
CHAPTER 1

MATHEMATICS = SET THEORY?

“ No one shall drive us out of 
the paradise that Cantor has 
created”

David Hilbert

1.1. Set theory

The basic concept upon which the discipline known as set theory rests is 
the notion of set membership. A  set may be initially thought of simply as a 
collection of objects, these objects being called elements of that collec­
tion. Membership is the relation that an object bears to a set by dint of its 
being an element of that set. This relation is symbolised by the Greek 
letter e (epsilon). “ x e A ” means that A  is a collection of objects, one of 
which is x, i.e. x is a member (element) of A. When x is not an element of 
A, this is written A. If x e A, we may also say that x belongs to A.

From these fundamental ideas we may build up a catalogue of defini­
tions and constructions that allow us to specify particular sets, and 
construct new sets from given ones. There are two techniques used here.

(a) Tabular form: this consists in specifying a set by explicitly stating all 
of its elements. A  list of these elements is given, enclosed in brackets. 
Thus

{0,1,2, 3}

denotes the collection whose members are all the whole numbers up to 3.
(b) Set Builder form: this is a very much more powerful device that 

specifies a set by stating a property that is possessed by all the elements of 
the set, and by no other objects. Thus the property of “ being a whole 
number smaller than four” determines the set that was given above in 
tabular form. The use of properties to define sets is enshrined in the

P r in c ip l e  o f  C o m p r e h e n s io n . If <p(x) is a property or condition pertaining 
to objects x, then there exists a set whose elements are precisely the objects 
that have the property (or satisfy the condition) <p(x).
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The set corresponding to the property <p(x) is denoted 

{x : φ(χ)}

This expression is to be read “ the set of all those objects x such that φ is 
true of x ” .

E x a m p l e  1. If <p(x) is the condition “ x e A  and x g B ”  we obtain the set

{x: x g  A  and x eB }

of all objects that belong to both A  and B, i.e. the set of objects that A  
and B have in common. This is known as the intersection of the sets A  
and B, and is denoted briefly by ΑΠΒ.

E x a m p l e  2. The condition “ x e A  or x e B ” yields, by the Comprehen­
sion Principle the set

{x: x e  A  or x e B }

consisting of all of the elements of A  together with all of those of B, and 
none others. It is called the union of A  and B, written A  U B.

E x a m p l e  3. The condition “ x£ A ” determines —A, the complement of A. 
Thus

—A  ={x: χφΑ}

is the set whose members are precisely those objects that do not belong to 
A.

These examples all yield new sets from given ones. We may also 
directly define sets by using conditions that do not refer to any particular 
sets. Thus from “ x ^ x ” we obtain the set

0 = {x : x Φ x}

of all those objects x such that x is not equal to x. Since no object is 
distinct from itself, there is nothing that can satisfy the property x Φ x, i.e. 
0 has no members. For this reason 0 is known as the empty set. Notice 
that we have already “widened our ontology” from the original concep­
tion of a set as something with members to admit as a set something that 
has no members at all. The notion of an empty collection is often difficult 
to accept at first. One tends to think initially of sets as objects built up in
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a rather concrete way out of their constituents (elements). The introduc­
tion of 0 forces us to contemplate sets as abstract “ things-in-themselves” . 
One could think of references to 0 as an alternative form of words, e.g. 
that αΑ Π β = 0 ” is a short-hand way of saying “ A  and B have no 
elements in common” . Familiarity and experience eventually show that 
the admission of 0 as an actual object enhances and simplifies the theory. 
The justification for calling 0 the empty set is that there can be only one 
set with no members. This follows from the definition of equality of sets 
as embodied in the

P r in c ip l e  o f  E x t e n s io n a l it y : Two sets are equal iff they have the same 
elements.

It follows from this principle that if two sets are to be distinct then there 
must be an object that is a member of one but not the other. Since empty 
collections have no elements they cannot be so distinguished and so the 
Extensionality Principle implies that there is only one empty set.

Subsets

The definition of equality of sets can alternatively be conveyed through 
the notion of subsets. A  set A  is a subset of set B, written A  c  B, if each 
member of A  is also a member of B.

E x a m p l e  1 . The set { 0 , 1 , 2 }  is a subset of { 0 , 1 , 2 , 3 } ,  { 0 , 1 , 2 } c  

{ 0 , 1 ,  2 ,  3 } .

E x a m p l e  2 . For any set A, we have Α ς Α ,  since each member of A  is a 
member of A.

E x a m p l e  3. For any set A, 0 ς Α ,  for if 0 was not a subset of A, there 
would be an element of 0 that did not belong to A. However 0 has no 
elements at all.

\

Using this latest concept we can see that, for any sets A  and B, 

A = B  iff Α ς β  and B e  A.

If A  cJB but ΑΦΒ,  we may write A c f i  (A is a proper subset of B ).
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Russell’s Paradox

In stating and using the Comprehension Principle we gave no precise 
explanation of what a “ condition pertaining to objects x ” is, nor indeed 
what sort of entities the letter x is referring to. Do we intend the elements 
of our sets to be physical objects, like tables, people, or the Eiffel Tower, 
or are they to be abstract things, like numbers, or other sets themselves? 
What about the collection

V = {x : x = x}?

All things, being equal to themselves, satisfy the defining condition for 
this set. Is V  then to include everything in the world (itself as well) or 
should it be restricted to a particular kind of object, a particular universe 
of discourse?

To demonstrate the significance of these questions we consider the 
condition “ x ^ x ” . It is easy to think of sets that do not belong to 
themselves. For example the set {0,1} is distinct from its two elements 0 
and 1. It is not so easy to think of a collection that includes itself amongst 
its members. One might contemplate something like “ the set of all sets” . 
A  somewhat intriguing example derives from the condition

“ x is a set derived from the Comprehension Principle by a defining 
condition expressed in less than 22 words of English” .

The sentence in quotation marks has less than 22 words, and so defines a 
set that satisfies its own defining condition.

Using the Comprehension Principle we form the so-called Russell set

R = {χ:χφχ}.

The crunch comes when we ask “ Does R itself satisfy the condition 
χφ x?” Now if R^R,  it does satisfy the condition, so it belongs to the set 
defined by that condition, which is jR, hence R e R .  Thus the assumption 
R<£R leads to the contradictory conclusion R e R .  We must therefore 
reject this assumption, and accept the alternative R e R .  But if R e R ,  i.e. 
R is an element of JR, it must satisfy the defining condition for JR, which is 
χφχ.  Thus R<£R. This time the assumption R e R  has lead to contradic­
tion, so it is rejected in favor of R<£R. So now we have proven both 
R e R  and R£R,  i.e. R both is, and is not, an element of itself. This is 
hardly an acceptable situation.

The above argument, known as Russell’s Paradox, was discovered by 
Bertrand Russell in 1901. Set theory itself began a few decades earlier 
with the work of George Cantor. Cantor’s concern was initially with the
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analysis of the real number system, and his theory, while rapidly becom­
ing of intrinsic interest, was largely intended to give insight into proper­
ties of infinite sets of real numbers (e.g. that the set of irrational numbers 
has “ more” elements than the set of rational numbers). During this same 
period the logician Gottlob Frege made the first attempt to found a 
definition of “ number” and a development of the laws of arithmetic on 
formal logic and set theory. Frege’s system included the Comprehension 
Principle in a form much as we have given it, and so was shown to be 
inconsistent (contradictory) by Russell’s paradox. The appearance of the 
later, along with other set-theoretical paradoxes, constituted a crisis in the 
development of a theoretical basis for mathematical knowledge. 
Mathematicians were faced with the problem of revising their intuitive 
ideas about sets and reformulating them in such a way as to avoid 
inconsistencies. This challenge provided one of the major sources for the 
burgeoning growth in this century of mathematical logic, a subject which, 
amongst other things, undertakes a detailed analysis of the axiomatic 
method itself.

NBG

Set theory now has a rigorous axiomatic formulation -  in fact several of 
them, each offering a particular resolution of the paradoxes.

John von Neuman proposed a solution in the mid-1920’s that was later 
refined and developed by Paul Bernays and Kurt Godel. The outcome is a 
group of axioms known as the system NBG. Its central feature is a very 
simple and yet powerful conceptual distinction between sets and classes. 
All entities referred to in NBG are to be thought of as classes, which 
correspond to our intuitive notion of collections of objects. The word 
“ set” is reserved for those classes that are themselves members of other 
classes. The statement “ x is a set” is then short-hand for “ there is a class 
y such that x e y ” . Classes that are not sets are called proper classes. 
Intuitively we think of them as “very large” collections. The Comprehen­
sion Principle is modified by requiring the objects x referred to there to 
be sets. Thus from a condition <p(x) we can form the class of all sets 
(elements of other classes) that satisfy <p(x). This is denoted

{x : x is a set and <p(x)}.

The definition of the Russell class must now be modified to read

R ={x:  x is a set and χφ x}.
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Looking back at the form of the paradox we see that we now have a way 
out. In order to derive R e R  we would need the extra assumption that R 
is a set. If this were true the contradiction would obtain as before, and so 
we reject it as false. Thus the paradox disappears and the argument 
becomes nothing more than a proof that R is a proper class i.e. a large 
collection that is not an element of any other collection. In particular 
R£R.

Another example of a proper class is V, which we now take to be the 
class

{ x : x is a set and x = x}

whose elements are all the sets. In fact NBG has further axioms that 
imply that V = R, i.e. no set is a member of itself.

ZF
A  somewhat different and historically prior approach to the paradoxes 
was proposed by Ernst Zermelo in 1908. This system was later extended 
by Abraham Fraenkel and is now known as ZF. It can be informally 
regarded as a theory of “ set-building” . There is only one kind of entity, 
the set. All sets are built up from certain simple ones (in fact one can start 
just with 0) by operations like intersection Π, union U , and 
complementation-. The axioms of ZF legislate as to when such opera­
tions can be effected. They can only be applied to sets that have already 
been constructed, and the result is always a set. Thus proper classes like 
R are never actually constructed within ZF.

The Comprehension Principle can now only be used relative to a given 
set, i.e. we cannot collect together all objects satisfying a certain condi­
tion, but only those we already know to be members of some previously 
defined set. In ZF this is known as the

S e p a r a t io n  P r in c ip l e . Given a set A  and a condition <p(x) there exists a 
set whose elements are precisely those members of A  that satisfy φ(χ).

This set is denoted
{ x : x e A  and φ(χ)}.

Again we can no longer form the Russell class per se, but only for each 
set A  the set

jR(A) = { x : x e A  and χ ύ x}.
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To obtain a contradiction involving the statements R ( A ) e R ( A )  and 
jR(A) φ R(A)  we would need to know that R ( A ) e A .  Our conclusion 
then is simply that R( A) £A.  In fact in ZF as in NBG no set is an 
element of itself, so R(A)  = A. (Note the similarity of this argument to 
the resolution in NBG -  replacing V everywhere by A  makes the latter 
formally identical to the former.)

NBG and ZF then offer some answers to the questions posed earlier. In 
practical uses of set theory, members of collections may well be physicial 
objects. In axiomatic presentations of set theory however all objects have 
a conceptual rather than a material existence. The entities considered are 
“ abstract” collections, whose members are themselves sets. NBG offers a 
“ larger” ontology than ZF. Indeed ZF can be construed as a subsystem of 
NBG, consisting of the part of NBG that refers only to sets, (i.e. classes 
that are not proper). We still have not shed any real light on what we 
mean by a “ condition pertaining to objects x ” (since sets are never 
members of themselves, the “ less than 22 words” condition mentioned 
earlier will not be admissible in ZF or NBG). Some clarification of this 
notion will come later when we consider formal languages and take a 
closer look at the details of the axioms for systems like ZF.

Consistency

The fact that a particular system avoids Russell’s Paradox does not 
guarantee that it is consistent, i.e. entirely free of contradictions. It is 
known an inconsistency in either ZF or NBG would imply an inconsis­
tency in the other, and so the two systems stand or fall together. They 
have been intensively and extensively studied in the last 60 or so years 
without any contradiction emerging. However there is a real conceptual 
barrier to the possibility of proving that no such contradiction will ever be 
found. This was demonstrated by Godel, around 1930, who showed in 
effect that any proof of consistency would have to depend on principles 
whose own consistency was no more certain than that of ZF and NBG 
themselves. In the decade prior to Godel’s work a group of mathemati­
cians lead by David Hilbert had attempted to establish the consistency of 
arithmetic and mathematics generally by using only so-called finitary 
methods. These methods are confined to the description of concrete, 
particular, directly perceivable objects, and principles whose truth is 
evident by direct inspection. Godel showed that such methods could 
never establish the consistency of any system that was powerful enough to 
develop the arithmetic of ordinary whole numbers. This discovery is 
regarded as one of the major mathematical events of the 20th century. Its 
impact on Hilbert’s program was devastating, but many people have
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found in it a source of encouragement, an affirmation of the essentially 
creative nature of mathematical thought, and evidence against the 
mechanistic thesis that the mind can be adequately modelled as a physical 
computing device. As Godel himself has put it, “ either mathematics is too 
big for the human mind, or the human mind is more than a machine.” (cf. 
Bergamini [65]).

While it would seem there can be no absolute demonstration of the 
consistency of ZF, there is considerable justification, of an experiential 
and epistemological nature, for the belief that it contains no contradic­
tions. Certainly if the opposite were the case then, in view of the central 
role of set theory in contemporary mathematics, a great deal more would 
be at stake than simply the adequacy of a particular set of postulates.

Which of ZF and NBG is a “ better” treatment of set theory? The choice 
is largely a matter of philosophical taste, together with practical need. ZF 
seems to enjoy the widest popularity amongst mathematicians generally. 
Its principle of relativising constructions to particular sets closely reflects 
the way set theory is actually used in mathematics, where sets are 
specified within clearly given, mathematically defined contexts (uni­
verses). The collection of all sets has not been an object of concern for 
most working mathematicians. Indeed the sets that they need can gener­
ally be obtained within a small fragment of ZF. It is only very recently, 
with the advent of category theory that a genuine need has arisen 
amongst mathematicians (other than set-theorists) for a means of handl­
ing large collections. These needs are met in a more flexible way by the 
class-set dichotomy, and have offered a more significant role to NBG and 
even stronger systems.

The moral to be drawn from these observations is that there is no 
“ correct” way to do set theory. The system a mathematician chooses to 
work with will depend on what he wishes to achieve.

1.2. Foundations of mathematics

The aim of Foundational studies is to produce a rigorous explication of the 
nature of mathematical reality. This involves a precise and formal defini­
tion, or representation of mathematical concepts, so that their inter­
relationships can be clarified and their properties better understood. Most 
approaches to foundations use the axiomatic method. The language to be 
used is first introduced, generally itself in a precise and formal descrip­
tion. This language then serves for the definition of mathematical notions 
and the statement of postulates, or axioms, concerning their properties.
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The axioms codify ways we regard mathematical objects as actually 
behaving. The theory of these objects is then developed in the form of 
statements derived from the axioms by techniques of deduction that are 
themselves rendered explicit.

It would be somewhat misleading to infer from this that foundational 
systems act primarily as a basis out of which mathematics is actually 
created. The artificiality of that view is evident when one reflects that the 
essential content of mathematics is already there before the basis is made 
explicit, and does not depend on it for its existence. We may for example 
think of a real number as an infinite decimal expression, or a point on the 
number line. Alternatively it could be introduced as an element of a 
complete ordered field, an equivalence class of Cauchy sequences, or a 
Dedekind cut. None of these could be said to be the correct explanation 
of what a real number is. Each is an enbodiment of an intuitive notion 
and we evalute it, not in terms of its correctness, but rather in terms of its 
effectiveness in explicating the nature of the real number system.

Mathematical discovery is by no means a matter of systematic deduc­
tive procedure. It involves insight, imagination, and long explorations 
along paths that sometimes lead nowhere. Axiomatic presentations serve 
to describe and communicate the fruits of this activity, often in a different 
order to that in which they were arrived at. They lend a coherence and 
unity to their subject matter, an overview of its extent and limitations.

Having clarified our intuitions, the formal framework may then be used 
for further exploration. It is at this level that the axiomatic method does 
have a creative role. The systematisation of a particular theory may lead 
to new internal discoveries, or the recognition of similarities with other 
theories and their subsequent unification. This however belongs to the 
“ doing” of mathematics. As far as Foundational studies are concerned 
the role of axiomatics is largely descriptive. A  Foundational system serves 
not so much to prop up the house of mathematics as to clarify the 
principles and methods by which the house was built in the first place. 
“ Foundations” is a discipline that can be seen as a branch of mathematics 
standing apart from the rest of the subject in order to describe the world 
in which the working mathematician lives.

1.3. Mathematics as set theory

The equation of mathematics with set theory can with some justification 
be seen as a summary of the direction that mathematics has taken in 
modern times. Many will have heard of the revolution in school curricula
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called the “ New Math” . This has largely revolved around the introduction 
of set theory into elementary education and indicates the preoccupation 
of the mathematical community with that subject. Of all the foundational 
frameworks that have been proposed, the set theories have enjoyed the 
widest acceptance and the most detailed attention. Systems like ZF and 
NBG provide an elegant formalisation and explanation of the basic 
notions that the mathematician uses. Paul Cohen, whose work on the 
independence of the Continuum Hypothesis in 1963 lead to a veritable 
explosion of set-theoretic activity, has said “by analysing mathematical 
arguments logicians became convinced that the notion of “ set” is the 
most fundamental concept of mathematics.”

Apart from, or perhaps because of, its central role in Foundations, set 
theory has also dominated the stage of mathematical practise. This is not 
intended to imply that mathematicians think in set-theoretical concepts, 
although that is very often the case. Rather the point is that set theory is 
the basic tool of communication and exposition. It has provided the 
vehicle for an enormous proliferation of mathematics, both in terms of 
quantity of knowledge and range of topics and applications. It would be 
hard to find a recent book on any pure mathematical subject, be it 
algebra, geometry, analysis, or probability theory, that used no set- 
theoretical symbolism.

The group of French mathematicians who work under the name of 
Nicolas Bourbaki undertook in 1935 the formidable task of producing a 
“ fully axiomatised presentation of mathematics in entirety” . The result, 
over 40 years, has been about that many volumes to date, ranging over 
algebra, analysis and topology. Book 1 of this influential work is devoted 
to the theory of sets, which provides the framework for the whole 
enterprise. Bourbaki has said (1949) “ . . .  all mathematical theories may 
be regarded as extensions of the general theory of sets . . .  on these 
foundations I state that I can build up the whole of the mathematics of 
the present day” .

The point to be made in this book is that the emergence of category 
theory has changed the perspectives just described, and that Cohen’s 
statement is no longer even prima facie acceptable. It may be the case that 
the objects of mathematical study can be thought of as sets, but it is not 
certain that in the future they will be so regarded. No doubt the basic 

. language of set theory will continue to be an important tool whenever 
collections of things are to be dealt with. But the conception of the things 
themselves as sets has lost some of its prominence through the develop­
ment of a natural and attractive alternative. It seems indeed very likely



16 MATHEMATICS = SET THEORY? CH. 1, § 1.3

that the role of set theory as the lingua universalis for mathematical 
foundations will be a declining one in the years to come. In case the 
wrong impression should have been conveyed by the last quotation 
above, it should be noted that the French mathematicians have been 
amongst the first to recognise this. Rene Thom [71] has written that “ the 
old hope of Bourbaki, to see mathematical structures arise naturally from 
a hierachy of sets, from their subsets, and from their combination, is, 
doubtless, only an illusion” . And in an address given in 1961, Jean 
Dieudonne made the following prophetic statement:

“ In the years between 1920 and 1940 there occurred, as you know, a 
complete reformation of the classification of different branches of 
mathematics, necessitated by a new conception of the essence of 
mathematical thinking itself, which originated from the works of Cantor 
and Hilbert. From the latter there sprang the systematic axiomatization of 
mathematical science in entirety and the fundamental concept of 
mathematical structure. What you may perhaps be unaware of is that 
mathematics is about to go through a second revolution at this very 
moment. This is the one which is in a way completing the work of the first 
revolution, namely, which is releasing mathematics from the far too 
narrow conditions by 'set’ ; it is the theory of categories and functors, for 
which estimation of its range or perception of its consequences is still too 
early . . .  ” . (Quoted from Fang [70].)


