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1. Introduction
In order to obtain a good decision rule for some statistical problem we start by making

assumptions concerning the class of distributions, the loss function, and other data of
the problem. Usually these assumptions only approximate the actual conditions, either
because the latter are unknown, or in order to simplify the mathematical treatment of
the problem. Hence the assumptions under which a decision rule is derived are ordinarily
not satisfied in a practical situation to which the rule is applied. It is therefore of interest
to investigate how the performance of a decision rule is affected when the assumptions
under which it was derived are replaced by another set of assumptions.
We shall confine ourselves to the consideration of assumptions concerning the class of

distributions. Investigations of particular problems of this type are numerous in the
literature. There are many studies of the performance of "standard" tests under "non-
standard" conditions, for example [3], where further references are given. Most of them
considered only the effect of deviations from the assumptions on the significance level of
the test. The relatively few studies of the effect on the power function include several
papers by David and Johnson, the latest of which is [6M. For some problems tests have
been proposed whose significance level is little affected by certain deviations from stand-
ard assumptions, for instance R. A. Fisher's randomization tests (see section 3; see also
Box and Andersen [4]). Some other relevant worle will be mentioned later.

In sections 2, 3, and 4 we shall be concerned with problems of the following type. Let P
denote the joint distribution of the random variables under observation. Suppose that
we contemplate making the assumption that P belongs to a class P1, but we admit the
possibility that actually P is contained in another class, p2. The performance of a de-
cision rule (decision function) d is assumed to be expressed by the given risk function
r (P, d), defined for all P E Pi + p2 and all d in D, the class of decision rules available
to the statistician. Let di be a decision rule which is optimal in some specified sense (for
example, minimax) under the assumption P E Jpi, i = 1, 2. Suppose first that the op-
timal rule di is unique except for equivalence in pi + p2, for i = 1, 2, that is, if dX is
also optimal for P E P1i then r(P, d) = r(P, di) for all P E PI + P2. Then we may
assess the consequences of the assumption P E Pi when actually P E P2 by compar-
ing the values r(P, d1) and r(P, d2) for P E P2. If the optimal rules are not unique, we
may pick out from the class of rules which are optimal for P E P1 a subclass of rules
which come closest to optimality under the assumption P E P2, and compare their
performance with that of the rules which are optimal under the latter assumption. In
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some situations other ways of approaching the problem may be more adequate (see, for
example, section 2).

In section 2 the consequences of assuming that a distribution is continuous are dis-
cussed. Problems involved in comparing assumptions of varying generality are con-
sidered in section 3. Section 4 is concerned with cases where decision rules derived under
assumptions of normality retain their optimal properties when these assumptions are
relaxed.

The last three sections deal with distinguishable sets of distributions, a concept re-
lated to the problem of the existence of unbiased or consistent tests under given assump-
tions. Criteria for the distinguishability of two sets by means of a test based on finitely
many observations and by a sequential test are considered and their uses illustrated in
sections 5 and 7. An example where two sets are indistinguishable by a nonrandomized
test, but distinguishable by a randomized test, is discussed in section 6.

2. The assumption of a continuous distribution

The assumption that we are dealing with a class of continuous distributions is usually
made when actually the observations are integer multiples of the unit of measurement h,
a (small) positive constant. Suppose that a sample x = (xi, - * *, xn) is a point in RI, and
let P1 be a class of distributions (probability measures) which are absolutely continuous
with respect to n-dimensional Lebesgue measure. Let S be the set of all points in Rn
whose coordinates are integer multiples of h. Let us suppose that when we say that the
distribution is Pi E Pi, we "have in mind" that the distribution is P2 = f(P1), where
the probability measure P2 is defined by

(1) P2(IY}) =PI 0x: Yj 2< xj- + i= 1, , 2

for all y = (yl,* * *, yn) in S. Let p2 = {f(P): P C PuI. Thus we are interested in the
consequences of assuming P E Pu when actually P e p2.

Let d be a decision function which is optimal in some sense under the assumption
P e P1. Then any decision rule which differs from d only on the set S is equivalent to d
for P C pA. Since P(S) = 1 for all P E p2, the mere fact that a rule is optimal for
P E Pu does not tell us anything about its performance when P C p2; indeed, it can be
as bad as we please under the latter assumption.1 Of course, in general there are rules
which are optimal under either assumption. But the main reason for making the simplify-
ing assumption of continuity is that we do not want to bother with rules which are op-
timal for P E p2. Now it is clear that if there is a determination d' of d which is suffi-
ciently regular, its risk at P2 = f(Pl) will differ arbitrarily little from the risk at Pi if
h is small enough; also, d' may not be much worse than an optimal rule for P E p2. We
shall not investigate here under what conditions such a regular decision rule exists or
how small h has to be in order that the assumption of continuity cause little harm.
These questions may deserve attention. Fortunately, when a statistician applies a de-
cision rule, he is likely to choose the most regular determination available anyway. How-
ever, the theoretical statistician might do well to be careful when he neglects sets of
measure zero.

1 The author's attention was drawn to situations of this kind by H. Robbins some years ago.
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3. Assumptions of varying generality

Suppose we consider making one of two assumptions, P E Pi and P E P2, where
P) c p2. The second assumption is safer, but with the first assumption we may achieve
a smaller risk.

The consequences of making the broader assumption when actually the narrower as-
sumption is justified may be called serious if any decision rule which is "good" under the
broader assumption is "bad" under the narrower assumption. Thus the consequences
will depend on what we mean by a good decision rule. But even with a given definition
of "good" or "best" the consequences may depend on the class of decision rules at our
disposal. For example, suppose we require a minimax estimator of the mean y of a nor-
mal distribution when the loss function is the squared deviation from ,u, and we assume
that the variance a2 does not exceed a given number A. If we are restricted to estimators
based on a sample of fixed size, the minimax estimator is the sample mean x and does not
depend on A. On the other hand, if we are permitted to choose the sample size in ad-
vance, and the cost of sampling is taken into account, the minimax estimator will de-
pend on A. If A2 is substantially larger than AI, the assumption 2 _ A2 will give us a
unique minimax estimator whose performance is poor under the assumption a2 < A1.

Sometimes a considerable broadening of the assumption does not lead to serious con-
sequences when the narrower assumption is justified. Thus in the standard problems con-
cerning the variance of a normal distribution we need, when the mean is completely un-
known, just one more observation to obtain the same expected loss as when the mean
is known. Somewhat similar results have been obtained in certain cases where a para-
metric class of distributions is enlarged to a nonparametric class. Several examples can
be found in [9]. For instance, consider the problem of testing whether two distributions
are equal (and not otherwise specified) against the alternative that the distributions are
normal with common variance and means ;41 < A2. The uniformly most powerful similar
test, based on two random samples of fixed size, is asymptotically as powerful in large
samples (in a sense explained in [9]) as the corresponding standard test for testing the
equality of the means of two normal distributions. (The former test is of the randomiza-
tion type introduced by R. A. Fisher; its optimal properties were proved by Lehmann
and Stein [12].) Here we assumed that the class of alternatives is the same under both
assumptions. Actually the test retains its property of being uniformly most powerful
similar even when the class of alternatives is enlarged to a nonparametric class of dis-
tributions of an exponential type (see Lehmann and Stein [12]). If the class is further
extended, a uniformly most powerful similar test will in general not exist, and it will be
necessary to specify against what types of alternatives the power of a test should be
large. This can be done in many ways, and an optimal test and its performance in the
class of normal distributions will depend on this specification.

4. Nonparametric justifications of assumptions of normality
Given a decision rule d which is optimal in a specified sense under the assumption

that P is in a class p2, it is of interest to determine other classes P such that d is optimal
(in the same or a suitably extended sense) under the assumption P E p. If optimal
means minimax, an obvious sufficient condition for d to remain a minimax rule in p9 n

is that the risk of d in p2 attain its maximum in P. Situations of this type were considered
by Hodges and Lehmann [8].
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In certain cases we find that a decision rule derived under the assumption of a normal
distribution retains its optimal character in a large, nonparametric class of distributions.
One result of this type, concerning the minimax character of Markov estimators, can be
found in [8]. Similar though weaker results can be obtained in certain testing problems.

As an example consider the following extension of Student's problem. Let 6/ be the
class of distributions F with finite mean ,u(F), positive variance a2(F) and such that

(2) fI x -g (F) I'dF(x) <Ma (F),

where M is fixed. Let 6A; be the subclass of 6/ with n ,u(F)/a(F) = a. We want to
test the hypothesis F E 6/a, 8 . 0, against the alternative F E 6/a, 8> 0. We restrict
ourselves to the class D of tests d based on n independent observations from F, with
critical region W = W(d). We choose the risk function

aP (W IF) if FE6a, O,

(3) r(F, d) = b [i-P (WIF) ff FE O;a,b _ ,

0O elsewhere,

where P(W[F) denotes the probability of (Xi, , X0) E W when the Xi are inde-
pendent with the common distribution F, and a, b, and 61 are positive constants.

Let do be the test with critical region Wo = It > c}, where

n/2-z s is

(4) t = x = "-l xj, $2= (n - )-1 z (Xj- xC) 2,
S j-1 i-1

and the constant c is determined by

( 5) a [I --S.-, (C, 0)]= bSn-1 ( c, 51)

here S,_1(x, 8) denotes the noncentral Student distribution function with n - 1 degrees
of freedom and noncentrality parameter 5. It can be shown by standard methods that do
is the minimax test in the subclass 6/0 of 6/ which consists of the normal distributions.
By an inequality of Berry and Esseen (see, for example, [7]) the distribution function
F.(y) of n1/2[X- A(F)]/a(F) converges to the standard normal distribution func-
tion 4(y) uniformly for F E 6/ (and uniformly in y) as n -4 c. Also, for any e > 0,
P[|s/la(F) - I[ < el F] -- 1 uniformly for F E 0;. Hence it can be shown that for any
real a and for all F E 6/a we have

(6) IP(t9y[F) -(y- )I <-C.(5) c<y<c

where CS(a) depends on n, 8, and M only and tends to 0 as n >o, for a fixed. It fol-
lows that

(7) IP(t<y IF) -S.-,(y I ) I <_ 2C (5) , -co < Y< o

for all F E 6/a.
Now if 6/* denotes the subclass of 6/ with ,u(F) = 0 and e2(F) = 1, we have

(8) Slit P (t > C[ F) = sup P [ 5 > C|F]
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which is a nondecreasing function of 6. The same is true of the infimum in q5. Hence
we obtain
(9) suip r (F, do) < sup. r (F, do) +E,

F F ~FEF
: inf supr(F, d) +e
dED FtF

where f = 2 max IaCQ(O), bCn(51)}. Thus the maximum risk in 4Z of Student's test do
exceeds the minimax risk in q by at most e, where e is arbitrarily small for n sufficiently
large. (Note that the minimax risk is bounded away from zero as n -* on.)

In the corresponding problem with a(F) = o* fixed we find in a similar way the
stronger result that the maximum risk of the i-test in #a [the class with p(F) = balI]
lies within a small e of its "normal" risk, uniformly in B. The argument which was used
above does not permit us to decide whether an analogous result is true when a(F) is
unrestricted.

The explanation for the near-optimal behavior of the "normal" decision rules in these
cases is, of course, the distribution-free character of the central limit theorem, combined
with the fact that the class 4Z was so chosen as to make the approach to the normal dis-
tribution uniform.

5. Distinguishable sets of distributions
If we relax the assumptions more and more, the minimax risk will in general increase,

and eventually we may reach a point where the maximum risk of any decision rule is not
smaller than the risk of a rule which does not depend on the observations. We shall con-
sider criteria for recognizing when this or a similar situation occurs in testing problems.

Consider a testing (or two decision) problem such that one or the other decision is
definitely preferred according as the distribution P belongs to 01 or p2, two disjoint sub-
sets of the given class p. Unless otherwise stated we assume that each P in p9 is a proba-
bility measure on (A, 4), where Jr is the space of infinite sequences x = (xI, x2,**) of
real numbers and 4 is Kolmogorov's extension to Jrof the ordinary Borel field.
A test will be called finite if it depends only on a finite number of coordinates (observa-

tions) xi. By the critical function of a finite test we mean a measurable function p from X
to the interval [0, 1] such that 1 -46(x) [+'(x)] is the probability of taking the decision
corresponding to P E /)' [P E p2] when x is the sequence of observations.

Let D be any class of finite tests, and let I be the class of the critical functions of
tests in D. We shall say that the sets Q1 and p2 are distinguishable in D if there exists a +
in I such that

(10) suR, E (4, |P) + suEP,E (1-* IP) < 1,

where E(f P) is the expected value of f(X) when X has the distribution P. Otherwise
p01 and 02 are said to be indistinguishable in D. [The property of 4' expressed in (10) has
an obvious relation with unbiasedness.]

Let Df denote the class of all finite tests, and let D., n = 1, 2,-, be the class of all
fixed sample size tests based on the observations (xi,, *-, xc). Two sets which are dis-
tinguishable in Df will be called finitely distinguishable. We observe that two sets are
finitely distinguishable if and only if they are distinguishable in Dn for some n.

Berger and Wald [2] gave conditions under which two sets of distributions are dis-
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tinguishable in the class of all nonrandomized tests in D. if and only if they are disjoint.
(Their theorem 3.1 is stated in a slightly more special form.)
A sufficient condition for two sets to be indistinguishable in D. can be stated as fol-

lows. Let aT'I be the space of points (xi,* * *, xJ), and let 4,', pn and Pni, be the a-field of
subsets of Zn and the classes of distributions on 4,' which are determined by 4, pand
p i in an obvious way. For any two distributions PI and P2 on 4" we denote by v any
measure on 4,' relative to which Pi and P2 are absolutely continuous, and by pi and
P2 the respective densities (Radon-Nikodym derivatives). With this notation, the sets
/)1 and p2 (or, equivalently, the sets pn,l and 12)2) are indistinguishable in D,, if for any
e> 0 there exist two distributions, P1 E Pn) and P2 E /2, such that

(11) fIPl-P21 dV<e,

where the integral extends over Zt. This follows from the inequality

(12) inf, f,dP- sup, f/dP f, (P2-Pi) d' .
PEP PEP

The statement of the condition remains true in the more general form where Pi is
any mixture of distributions in P,, with respect to some probability measure t, on a
a-field of subsets of /P, subject to an obvious measurability condition. The proof is
similar and uses theorem 3 of Robbins [131. A theorem of Le Cam (see Kraft [15]) im-
plies that if the distributions in PJ,n and Pn,2 are absolutely continuous with respect to a
fixed measure, the condition expressed in (11), with Pi and P2 mixtures, is also necessary
for the indistinguishability of pnl and )n2.

With S = {x: pl(x) > p2(x) } we have

(13) fIP1-P2Idv= sup IP1(A) -P2(A) =P1(S) -P2(S).
A EA,

The first equation (13) shows that condition (11) is independent of the choice of v. The
last expression in (13) is often convenient when applying this condition.

It follows from an earlier remark that two sets O1 and p)2 are finitely indistinguishable
if the condition expressed in (11) is satisfied for every n.
We shall say that p1 and p2 are finitely absolutely distinguishable if for any e> 0

there exists a finite test with critical function 4( such that

(14) sup, E (# |P) + sup, E ( 1-#, IP) < E .
PEP, PEP,

This property has also been expressed by saying that there exists a uniformly consistent
sequence of tests [1].
Now suppose that each P in p is the distribution of a sequence of independent, identi-

cally distributed random variables. Then if two sets are finitely distinguishable, they are
finitely absolutely distinguishable. This is a simple partial extension of a theorem of
Berger [1]; the theorem gives a necessary and sufficient condition for the existence of a
uniformly consistent sequence of nonrandomized tests. Further interesting results on the
existence of a uniformly consistent sequence of tests were recently obtained by Kraft [15].
We now give three examples of finitely indistinguishable sets.
Example 5.1. If P is the distribution of independent, normal random variables with

mean , and variance a2, and pi is the set with p = Ai, 0 < a2 < -, then /)1 and 12are
finitely indistinguishable. Condition(11) is satisfied for every n if Pi is the distribution
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with ,u = gi and a sufficiently large. The corresponding result for tests with oonstant
power in p)' and /)2 was proved by Dantzig [5] in 1940.

Example 5.2. If P is the distribution of independent, normal random variables with
means I,u, A2, *' * and common variance a2, and pi the set with o- = ai, -o < yj < c,
j = 1, 2,* *, then p1 and p2 are finitely indistinguishable. Here we can apply the gen-
eral form of condition (11). For if Pi is the mixture of the P in Pn, according to {i, where
under {i the means l,* * *, p,u are independent normal with zero mean and variance ri,
such that a2 + r2 = a22 + r2, then P1 = P2.

Example 5.3. This is a further extension of Student's problem (see section 4). Let q'
be the class of all distributions F on the real line with finite mean ,u(F) and positive vari-
ance a2(F) such that ,u(F)/a(F) = Yi, 8Y < 72. Let pi be the class of distributions of
independent random variables with common distribution F E di. Then p' and p2 are
finitely absolutely distinguishable if 71 < 0 < 72, and finitely indistinguishable if
72 < 0 or 71 . 0.

If 'yl < 0 < 72, it is easy to show with the aid of Chebyshev's inequality that the

tests with critical functions #,6(x) = 0 or 1 according as xi .0 or > 0 form a uni-

formly consistent sequence.
If 71 2 0, condition (11) is satisfied for every n if Pi is the distribution with F = Fi,

where Fi ascribes probabilities 1 - ri and ri = (1 + t1)-' to the respective points
72 -t-1 and 72 + t2; here t2 > 0, tl = f(t2) is the positive root (unique for t2 small) of

(15) (1-7212)11+7(1 +12) tl-7212-42 = 0,
and t2 -0. The case 72 _ 0 can be reduced to this case.

6. Sets distinguishable only by randomized tests: An example
Some results of Lehmann [11] suggest that two sets may be distinguishable in D,, but

indistinguishable in the class D' of nonrandomized tests in D.. We shall consider a prob-
lem where this situation occurs. We denote by 'n('n) the class of critical functions of the
tests in Dn(D,n). Thus if i& E T,n, 4'(x) = 0 or 1 for all x.

Let 9,q be a class of distributions F on the real line with mean ,u and variance 1, which
contains all distributions with this property which assign probability 1 to at most three
points. Let p,, n be the class of all distributions of n independent random variables
with a common distribution in &,. We shall show that j9), and p,s, n are distinguish-
able in D. for all X # ,u and all n = 1, 2,* * *, but indistinguishable in Dn for any n un-
less X- 'AI exceeds a positive constant (which depends on n). It is clearly sufficient
to take X = -h, ,u = h > 0. We denote by E(fJF) the expected value of f(X) when
the components of X are independent with the common distribution F.
We first prove the second part of the statement in the stronger form: For any n and

for any a E (0, 1) the inequalities
(16) sup E(#IF) .a< inf E(#,I|F)

F E hFE Fh

cannot both be satisfied with 4, E ,'n unless h exceeds a positive number which depends
only on n (and is of order n-1/2). If 4' is in 'n and satisfies the first inequality (16), we
must have
(17) 4, (y, **, y) = 0 if a [1+ (y+h) 2]< 1
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for all real y. For if I = y + h $ 0, let F' be the distribution (in 6_-h) which assigns the
probabilities (1 + 12)-l and 1- (1 + 12)-l to the respective points t- h and -t- - h.
Then a 2 E(IIF') 2 4(1 - h,", t - h)(I + 12)-,. This implies (17) for y + h $ 0.
If y + h = 0, we use a similar argument with F' any distribution in dj..h which assigns
to the point -h a probability arbitrarily close to 1.

Similarly, for any ,6 E T'i which satisfies the second inequality (16) we must have

(18) 1(y, * * *, y) = I if (1-a) [1+ (y-h) 2]n< 1 ,

for all real y. Taking y = -h and y = h, we find that a 4L E 'n' cannot satisfy both in-
equalities (16) if [1 + (2k)2]" < max [a-1, (1- a)-']; and hence cannot satisfy them
for any a if [1 + (2k)2]" < 2. [This is not the best bound which can be obtained from (17)
and (18).]
We now show that for any h > 0, any n - 1, and any a E (0, 1) condition (16), with

at least one strict inequality, can be satisfied by a randomized test in D". Let a - knu/2,
-a < c < a,

(19) k(c) = a+ c+ (a- c)-l, b -k(-c) d k (c)
2 '2'

0 if y_ b,

(20) 't(y) = b if b<y<d,
I if d<y.

If we let O(x) = 0 (n-/2 X ,), we have

(21) EuFpE(4, 1F) :5 1 < 1 1 < inf E(\6IF)() FEh 2ak (c) 2ak(- c) FFh

for ic| < a. As c increases from -a to a, either side of (21) decreases continuously
from 1 to 0.
We sketch the proof of (21). Let f(y) be any polynomial of the second degree such

that +(y) 5 f(y) for all real y. If g(x) = f(n-1/2I xj), then E(4|IF) < E(g IF), and

E(g IF) is constant in ;,, for each p. Now choosef so as to minimize E(g IF), F E qy.

7. Sequentially distinguishable sets of distributions
We shall restrict ourselves to sequences of independent random variables with a com-

mon distribution F. Suppose that F E d, and let d1 and d2 be two disjoint subsets
of I. Let D. = D.(<) be the class of all sequential tests for taking one of two decisions,
a, and a2, which terminate with probability one for all F E 4Z.We denote by Pr{a,l F, dj
and E(n IF, d), respectively, the probability of the decision a, and the expected number of
observations required to reach a decision when the distribution is F and test d is used.
The sets C1 and 4/2 will be caled sequentially distinguishable (indistinguishable) at

F if there exists (does not exist) a d in D. such that E(n IF, d) < co and

(22) SpW,Pr{a2IF, d)+sup.,PrIauIF,d)<1.
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If the left side of (22) is arbitrarily small for some d in D. with E(n F, d) < -, then
A;1 and 6/2 are said to be sequentially absolutely distinguishable at F. If 6/1 and 6/2 are
sequentially [absolutely] distinguishable (indistinguishable) at every F in a class 6*,
then 6/1 and 6/2 will be said to be sequentially [absolutely] distinguishable (indistinguish-
able) in v7*.

Note that these definitions are stated in terms of the sets 6/1 and 6/2 rather than in
terms of the corresponding sets of distributions of sequences. Statements such as 6/1 and
6/2 are finitely indistinguishable will have an obvious meaning in this context.
A sufficient condition for two sets to be sequentially indistinguishable is implied by

an inequality proved in [10]. Let F, E 6/, F2 E 6/2, F E 6/, and let v be a measure rela-
tive to which these three distributions are absolutely continuous, with respective densi-
ties fl, f2, andf. By a trivial extension of equation (4) in [10], if d is any test in D. such
that

(23) sup1Pr {a2 IF, d }I a, , sup,Pr {a, IF, d }_ a2
FEF Fr

where ai > 0, a2 > 0, a, + a2 < 1, then

(24) E(n I F, d) >_ _-log l acl -
- a2) + (1-2a)c47c1

cSf log f dv+ ( 1- c) ff logL dv
fi f2

for 0 < c < 1, where the integrals are taken over the entire space. If, in particular,
F E 6/', the right side of (24) is maximized with F, = F and c --0, and we obtain

a, log a, + ( 1-a,) log 1a,
(25) E(nIF,d) o +-a2 a2 iffFE6.

f2ff lg f- d

We note that the numerators and denominators in (24) and (25) are positive; the de-
nominators may be infinite.

Hence if for any positive number M and any two positive numbers a, and a2 with
al + a2 < 1 the distributions F, E 6/1 and F2 E 6/2 and the number c can be so chosen
that the right side of (24) exceeds M, the sets 6/1 and 6/2 are sequentially indistinguish-
able at F. If F E 6/1, the two sets are sequentially indistinguishable at F if for any
e > 0 we can find an F2 E 6/2 such that

(26) ff log f dv<e.
f2

By example 5.1 two sets of normal distributions with fixed means and unrestricted
variances are finitely indistinguishable. On the other hand, by a well-known result of
Stein [14], these sets are sequentially absolutely distinguishable in the class of all normal
distributions. However, if the requirement E(n F, d) < o is replaced by the stronger
condition that E(n F, d) = E(n , o; d) be bounded in a for j. fixed, inequality (24)
easily implies that condition (22) cannot be satisfied.

As an application of condition (26) we shall show that the sets 6/1 and 6/2 of example
5.3, with 'y = 0 < 'V2, are sequentially indistinguishable in 6/2. Let F be any distribu-
tion in 62, So that p(F)/a(F) = 72. Let F, = (1- t)F + t G, where 0 < t < 1 and G is
the distribution which assigns probability one to the point a = -,(F)(l- t)/t. Then



II4 THIRD BERKELEY SYMPOSrUM: HOEFFDING

F1 E d1. Both F1 and F are absolutely continuous relative to v = F1, with respective
densities fi(x) = 1 and

(l-t i~f x<,
(2 7) f (x)

b
b+t- bt ff x=a

where b = b(t) is the F-probability of the point a. Hence

(28) ff lo f dy ( -b) log ( -t) + b log b

where the last term is to be omitted if b = 0. The right side of (28) tends to 0 as t -O 0.
Thus condition (26) (with ql and A2 interchanged) can be satisfied for any e > 0.

The proof shows that this result still holds if d1 and d2 consist only of the mixtures
H = (1- t)F + tG of a normal distribution F and an arbitrary distribution G, where
0 < t < e and e is positive and as small as we please. The distributionsH are, in a sense,
very close to normal distributions.
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