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Let X be a random variable which for simplicity we shall assume to have discrete
values x and which has a probability distribution depending in a known way on an un-
known real parameter A,

(1) p (xIX) =Pr [X = xIA =X],
A-itself being a random variable with a priori distribution function

(2) G (X) =Pr [A-< X.

The unconditional probability distribution of X is then given by

(3) PG(x) =Pr[X=xI =fP(xjX)dG(X),
and the expected squared deviation of any estimator of A of the form sp(X) is

(4) Ek[o(X) -A2 =E{E[(op(X) -A)21A=X] I
=flP(x X)[ (x) -X]2dG(X)

='I (x X) [z (x)- ] 2dG (X)

which is a minimum when so(x) is defined for each x as that value y = y(x) for which

(5) I (x) =fp (x I X) (y-X) 2dG (X) = minimum.

But for any fixed x the quantity

(6) I (x) =y2fpdG-2yfpXdG+fPX2dG

fbpdG (Y - fpXdG\) + [fpXrCIdG.- (fpXdG) 2

Pd-GJ fpdG J

is a minimum with respect to y when

(7) y =rfpdG'
the minimum value of I(x) being

(8) I a(x) =fp (x IX))2dG (X)- [fpp(x I X) dG (X) ]
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Hence the Bayes estimator of A corresponding to the a priori distribution functionG of A
[in the sense of minimizing the expression (4)] is the random variable #PG(X) defined by
the function
(9) (Po f) p (xl X) XdG(X)
(9) J"~~~~~~~~fp_(xTX_)dG(X)

the corresponding minimum value of (4) being

(I10). E [,pG (X) -A] 2 zIo(x)

The expression (9) is, of course, the expected value of the a posteriori distribution of A
given X = x.

If the a priori distribution function G is known to the experimenter then sp defined
by (9) is a computable function, but if G is unknown, as is usually the case, then G is
not computable. This trouble is not eliminated by the adoption of arbitrary rules pre-
scribing forms for G (as is done, for example, by H. Jeffreys [1] in his theory of statistical
inference). It is partly for this reason-that even when G may be assumed to exist it is
generally unknown to the experimenter-that various other criteria for estimators (un-
biasedness, minimax, etc.) have been proposed which have the advantage of not requir-
ing a knowledge of G.

Suppose now that the problem of estimating A from an observed value of X is going
to occur repeatedly with a fixed and known p(x X) and a fixed but unknown G(X), and let

(11) (Al, Xi) , (A2, X2) , * *, (An, X.),

denote the sequence so generated. [The A. are independent random variables with com-
mon distribution function G, and the distribution of X, depends only on A. and for A. =
X is given by p(x I X).] If we want to estimate an unknown A. from an observed X. and
if the previous values A1,"- *, A,,1 are by now known, then we can form the empirical
distribution function of the random variable A,

(12) G (X) number of terms A1,"*, A.-, which are X)2
and take as our estimate of A. the quantity J'3(X3), where by definition

(13) X)=nfp (xlX) XdG3-1 (X)
(13) - ~~~~fp(x IX) dG3-1(X

which is obtained from (9) by replacing the unknown a priori G(X) by the empirical
G,,1(X). Since G,1_(X) -* G(X) with probability 1 as n -* c, the ratio (13) will, under
suitable regularity conditions on the kernel p(x IX), tend for any fixed x to the Bayes
function (pG(x) defined by (9) and hence, again under suitable conditions, the expected
squared deviation of #,3(X3) from A., will tend to the Bayes value (10).

In practice, of course, it will be unusual for the previous values Al, A,, to be
known, and hence the function (13) will be no more computable than the true Bayes
function (9). However, in many cases the previous values Xi,,- *, X,,n wiU be available to
the experimenter at the moment when A. is to be estimated, and the question then arises
whether it is possible to infer from the set of values X1,* * *, X. the approximate form
of the unknownG, or at least, in the present case of quadratic estimation, to approximate



AN EMPIRICAL BAYES APPROACH I59

the value of the functional ofG defined by (9). To this end we observe that for any fixed x
the empirical frequency

(14) p. (x) =number of terms Xi, , X. which equal x

n
tends with probability 1 as n - to the function pa(x) defined by (3), no matter what
the a priori distribution function G. Hence there arises the following mathematical prob-
lem: from an approximate value (14) of the integral (3), where p(xI X) is a known kernel,
to obtain an approximation to the unknown distribution function G, or at least, in the
present case, to the value of the Bayes function (9) which depends on G. (This problem
was posed in [4].) The possibility of doing this wil depend on the nature of the kernel
p(x X) and on the class, say q, to which the unknown G is assumed to belong. In order
to fix the ideas we shall consider several special cases, the first being that of the Poisson
kernel

(15) p(X X) = -X x=O,Zl," X>0;

q being the class of all distribution functions on the positive real axis.
In this case we have

(16) Po (x) = fP (xz I ) dG (X) e-xX"dG (X) /x!

and

e-)XxZ+'dG (X)
(17) 0a (X) =f + G

e-XEdG (X)

and we can write the fundamental relation

(18) IPG (X) = (x+1) . Pa (x+ 1)

If we now define the function
number of terms X1, ..... X,

(19) qP(x)=(x+1) .(X+ 1) = (X+ 1) . which are equal to x+1p,, (x) number of terms Xi, X,,
wbich are equal to x

then no matter what the unknown G we shall have for any fixed x

(20) S°n (x) a (x) with probability 1 as n- .

This suggests using as an estimate of the unknown A. in the sequence (11) the com-
putable quantity
(21) (X.),
in the hope that as n c,

(22) E [S°n (X.) -A] I-E [sPG (X) -A] 2.

We shall not investigate here the question of whether (22) does actually hold for the par-
ticular function (19) or whether (19) represents the best possible choice for minimizing
in some sense the expected squared deviation. (See [81.)
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It is of interest to compute the value of (10) for various a priori distribution functions
G in order to compare its value with the expected squared deviation of the usual (maxi-
mum likelihood, minimum variance unbiased) Poisson estimator, X itself, for which

(23) E(X-A)2=EA= f vXdG(X).

Suppose, for example, that G is a gamma type distribution function with density

(24) G' (X) = CXb-l e-hX; X, b, h > 0; C=hb/r (b).
By elementary computation we find that

(25) EA=-b VarA= b

and
(26) (PG(X) =x+hb E[IPG(X)-A]2= (b+h)'
hence
(27) Ekorj(X) -A]2 1

E(X-A)2 1+h
For example, if b = 100, h = 10 then

(28) EA = 10, VarA=1, IG (x) = x1+ '00 E [E (X A) 2A 1.
An even simpler case occurs when A has all its probability concentrated at a single

value X. In this case, of course, the Bayes function is

(29) $PG (X) =X,

not involving x at all, and

(30) E [spG (X)-A] 2 = O

while as before
(31) E(X-A)2=EA=X.

Here the sequence (11) consists of observations X,, *, X,, from the same Poisson
population (although this fact may not be apparent to the experimenter at the begin-
ning); the traditional estimator 5p(X) = x does not take advantage of this favorable cir-
cumstance and continues to have the expected squared deviation X after any number n
of trials.
As a second example we take the geometric kernel

(32) p(xI )=(1-X)X; x=0, 1, ;ct<X<1;
for which

(33) PG (x) =f (1-X) XzdG (X), pG (x)

(1-X) Xz+1dG (X) Pa(x+1)

fJ (1-X)XxdG(X)P((x)
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Here it is natural to estimate An by (21) with the definition

(34) 'P. (x) =
number of terms X,, X. which are equal to x+1

n number of terms X1, , X,, which are equal to x

Our third example will be the binomiial kernel

(3 5) P, (X I X) = ( Xi) (I -X>) r-x; x = 0x 1 ** r; 0 _ 1< < 1 .

Here r is a fixed positive integer representing the number of trials, X the number of suc-
cesses, and A the unknown probability of success in each trial. G may be taken as the class
of all distribution functions on the interval (0, 1). In this case

[Pa. r (X) =fp (xI X) dG (X) =()j1 Xz (1 )t-zdG (X)

(36) j| = -'+l (1- X) -zdG (X)
<a, r(x)=°

f Xz (1 X)?-dG (X)

so that we can write the fundamental relation

(37) 'pa, r(X) = P+a i+(x+1) X = 1 , rr+1I PG, (X) x , ,r
Let

number of terms X1,i , X. which are equal to x
(38) P., r (x) =n;
then pn, r(x) -* pa, r(X) with probability 1 as n -X c. Now consider the sequence of ran-
dom variables
(39) X1, X2,, Xn,
where X, denotes the number of successes in, say, the first r - 1 out of the r trials which
produced X. successes, and let
(40) p39 7-1(x) = number of terms X1,*, X' which are equal to x

n

then p., ,r_(x) -+ Pa, p1(x) with probability 1 as n -+ c. Thus if we set

(41) (P.,, (X) =
X

*P;,(x+)
then

(42) Y>nO, r(x) 1 PG r(X+1) = G, r-1 (x)
r PaG, -i(X)

with probability 1 as n - co. If we take as our estimate of A, the value

(43) 'P., (X.)
then for large n we will do about as well as if we knew the a priori G but confined ourselves
to the first r - 1 out of each set of r trials. For large r this does not sacrifice much in-
formation, but it is by no means clear that (43) is the "best" estimator of A. that could
be devised in the spirit of our discussion.
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As a final example consider any kernel of the "Laplacian" type

(44) p (x )= e'f (x) h (X).

We have
Pa (x) =f (x) fexh (X) dG(X),

(45) IPGS(x)Pa(x) = f (x) fX'h (X) dG(X) = f (x) d-jpa (x)

provided the differentiation under the integral sign is justified. Hence

(46) spa (x) = dx l°g) ((x))
Perhaps a satisfactory approximation to (pg(X) might be obtained by replacing pa(x)
in (46) by a smoothed interpolation based on p.(x). The kernel (44) has been con-
sidered by M. C. K. Tweedie [6] and I am indebted to him for this example.

Until now we have been concerned only with approximating to the Bayes function
spG(X) defined by (9). In many cases we shall want an approximation to some other func-
tional of the unknown a priori distribution function G; in particular to G itself. We shall
make a few remarks about this problem in the general case in which X is not restricted
to discrete values but has a distribution function

(47) F (x I X) =Pr [X ! xIA = XI
depending on the random variable A whose distribution function G is unknown. The
unconditional distribution function of X is then

(48) FG (x) =Pr [X _x] = fF (x IX) dG (X)
and there is assumed to be available an infinite sequence X1, X2,* of independent ran-
dom variables with the common distribution function Fa. The empirical distribution
function
(49) F (x) = number of terms X,,.*, X. which are . x

n

is known to converge uniformly to FG(x) with probability 1 as n - co.
Problem: to find in terms of F.(x) a distribution function Gn,(X) which will converge

as n X-+ o to the unknown G(X).
Let q7 denote some class of distribution functions to which the unknown G is as-

sumed to belong. (q7 might, for example, be the class of all distribution functions, or all
those with total mass distributed on some fixed finite interval.) The correspondence
(50) FG (x) = fF (xI X) dG (X)

maps q onto some class of distribution functions which we shall denote by 4?. We shall
assume that the kernel F(x|X) is such that this mapping is one-to-one. Now, since we
know an approximation F& to FG, it would be natural to seek an approximation to G by
solving the functional equation (50) for G with Fa replaced by F.. Unfortunately, in
general this wir be impossible since F. will not belong to the class 4?. [For example,
if F(x I X) is continuous in x then all elements of 4? will be continuous, whereas Fn is a
step function.] However, we may proceed as follows. Let FP be any element of 4? whose
distance (in the sense of maximum absolute value of the difference for all x) from F. is
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within en-+0 of the minimum distance of F. from 4? (this is the "minimum distance"
method of Wolfowitz), and let G,, be defined by the relation

(5S1 ) F.* ( x) = fF (x I SA) dGr. (A) .

Then F* - FG in the maximum difference metric, and under suitable conditions on the
kernel F(x X) it wiU follow that G. -* G. We shal go into this question in more detail
elsewhere, but at least it indicates one possible way of obtaining an empirical approxi-
mation to a "mixing" distribution G from observations on the "mixed" distribution FG.
(See [5] also.) This problem, special cases of which have occurred several times in the
statistical literature (see, for example, [2], [4], [7] and pp. 84-102 in [3]), awaits a satis-
factory solution and seems to be of considerable importance.

I should like to express my appreciation to A. Dvoretzky, J. Neyman, and H. Raiffa
for helpful discussions and suggestions.
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