b2)'/2 is bounded above and away from 0. In particular, the
M"(t) for the series

(1.10) + CosPt

for almost all t are strictly of order (n log n)1/2.
We add, parenthetically, that the problem of whether there exists at least one t = to

(to not diadically rational), such that (1.10) satisfies Mn(to) = 0(v'in), seems to be open.
We now pass to the proper topic of this note. Subdivide the interval (0, 2X) into

2n + 1 equal parts and write
(1.11) = ~~~~~~(n)27rv(1.11) ~~~~~a,=av = 2 + = O, 1, *-,2n.a ~2n+ 1' v01",n

Consider the trigonometric interpolating polynomial of order n which at the point a,
takes the value sp(t), v = 0, 1,* * *, 2n. Such a polynomial exists and is uniquely deter-
mined. We denote it by IR(x, t) or sometimes, for brevity, by I, and write

(1.12) Mn(t) =max II(x, t)
z

[thus Mn(t) no longer has the meaning (1.4)]. We are going to prove the following result.
THEoREm. For almost all t we have

(1.13) lim sup M. () 2UP(log n) 1/2 2

2. Proof of the theorem

Denote by D,(x) the Dirichlet kernel

(2.1) D. (x) = sin i x

We have then the classical formula
i 2n

(2.2) In(x,t) =2nf+1 2 (t) Dn(X a)

For any finite sum S = a,p,(t) of Rademacher functions with real coefficients,
and any positive X, we have

(2 .3) f e-sd t = f/:e"a-",d t = rl i exsj+ e,-'P

=22+ 44
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and since (2p)! > 2-p!, the last product does not exceed

(2.4) H ( a,= rjeH sa/2

This leads to the very well known inequality

(2.5) f e' 2avdt _ e7

If we apply it to (2.2) we get

(2.6) JelfI dt < (e+ e-x-) dt_ 2 exp 2 D2 (x2a)
Now, D2 being a trigonometric polynomial of order 2n, its discrete average over any

system of 2n + 1 equidistant points is the same. Hence

2n+ 2 (xa 2 2n 2 2n+ 1
(2.7) 2x 2n+ D2(a) = 2n+ lD2(-))= 2

by (2.1) and (1.11), so that

(2.8) 4
D2(x -a) =1(2n+1)2E

and (2.6) takes the form

(2.9) f l-'II dt < 2 ex'/2.

Integrating this with respect to x and inverting the order of integration we obtain

(2.10) f1dtj e)iIIdx < 4. e'/2.f, 0

Our next step will be to deduce from this an estimate for the integral

(2.11) fI ew'(t))dt.

This deduction is based on the very well known theorem of S. Bernstein which asserts
that for any trigonometric polynomial T(x) of order n we have

(2.12) max I T' (x) n maxI T (x) .
2 2

[A proof of this theorem may be found, for example, in [2] (see p. 90, Vol. 2).]
Fix t, write M = Mn(t) and denote by x0 = xo(t) a point x at which III attains its

maximum Mn(t). Take any number 0 positive and less than 1, and consider the interval
xo .5 x _ xo + (1 - 0)/n. Since the slope of the curve y = I does not exceed M, the
value of III in the interval just written cannot change more than (1 - 0)M, and so is
at least OM in that interval. When in the inner integral (2.10) we replace the interval
of integration (0, 27r) by [x0, xo + (1 - 0)/n], it follows that

(2.13) 1esx.un(t). 1
0

di -- 4ire2/2 ,fon
or
(2.14) e 4m(w)_dt___4_ e2./2= 4T elX/2+1ognJo - 1--0 1- 0



246 THIRD BERKELEY SYMPOSIUM: SALEM AND ZYGMUND

So far X has been arbitrary. We now set X = (2c log n)b/2, where c will be determined
in a moment. We obtain successively

(2.15) J :e"'n(t)dt< 1 e(c+1) log n
and

1 ~~~~~47r 47r(2.16) e8mn(t)-(c+2+e)dt< e-(l+E)logn= 1r_
Jo 1-_0 1-0

where e > 0. Since the series with terms i-r-l converges, the sum of the integrals on the
left of (2.16) is finite. This implies that the series with terms exp[XOMn- (c + 2 + e)]
converges, for almost all t, and in particular that, for almost all I and n large enough,

( (c+2+e)logn 1 c+2+e
0(2 c log n) 1/2 0-\/2 * \/-

Selecting now for c the value 2 (which minimizes the sum cl/2 + 2c'/2) we deduce that

(2.18) limsup (log <! (2 + le)

for almost all t. Since we may take e arbitrarily small and 0 arbitrarily close to 1, (1.13)
follows and the theorem is established.

It is very likely that for almost all t, Mn(t) is exactly of the order (log n)'/2 but, so far,
this is an open problem.
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