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Abstract. The consideration of some non-standard parametric Lagrangian 
leads to a fictitious dynamical system which turns out to be equivalent to the 
Euler problem for finding out all possible shapes of the lamina. Integrating 
the respective differential equations one arrives at novel explicit parameteri- 
zations of the Euler’s elastica curves. The geometry of the inflexional elastica 
and especially that of the figure “eight” shape is studied in some detail and the 
close relationship between the elastica problem and mathematical pendulum 
is outlined.

1. Introduction

The elastic behaviour of roads and beams which attracts a continuous attention 
since the time of Galileo, Bernoulli and Euler has generated recently a renewed 
interest in plane [2,3,15], space [18] and space forms [1,11]. The first elastic 
problem was posed by Galileo around 1638 who asked the question about the force 
required to break a beam set into a wall. James (or Jakob) Bernoulli raised in 1687 
the question concerning the shape of the beam and had also succeeded in solving 
the case of the so called rectangular elastica (second case from the top in Fig. 1). 
Later on in 1742 Daniel Bernoulli wrote a letter to Euler in which he had suggested 
to him to solve the general problem of the elastica. Following closely this sugges­
tion Euler cast the problem in the variational form and presented the solution in 
an Appendix to his book on variational calculus which appeared in 1744. Euler 
begins his investigation with establishing the equation of static equilibrium of the 
“lamina” by means of the variational techniques developed in his treatise and then 
rederives it from mechanical principles developed earlier by James Bernoulli. The

175



176 Peter Djondjorov, Mariana Hadzhilazova, Ivaïlo Mladenov and Vassil Vassilev

Bernoulli-Euler theory which considers only bending deformations and neglects 
shear deformations and stretching of the center line of the beam is given in detail 
by Love [13]. The corresponding solutions were found by using the equivalence of 
the elastica with that of the mathematical pendulum (see also Section five below). 
Nine different classes can be distinguished and Love presents figures for the sev­
enth of them (cf. Fig. 1 below). Later on Birkhoff and de Boor [2] have found the 
fundamental equation of the Euler elastica without length constraint (i.e., the so 
called free elastica)

1 q
z(s) +  2  K3(s) =  0. (1)

Here k (s ) is the curvature of the arclength parameterized smooth curve in the plane 
and the dots denote the derivatives with respect to its natural parameter s.
In what follows we will derive the intrinsic equation of the non-free elastica by 
introducing a fictitious dynamical system and present its explicit solutions in terms 
of Jacobian elliptic functions and elliptic integrals.
We hope that these dynamical considerations could be of some interest in the many 
other situations as well.

2. The Fictitious Dynamical System

Assuming that A is a positive real number let us consider the following system of 
nonlinearly coupled ordinary differential equations

x — A zz = 0 (2)
z +  AzX = 0. (3)

It is quite natural to consider equations (2) and (3) as equations describing the 
dynamics of a particle moving in X O Z  plane.
It is easy to check by a direct computation that equations (2) and (3) are the Euler- 
Lagrange equations

— F- — F  =  0 — F- — F  =  0-, 1 x 1 x -- F Z -- Uds ds (4)

associated with an action functional whose Lagrangian F  can be taken of the form

F  (x, z, X, Z, t)
1
2

X2 +  z2 3  z (zX xz)

in which A plays the role of the Lagrange multiplier. The particle trajectories 
Y (s) =  x  (s) determined by the parametric equation

x  (s) =  (x(s), z (s)) (5)

which we will assume to be traced with unit speed, i.e.,

x  2(s) +  z2 (s) =  1 (6)
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describe the plane curve we are seeking.

3. Integration

A theorem in the classical differential geometry (see e.g. [17]) claims that any 
plane curves is determined uniquely (up to Euclidean motion in the plane) by its 
curvature which in our settings can be written as

k (s) = x z — zx.  (7)

It is easy to see also that the equations (2) and (3) imply

k (s) =  —Az(s). (8)

This claim can be proved in the following manner: multiplying (3) by x  and sub­
tracting from it the result of multiplication of (2) by z and taking into account (6) 
we get exactly (8)

x z — zx = — \z .

Actually, the integration of (2) is immediate and produces

A z2
x = ~ ^  + ß

where ß is the integration constant.
Inserting the expression for x  from (9) into (3) leads to the equation

.. A2z3 ,
z +---- 2---- + Aßz — 0.

When rewritten in terms of the curvature the above equation becomes
3

Z(s) +  - k (s) +  an(s) =  0, a = Aß

(9)

(10)

(11)

which is known as the intrinsic equation [3] of the elastica with tension a and in 
this way we have reduced our fictitious dynamical system to the elastica problem. 
Continuing with the integration of (10) we get

\ 2 z4
z2 = ----------- Aßz2 +  C (12)

where C is another integration constant which however is not arbitrary but fixed 
by (6), i.e.,

C =  1 — ß 2. (13)
It is a trivial matter to find that the right hand side of equation (12) can be factorized 
in the form

A2
4

2(1 -  ß) z 2 z2 + 2 (1 +  ß) 
A (14)
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which allows the equation itself to be rewritten as
f  d z As

~2
(15)

Examination of the above integral leads to the conclusion that ß should be strictly 
smaller than one and further analysis shows that we have the following obvious 
possibilities:

A) ß G (-1 ,1 )
B) ß =  -1
C) ß < -1 .

These possibilities will be considered below case by case:
a) Introducing

a2 =  2(1 -  ß) , c2 =  2(1 +  ß)  ̂ (16)
A A

The integration in this case can be done with the help of the Jacobian elliptic func­
tion cn(u, k) in which u is the argument and k is the so called modulus of the 
elliptic function (for more details on the elliptic functions, their integrals and prop­
erties see e.g. [7] and [10])

z(s) = a c n ( - /A s ,  k) =  a cn('/As, k), k = \ j
1 - ß

(17)

b) The integration of the second case is performed via the hyperbolic functions and 
one easily gets

z (s)
2 sech(s\/A)

/A
(18)

c) After some preparation the integration in the last case leads also to an expression 
in terms of Jacobian elliptic function. For that purpose we have to change the 
parameter ß with v =  - ß, which means that the range of the new parameter is 
the v > 1 part of the real line. Besides, it turns out convenient to introduce new 
parameters a and c in place of a and c used in (15), i.e.,

a2 =  2(v + 1
A :

so that this time we have to evaluate
dz

C2 =  2(v -  1)

As
\J((c2 -  z2) (z2 -  c2) 2

(19)

(20)

Integrating it we obtain

z(s) =  ac dn(
A(v +  1) 

2
s, kc ) ac dn(

A(v +  1) 
2

s, kc ), kc 2
v +  1 • (21)
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The above results should be completed by the integration of equation (9) in the 
appropriate setting and in this way we find respectively the parameterizations:

A) x(s) = — = E  (am ^VXs, kj  , kj  — s, z(s) = a cn(y/\s,  k)

B) x(s) =  ^ a — — s, z(s) = 2 sech(—/Xs) (22)
V'Ä VX

C) x(s) = aE(am (y X(u +  1) s,k) ,k) — vs, z(s) = à d n U  X(u +  1) s,k)
2 2

in which E (u, k) and F (u, k) (which will appear later on) denote the incomplete 
elliptic integrals of the second respectively first kind depending on the argument 
u and modulus k, and am (t, k) denotes the Jacobian amplitude function (cf. [7, 
10]).
Actually, the integral (20) can be expressed in a slightly different form and this 
gives another curve

, a a 2\[2 cn (u (s),a ) sn(u(s),k)C)  x(s) =  aE (am (u (s),a ) , a ) --------- ----- — - — vs
X(v +  1) dn (u (s),a )

(23)

z(s) = dn(u(s), a )
t ^ X ( v  +  1 )

which coincides with (22 C) (as it should be) if translated along the X  axis at 
distance

2 ( / x T E (am (K  (a)' a ) ' a) — VA(V(+>1))

where K (a ) is the complete elliptic integral of the first kind [7,10].

4. Some Geometrical Remarks

A few comments are in order here. E.g., already Euler had detected nine species of 
elastic curves while in Fig. 1 we can see only seven of them. The remaining two, 
the straight line and the circle can be added immediately to the list. The first one 
is generated by the obvious solution x(s) =  s, z(s) = 0 of the governing system 
of equations (2) and (3). The circle respectively is the degenerated case of (22 C) 
when v approaches infinity.
The rectangular elastica (second figure from the top in Fig. 1 is obtained when 
ß =  0. Gibbons’ [6] beautiful observation is that when this curve is rotated at n /2  
it becomes the meridional profile of the Mylar balloon [14].
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Figure 1. The elastic curves produced via formulas (22). In all cases 
the parameter A is fixed, i.e., A =  4. The first five figures starting from 
the top on the left hand side are generated by (22 A) and following 
values of ̂ : 0.5,0, -0 .4 , -0.65223 and -0 .9 . The sixth one represents 
(22 B) while (22 C) in conjunction with v = 1 . 2  produces the last one.
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Another interesting issue is how the value of ß producing the figure “eight” was 
found. To answer it let us make use of the fact that cn(u, k) is periodic function of 
its argument u and its period is 4K(k).
Starting from the point A where s =  0 (see Fig. 2a)) the elastic curve crosses for 
the first time the positive part of the OX  axis for s = K  (k) /  \/X at the point P  
which is (2E (k) — K (k))/\/Ä  off the origin O (here E (k) denotes the complete 
elliptic integral of the second kind). In this setting it is clear that P  will coincide 
with O provided we have arranged that

2 E  (k) — K  (k) =  0. (24)

This transcendental equation can be easily solved numerically by the modern com­
puter algebra systems like Maple, Mathematica®, Reduce, etc. In particular, the 
F i n d R o o t  command of Mathematica® produces

k =  ß  «  0.908909 (25)

and consequently
ß =  1 — 2k2 «  —0.65223 := ß. (26)

One can ask also the question how one can determine the aspect ratio, i.e.,
hhmax

n = ------- (27)
wmax

where hmax and wmax mean the maximal height, respectively width of the figure 
“eight”. According to the first item in (22) hmax =  a specified in (16) and therefore 
we are left with the task to find wmax. For that purpose we rewrite (9) and (12) in

Figure 2. a) An elastic curve on the way to the figure “eight” shape. 
b) Geometry of the upper half of the figure “eight” elastica.
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the form
dx
dz

z2 +  2fi/A
\J (a2 — z2) (z2 +  c2)

(28)

from which is obvious that for z < a after integration we will obtain a smooth 
function x = x(z) describing the figure in the first quadrant. The entire figure can 
be built by the respective reflections from X  and Z axes (see also Fig. 2b)).
Its maximal deflection xmax from the Z axis is attained at the points where

d x = o .dz
Solving the last equation for z we obtain that the extremum takes place at

2fi
' T

(29)

(30)

1 /  z z \
x(z) =  \ 2E (arccos -  , k) — F  ( a r c c o s , k )j  (31)

Now, we have to determine the respective extremal value xmax =  x(^J—2fi/A) but 
before that we have to integrate (28). Doing this we find

z , k) — F  (arccos z , 
a a

and inserting (30) inside one finally gets

£_
1 — y~ v 1 — f i’

Now, taking into account that wmax =  2xmax, we are in position to evaluate the 
aspect ratio as well, i.e.,

=  — ( 2 E (arccos < / — fi , k) — F (arccos < [—­
v A V V 1 fi V

fi k) (32)

n(fi) =
V 1 — fi

—2(2E(arccos ^ ^ 1/ ) — F(arccos Ĵ— - ï ,Jhÿj)
which evaluated at fi =  fi produces with five digits precision

n(fi) =  1.52408.

(33)

(34)

z

Evaluated at fi =  0 corresponding to the rectangular elastica, or what is the same 
-  the mylar balloon, formula (33) gives

n(0) =  0.834627 (35)

a result which has been obtained in another settings in [14]. Let us notice also that 
by its very expression the aspect ratio is scale independent.
Our study of this class of solutions would be incomplete if we did not find the slope 
of the tangent to the elastica along the X  axis. Fortunately, it is easy to conclude 
from (28) and Fig. 2 that

cot 0(fi)
dx 2fi fi
dz z=o Aac / 1  — fi2

(36)
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At the origin which corresponds to /  =  /  and where 0(/t ) =  a, the above formula 
gives cot a = 0.860438 and therefore a & 49.2901°. By the mirror symmetry 
this result tells us that the opening angle ÿ  of the figure “eight” is approximately
81.4199° (see Fig. 2b).
Another interesting geometric quantity which is also of some practical interest [16] 
is the area bounded by the elastica curves and the X  axis. In Fig. 3 we have 
presented various such instances depending on the chosen values of / .
For the area A of any of the striped regions there we can write

A zdx
dx n

z dz 
dz

z3 +  2 /z /A— — d z
/ ( a 2 — z2) (z2 +  c2)

(37)

For the solutions of class A) z(s) =  a cn(\/Xs, k), the problem with evaluation 
of the last integral reduces to the computations of the integrals of the first and the 
third powers of the Jacobian elliptic function cn which are tabulated (see [4]) and 
we have respectively

J cn(u, k) du 

J  cn3(u, k) du

1
k

arcsin(k sn(u, k))

2k [<2k2 1) arcsin(k sn(u, k)) +  k sn(u, k) dn(u, k)].

(38)

With the help of the formulas listed above and taking into account the limits of the 
integration we find immediately that

z dz
\J(a2 — z2) (z2 +  c2)

z3 dz

v7(a2 — z2) (z2 +  c2)

=  arcsin(k)

/ 1  — / 2 2 /— arcsin(k).
A A

(39)

Figure 3. The striped regions present half of the area enclosed by the 
respective elastica curve and the X  axis.
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These combined results give at the end the amazingly simple formula for the total 
area Atot =  2A enclosed by the elastica and the X  axis, i.e.,

A tot
2y/T—ß 2

A
1 +  a 2 4kk

a 2 =
1 — a  a k a

(40)

where k is the so called complementary elliptic modulus defined by the equation

P  =  1 — k2. (41)

In particular, for the rectangular elastica (the mylar balloon) we have a =  0, which 
implies k =  k =  — and therefore Atot =  a2.

5. Mechanical Aspects

Finally, we will add a few comments on the dynamical aspects of the elastica. 
Looking at Fig. 4 where d(s) denotes the angle between the normal vector to the 
curve and the Z axis one easily concludes that

x(s) = cos d(s), Z(s) = — sin d(s) (42)

and therefore
d(s) = —A z(s). (43)

Differentiating once more the above equation we obtain just the equation of the 
mathematical pendulum (with negative string constant)

d(s) = A sin d(s) (44)

and in this way we have established the close relationship which exists between 
this fundamental mechanical system and the Euler's elastica.
This situation is depicted graphically in Fig. 1 where on the left hand side are 
shown various types of elastica configurations and on the right hand side the cor­
responding pendulum motions. The inflexional elastica corresponds to oscillatory 
motion of the pendulum, the single-looped elastica corresponds to the limiting case 
when its motion starts close to the position of unstable equilibrium at the top of the

Figure 4. Geometry of the elastic curve in terms of the azimuthal angle 6(s).
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circle and makes just one complete revolution, and the non-inflexional elastica cor­
responds to the revolving pendulum.
In the particular case most studied here when the pendulum furnishes oscillations 
corresponding to figure “eight” elastica the bob rises just to angle ^ /2  æ 40.71° 
over the horizon. There remains, however the question about the mechanical inter­
pretation of the figure “eight” for the pendulum motion.
It should be mentioned also that another set of explicit formulas describing the 
elastica’s shapes can be found in the book by Love [13] who had derived them by 
integrating (44) directly.
Let us end with a remark that the Bernoulli-Euler beam equation is still a subject of 
real interest in view of its importance for analysis of large-deflection mechanisms 
as evidenced in [8,9,12] or its potential applications to nanotechnology or textiles 
problems [5].
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