
CHARACTERIZATION OF THE
MINIMAL COMPLETE CLASS OF

DECISION FUNCTIONS WHEN THE
NUMBER OF DISTRIBUTIONS AND

DECISIONS IS FINITE
A. WALD AND J. WOLFOWITZ

COLUMBIA UNIVERSITY

1. Introduction
The principal object of the present paper is to prove theorem 2 below. This

theorem characterizes the minimal complete class in the problem under considera-
tion, and improves on the result of theorem 1. Theorem 1 has been proved by one
of us in much greater generality [1]. The proof given below is new and very expedi-
tious. Another reason for giving the proof of theorem 1 here is that it is the first
step in our proof of theorem 2. A different proof of theorem 1, based, like ours, on
certain properties of convex bodies in finite Euclidean spaces, was communicated
earlier to the authors by Dr. A. Dvoretzky. Theorem 3 gives another characteriza-
tion of the minimal complete class.

Let x be the generic point of a Euclidean' space Z, and fi(x), . . . , fm(x) be any
m (> 1) distinct cumulative probability distributions on Z. The statistician is
presented with an observation on the chance variable X which is distributed in Z
according to an unknown one of fi, . . ., fin. On the basis of this observation he has
to make one of I decisions, say di, . . . , di. The loss incurred when x is the observed
point, fi is the actual (unknown) distribution, and the decision dj is made, is
Wij(x), where Wij(x) is a measurable function of x such that

f Wi;(x) I dfi< x i=1, . ,m; j= 1,...,I

A randomized decision function 77(x), say, hereafter often called 'test" for short,
is defined as follows: 1(x) = [fl1(x), i72(x), . . ., ,l(x)] where

(a) 7(x) is defined for all x,
(b) 0 _ j(x), j = 1, .. ,1,

(c) E qj(x) = 1 identically in x,

(d) qj(x) is measurable, j = 1, . .. , 1.
This research was done under a contract with the Office of Naval Research.
1 The extension to general abstract spaces is trivial and we forego it. This entire paper could

be given an abstract formulation without the least mathematical difficulty.
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The statistical application of the function 11(x) is as follows: After the observation x
has been obtained the statistician performs a chance experiment to decide which
decision to make. The probability of making decision dj according to this experi-
ment is 17j(x) (j = 1, . . . , 1). The risk of the test 'q(x), which will also be called
its associated risk or risk point, is the complex r(,q) = (ri, . . ., Tm), where

jIri = ( q1j (X) Wij (X) ) dfi -

Let V be the totality of all risk points (in m-dimensional space) corresponding to
all possible tests. It follows from results of Dvoretzky, Wald, and Wolfowitz2 that
the set V is closed and convex.
The test T with risk r = (ri, . . , rm) is called uniformly better than the test T'

with risk r' = (rT, . . , r f)if ri _ r' for all i and the inequality sign holds for at
least one i. A test T is called admissible if there exists no test uniformly better
than T. A test which is not admissible may also be called inadmissible. A class Co of
tests is called complete if, for any test T' not in CO, there exists a test T in Co which
is uniformly better than T'. A complete class is said to be minimal if no proper
subclass of it is complete.

2. Proof of the complete class theorem

We first prove:
LEM[A. The class C of all admissible tests is a minimal complete class.3
If C is complete it is obviously minimal. Suppose C is not complete. Then there

exists an inadmissible test T1 such that no member of C is uniformly better than T1.
Since T1 is inadmissible there exists an inadmissible test T2 which is uniformly bet-
ter than T1. Consequently there exits a test T3 which is uniformly better than T2.
Hence T3 is uniformly better than T1, and is therefore inadmissible. Proceeding
in this manner we obtain a denumerable sequence T1, T2, . . of tests, each test
inadmissible and uniformly better than all its predecessors. Since the set V is closed
it follows that there exists a test T. which is uniformly better than every member
of the sequence T1, T2,.... Hence T., is inadmissible. Repeating this procedure
we obtain a nondenumerable well ordered set of inadmissible tests, each uniformly
better than all its predecessors. Since each risk point has m comnponents we can
therefore obtain a nondenumerable well ordered set of real numbers, each smaller
than any of its predecessors. Since this is impossible the lemma is proved.

Let to = ol, .. , tom) be an a priori probability distribution on the set con-
sisting of fi, . . . fi. A test To with the property that it minimizes

E oTri (T)
*-1

2 A statement of some of the results is given in the Proc. Nat. Acad. Sci. U.S.A., April, 1950.
The fact that V is closed whatever be the f's follows from the complete results which, it is hoped,
will be published shortly. The closure of V was also proved by one of the authors [2] under the
assumption that the f's admit elementary probability laws.

' The fundamental idea of the proof of this lemma is already present in the proof of theorem
2.22 in the book by Wald [2]. Since the proof is so brief it is given here for completeness.
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with respect to all tests T is called a Bayes solution with respect to 0o, or simply
a Bayes solution when it is not necessary to specify to. Let ti, .... th be a sequence
of (a priori) probability distributions (each with m components). A Bayes solu-
tion with respect to the sequence ti, . . ., th will be defined inductively as fol-
lows: When h = 1 it is a Bayes solution with respect to ti. For h > 1 it is any
test To which minimizes

m

thi ri (T)
i=l

with respect to all tests T which are Bayes solutions with respect to the sequence
i, . * * X th-1 Since the set V of risk points is closed it follows that, for any se-
quence ti, . . ., th, a Bayes solution exists.
THEOREM 1. Every admissible test is a Bayes solution with respect to some a priori

distribution. (Hence the class of Bayes solutions is complete.)
PROOF. Let b = (b1,... , b,,) be a generic point in an m-dimensional Euclidean

space. Let the set B(b) be the set of all points x = xl, . . . , xz such that x is differ-
ent from b and

x_ ii= 1,. .., m .

Let the set B'(b) be the set which consists of b and B(b). Suppose T is an admis-
sible test and r = (r1, . . . , r,) is its associated risk point. Since T is admissible
r is a boundary4 point of V and the set VB(r) is empty.
Now V and B'(r) are closed convex sets with only the boundary point r in com-

mon, and B'(r) contains interior points. Hence there exists a plane 7r, through r,
given by m1(b) = 0, where

(1) p1 (b) = t1 (bi- ri),
i=l

such that ,u1(b) _ 0 in one of V and B'(r), and ,.s(b) < 0 in the other. Reversing
the signs of all the tii's, if necessary, we can assume that some t1i, say t16, is posi-
tive. Let K(e) be the point each of whose coordinates is ri except the e-th, which
is K. When K is sufficiently small, tle(K - re) < 0. Hence for every point of B(r)
we have ,u1(b) _ 0. From this it follows that every t1i > 0. For suppose that tlg,
say, were < 0. The point K(g), with K sufficiently small, would be in B(r) and
yet IJ.[K(g)] > 0. Thus every tni > 0. We have

(2) Al (b) > 0

for every point in V. Hence the point r minimizes ,u1(b) for every point in V. There-
fore T is a Bayes solution with respect to the a priori probability distribution j

whose i-th component tij (i = 1, . . ., m) is
tli

i=l

This proves the theorem.
4 Here the notions of inner point and boundary point are relative to the surrounding m-dimen-

sional space.
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3. First characterization of admissible tests
We now prove the main result:
THEOREm 2. In order that a test T be admissible it is necessary and sufficient that

it be a Bayes solution with respect to a sequence of h (_ m) a priori probability dis-
tribution functions (1, . .t,h&), such that the matrix {tj), i = 1, . . ., h; j = 1,

I 'm, has the following properties: (a) for any j there exists an i such that ,ij > 0,
(b) the matrix {IJ, i = 1, . . , (h - 1); j = 1, . ., m, does not possess prop-
erty (a).

PROOF. The sufficiency of the above condition is easy to see. We proceed at once
to the proof of necessity.

Let therefore r be the risk point of an admissible test T. By theorem 1 T is a
Bayes solution with respect to t1. We shall carry over the notation of theorem 1,
except that, for typographical simplicity, we shall put r at the origin. (We may do
this without loss of generality.) The origin will be written for short as the point 0.
Let V1 be the intersection of V with the plane ri defined by Al(b) = 0. VI is con-
vex and closed. Suppose it is of dimensionality m - cl, 2 _ cl < m. Let the vec-
tor a denote the generic point in VI. Let the vector # be any point in the plane 7r,
and not in B(O) such that the convex hull V' of V1 and jB is of dimensionality
m-cl + 1. Let V"' be the convex hull of V1 and (-,B). We now assert that either
V' or V' has no points in common with B(0). For suppose to the contrary that

qial + (1-ql)
and

q2a2- (1-q2)
with

al e VI, a2 E VI, O q, <_ 1, 0 <_ q2 :! 1,

are both in B(O). Moreover, qi :;z 0 since , f B(O), and qi F6 1, q2 $ 1 since 0 is
admissible. Hence

q(l -q2) al+ (1-qi)(l -q2) 0
and

q2 (1-qi) a2 - (1-q)(l- q2) 3

are each in B(O). Hence
q(l -q2) al + q2( q) a2

is also in B(O), and consequently
q1(1- q2) a+ q2 (1-ql) a2

au-q, lq2) +q2 1qj)-
is in B(O). Now ao lies in the line segment from a, to a2, and hence is in V1. This
contradicts the fact that 0 is admissible and proves our assertion that either V1' or
V"' has no points in common with B(O).
We repeat the above procedure (cl- 1) times and conclude: There exists a

closed convex set V* which contains V1, lies entirely in 7ri, is of dimensionality
m - 1, and has no points in common with B(O).

Suppose -yi of the tij are positive. If yi = m the theorem is proved. Assume
therefore that 'yi < m. Without loss of generality we assume

tij>o, i-_ y
tii = 0, i > Yi-
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Let B(O; 1) be the set of all points b different from 0 such that

bi= O, i_< Y

bi < O, i > y1-

Let B'(O; 1) be the set of points consisting of 0 and B(O; 1). The closed convex
sets V* and B'(O, 1) both lie in 7ri and have only the origin 0 in common. O is
obviously a boundary5 point of B'(O; 1). It is also a boundary point of V* be-
cause B'(O; 1) is of dimensionality > 1 (,yi < m), and V*IB(O) is empty. The set V1
has inner5 points. Hence there exists an (m - 2)-dimensional linear subspace
7r2 of 7ri, defined by Mi(b) = 0 and 42(b) = 0, where

m

(3) A2 (b) = 2ib i
i-i

such that ,u2(b) _ 0 in one of V: and B'(0, 1), and A2(b) _ 0 in the other.
We now consider two cases:
(a) t2i #d 0 for some i > -yi. Without loss of generality we assume t2(1,+1) 5 0.

Hence there exists a real number X2 #- 0 such that

(4) tli + X2t2i > O, i _< PY + I .

The space 72 can also be defined by ,ui(b) = 0 and Li(b) + X2,42(b) = 0. We will
now show that

(5 ) tli + X212i >_ O i > -yi +1.

For suppose that, say,

(6) t + 22e < ° , e > y +1

By the definition of 7r2 the sign of 41 (b) + X2,42(b) does not change in B(O; 1).
Using the point K(-yi + 1) with K negative we see that gi(b) + X2,2(b) 0 for b
in B(O; 1). If (6) held we would have

pll [K (e)] + X2,u2 [K (e)] > 0

for K negative, in violation of what we have just proved. Hence (5) must hold.
(b) t2i = 0 for i > 'Yi.

Consider the expressions
(7) M1 (b) = Al (b) + XA2 (b)

and
(8) M2 (b) = 41 (b)-X2 (b) .

For sufficiently small positive X all their coefficients are nonnegative. Both ex-
pressions do not change sign in V:, because of the definition of 7r2. We assert that
either Ml(b) > 0 in V:1 or M2(b) _ 0 in V:1. For Ml(b) and M2(b) cannot be
identically zero on V:, because V: lies in 7ri and is of dimensionality (m - 1).
Let bo be some point in V: where M1(bo) # 0. Since Mi(bo) + M2(bo) =
2Ai(bo) = 0, it follows that M2(bo) F 0, and either M1(bo) or M2(bo) is positive.

6 Here the notions of inner point and boundary point are relative to the surrounding space 7rl.
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But then either Ml(b) or M2(b) is nonnegative for every b in V*, which is the
assertion to be proved. Let M(b) denote that one of MI(b) and M2(b) for which
M(b) _ 0 for every point b in V*, and let X2 denote that one of X, - X which is
associated with M(b).

In both case (a) and case (b) we have that the test T with associated risk point 0
is a Bayes solution with respect to 6i,t2 where

tli + X2t2i
t2i

m

E(tli+X2t2i)

We redefine p2(b) so that t2i = t2j. This will help to simplify the notation.
If ti and t2 do not fulfill the conditions of the theorem for h = 2 the above pro-

cedure can be repeated. We shall sketch the procedure which yields 73, Wi and 72
having been previously obtained.

Let V2 be the intersection of 7r2 and V*. If V2 is of dimensionality less than
(m - 2) proceed as before to obtain V: which is closed, convex, contains V2, has
no point in common with B(O), and is of dimensionality (m - 2). Let U be the
set of integers i < m such that

1li = t2i = 0

and let 1 be the complementary set. The set U is not empty, for else the theorem
would be already proved. Let B(O; 2) be the set of all points b different from 0
such that

bi=0, i E a

bi<O, iEU.

Let B'(O; 2) be the set of points consisting of 0 and B(O; 2). The closed convex
sets B'(O; 2) and V: are separated by an (m - 3)-dimensional linear subspace W3
of 7r2 which passes through 0 and may be defined by Al(b) = 0, 82(b) = 0, and
U3 (b) = 0, where,

I3 (b) =Et3jbj.
i=l

As before, we distinguish two cases. Case (a) occurs when t3i # 0 for some index
i E U. As before, we prove that for suitable X 0 the expression

(9) Ml (b) + 2 (b) +XM3 (b)

has all coefficients nonnegative. Case (b) occurs when t3i = 0 for every i ( U.
For I Xi sufficiently sma,ll we have then that (9) has all coefficients nonnegative,
and either (9) or

(10) Mi (b) + 2 (b) - X/3 (b)
can be shown as before to be nonnegative in V:. We obtain ts in this manner.

The above procedure can be repeated as long as the corresponding set U is not
empty. However, when the set U is empty, the theorem is proved. The set U will
be empty in at most m steps of the procedure.
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Suppose for a moment that thefi all possess density functionsf*. A Bayes solu-
tion q (x) with respect to t, may be found as follows: pj(x) = 0 for all j for which

VIj (x) = E i (x) wij (x)

is not a minimum with respect to j (j = 1, . . ,1); '7j(X) is defined arbitrarily
between zero and one, inclusive, for all other j, provided only that every com-
ponent of the resulting q(x) is measurable and the sum is always one. If a Bayes
solution with respect to ti, t2 is desired one can proceed as follows: First, define
7(X) = 0 for all j for which vlj(x) is not a minimum. Among the remaining j de-
fine 71j(x) = 0 for those j for which

V2j (x) = E t2iffWij (x)

is not a minimum (for these j). Define 7j(x) arbitrarily between zero and one, in-
clusive, for all other j, subject to the requirements of measurability and the fact
that the components must add to one. A Bayes solution with respect to ti, . .,,h
can be obtained similarly.

If the ft are not absolutely continuous we can proceed as follows: Let r be the
finite measure defined for any Borel set 2: by

r(2) = PI fzfi.
i=l

Then every fi is absolutely continuous with respect to r and hence, by the Radon-
Nikodym theorem, possesses a density function with respect to r. We can then
proceed as before.

4. Second characterization of admissible tests

We return to the problem of characterizing admissible solutions and shall de-
scribe another procedure of doing so. Let ti, . . , (u be any sequence of a priori
distributions with the property that for each j (j = 1, . .. , m), there exists ex-
actly one i (i = 1, . . . , u) such that {ij > 0. We shall call this property the prop-
erty U. Let v[i, 1], , v[i, h(i)] be the set of integersj (j = 1, . .m, ), for which
(ij > O (i = 1, . . . , u). Let

r (1) = [r (1 ) ,r (1, m)]

be the risk point of any Bayes solution with respect to t1. Let V1 be the intersec-
tion of V with the planes

bgl= r (1, vI[, 1])

bvl^ll=r (,v[1h()].
Let

r (2) = (r (2, 1), . . ., r (2, m))

be any Bayes solution with respect to t2 among the elements of Vi. (Since V1 is
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closed and bounded at least one such solution exists.) Let V2 be the intersection
of V1 with the planes

,[2,1 = r (2, v [2, 1])

bv(2,h(2)] = r(2, v [2, h (2)])

Let r(3) be any Bayes solution with respect to t3 among the elements of V2, etc.,
etc. The end product of this procedure is the set Vu.
THEOREm 3. The class C of all admissible tests coincides with the class of tests with

risk points in V. for all sequences %, . . . , {X) with the property U.
PROOF. First we prove that any risk point z in V. is admissible. Suppose that

it is not admissible, that z' is uniformly better than z, and that i (i = 1, 2, . . . , u)
is the smallest integer such that for an index j which is a member of

v [i, 1], . . . , v [i, h (i)]

the j-th coordinate of z' is less than that of z. We see that z' must lie in

VI) V2) ... Vi-1-

Consequently z cannot lie in Vi, which contradicts the hypothesis that z is in
Vs c Vi.

Let now z be any point in C. It must be a Bayes solution with respect to, say, t.
If z is the unique Bayes solution with respect to tl, or if (jj is positive for every j
from 1 to m, there is nothing left to prove. Assume therefore that neither of these
is true. We define ti as the-first member of the sequence t, . ., (, which we want
to construct. Define V1 as, before. A reexamination of the proof of theorem 1 shows
that the only property of V that was used in the proof is that V is a convex body
(that is, a closed, convex, bounded set). But V1 has this property. Hence the argu-
ment of theorem 1 can be applied to V1 to obtain an a priori distribution t2 such
that (a) z is a Bayes solution with respect to t2, if one limits one's self to points
of V1, (b) t2i = 0 for any j such that t,j> 0. Repeating the above procedure we
obtain the desired result.

5. Concluding remarks

I) The only property of V used in theorems 1, 2, and 3 is that V is a convex
body. Suppose that, for some reason, the statistician is limited to choosing one of
a given proper subclass of the class of all tests. If the set of risk points of this sub-
class is a convex body, theorems 1, 2, and 3 will hold for this subclass.

II) The only use that was made in the preceding arguments of the fact that the
number I of possible decisions is finite, was in invoking the result of Dvoretzky,
Wald, and Wolfowitz that V is a convex body. Suppose now that the number of
possible decisions is no longer finite. For each x, I (x) is then a probability measure
on a Borel field of subsets of the space D of decisions (see [2], for example). The
risk point of a test is defined appropriately. If V is a convex body then theorems 1,
2, and 3 remain valid. If V is a convex body for a subclass of the class of all tests
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then theorems 1, 2, and 3 are valid for this subclass. If the class of available tests
is the class of all possible tests it is obvious that V is convex. Whether V is closed
will in general depend upon W and the space D.

REFERENCES
[1] A. WALD, "Foundations of a general theory of sequential decision functions," Econometrica,

Vol. 15 (1947), pp. 279-313.
[21 -' Statistical Decision Functions, Wiley, New York, 1950.


