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Abstract, This paper is an introduction to die theory o f algebras with poly­
nomial identities. It stresses on matrix algebras and polynomial identities 
for diem. The notion o f Bergman polynomials is introduced. Such types of 
polynomials are investigated being identities for algebras with sympleetie in­
volution. In die Lie case more information is given for Bergman polynomials 
as Lie identities for die considered algebras.

1. Algebras with Polynomial Identities
We fix a countably infinité set A" =  { x i , x o ,  • • • } and consider a field K  of char­
acteristic zero. We work in the algebra K ( X )  which has a basis the set of all 
words

x-ij . . .  X i k , x ij 6 A" 
and multiplication defined by

(xn . . .  x ,r„ ) (x n  . . .  X j n )  =  X n  . . .  x ,r„ X n  . . .  X j n .
Definition 1. i) Let f  =  f ( x i , . . . ,x ,„ )  e X { X )  and let R  be an associative 
algebra. We say that /  =  0 is a polynomial identity fo r  R  if

/ ( r i ,  • • •, r.n) =  0, n ,  . . . , r , n £ R.

ii) I f  the associative algebra R. satisfies a non-trivial polynomial identity f  (i.e., f  
is a nonzero element o f K  {X ) ), we call it Pi-algebra.

It could be shown that /  e  K (X)  is a polynomial identity for R  if and only if /  is 
in the kernel of all homomorphisms K ( X )  —> R. We give some examples:
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Example 1. The algebra R is commutative i f  and only if  it satisfies the polynomial 
identity

[xi ,X2] =  XlX2 — X2X1 =  0.

Example 2. Let R  be a finite dimensional associative algebra and let dim R  < n. 
Then R  satisfies the standard identity o f  degree n

Sn (x Xn) =  Y  (sign oO M i) • • • X°(") =  0

where S n is the symmetric group o f  degree n. The algebra R  also satisfies the 
Capelli identity

d n ix i, • • • , Xn ] 2/1, . . .  , î/n+l) =  ^ ( (sign cr')y\Xcr̂ y 2 ■ ■ ■ 2/nT{r(n)2/n+1 =  0.

Example 3. Let M 2 ( K )  be the 2 x 2  matrix algebra. It satisfies the following 
polynomial identities:

1. The standard identity s f ix\ ,X2,  x%, x f )  =  0
2. The Hall identity [[rci, X2}2, 2:3] =  0.

The algebra M 2 ( K )  does not satisfy the Capelli identity dj =  0 and the standard 
identity S3 =  0.

Example 4. The n x n matrix algebra M n( K )  satisfies the identity o f algebraicity

d n + i ( l , x , x 2, . . . , x n ; 1,2/1, • • • ,Vn, 1)
=  Y  (sig“  o-)xa(-0)y1x <T(-1)y2 • • • ynxa(-n) =  0

<r€Sn+ 1
where the symmetric group S n+1 acts on {0, 1, . . . ,  n], and the identity 

s n {[x, y\, [x2, y ] , . . . ,  [xn , y]) =  0.
Example 5. Let Un( K )  be the algebra o f  n x n upper triangular matrices. It 
satisfies the identity

[rci,rc2] • • • [x2n-l,X2n] =  0.
Some important properties of the associative algebras are expressed in the language 
of polynomial identities. We have seen this for the commutativity. Other examples 
come from the nonunitary algebras. The algebra R  is nilpotent of bounded index if 
there exists n  e  N  such that x n =  0 is an identity for R. The algebra R  is nilpotent 
of class < n if  x  i . . .  x n =  0 for R.  More details could be found in [4], It turns out 
that the class of all Pi-algebras has a structure and combinatorial properties similar 
to those of the commutative and the finite dimensional algebras.
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2. Bergman Polynomials in Associative PI-Algebras
We define a class of homogeneous associative polynomials, called Bergman poly­
nomials [1], These are homogeneous and multilinear in y±,. . . ,  yn polynomials 
f i x ,  2 / 1 , , yn) from the free associative algebra K ( x , y \ , . . .  ,yn) which can be 
written as

f ( x , y i , . . . , y n) =  v (9 t ) (x ,yn , - - - , y t n) (1)
i = ( i l  ,. .., in ) € S n

where gi e  K [ t ± , . . . ,  tn+i] are homogeneous polynomials in commuting variables

$ > pt f  . . . C t i  (2)

and

v(gi) =  v(gl )(x,  yH, . . . , y tn) =  Y ^  a px PlyH . . .  x Pnylnx Pn+1. (3)

The following theorem of Bergman shows how one could investigate Pi-algebras 
using commutative theory approach.

Proposition 1 ([1, Section 6, (27)]). i) The polynomial v(gi) from  (3) is an identity 
fo r  M n( K )  i f  and only if

I l  (̂ p — tg)
l < p < q < n + l

divides gi{t\, . . .  , t n+i) fo r  all i =  ( i \ , . . .  , i n).

ii) The polynomial f ( x ,  y \ ,. . . ,  yn) from  (1) is an identity fo r  M n( K )  i f  and only 
i f  every summand v(gi) is also an identity fo r  M n(K).

If the algebra has some additional properties the analog of the Bergman theorem 
could be formulated. These properties are concerned with the existence of involu­
tions (i.e., antiautomorphisms of second order) in the considered algebras.

We recall that in the matrix algebra M2n(K ,  *) the symplectic involution * is de­
fined by

( A  B \ *  _  (  D l - B l \
v<7 d ) ~ V-C* A* )

where A , B , C , D  are n  x n  matrices and t is the usual transpose.

For an algebra R  with involution * we have the splitting (R , *) =  R + © R ~ , where 
R ± =  {r  e  R , r* =  ± r} .

We call f { x  i , . . .  , x n) e  K ( X )  a *-polynomial identity for (R,  *) in symmetric 
variables if f ( r f , . . . ,  r+) =  0 for all r f , . . . , r +  e  R + . Analogously 
f { x  i , . . .  , x s) e  K ( X )  is a *-polynomial identity for (R,  *) in skew-symmetric 
variables if f ( r f , . . . ,  r f )  =  0 for all r f , . . . ,  r f  e  R ~ .
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The algebra R + is a Jordan algebra with respect to the multiplication r f  o rJ  =  
r+r+  +  r p r f  where r f  ,r £  £ R + and the identities in symmetric variables are 
weak polynomial identities for the pair (R, R + ).

Similarly, the algebra R~  is a Lie algebra with respect to the new multiplication 
\r i ■> r 2 ] =  rï r2 ~  r2 r i where r f , r f  £ R~  and the identities in skew-symmetric 
variables for (R,  *) are weak polynomial identities for the pair (R, R~).

In order to state the next result we introduce the following notation, namely

92n,Q =  JJ  (*p “  t2g)(h  ~  *n+l)-
l<p<q<n+l

(p,ç)#(l,n+l)

Proposition 2 ([9, Theorem 3]). Considered in M 2n(K, *) the polynomial f  in­
troduced by (1) satisfies f ( a ,  r4, . . . ,  rn) =  0 fo r  any skew-symmetric matrix a 
and all matrices r \ , . . . ,  rn i f  and only if  (t\ +  fn+i)ö2n,o divides the polynomials
Qt(ti, • •. , tn+i)  far all i =  ( h , . .  , , i n).

The sufficient condition of this proposition could be improved.

Proposition 3 ([6, Theorem 1]). Let the polynomial (1) be a *-identity in skew- 
symmetric variables fo r  the algebra M2n(K ,  *). Then the polynomial <?2n,o divides 
the polynomials Qi in equation (2) fo r  all i =  (i\ , . . . ,  in).

Some other results are the following:

Proposition 4 ([8, Proposition 3]). The linearization in y o f  the standard polyno­
mial S3 ([a:3, y], [x2, y], [x, y]) is an identity in symmetric variables fo r  M q( K ,  *) 
o f  minimal degree.

Proposition 5 ([5, Theorem 3]). A polynomial f  is a Bergman type identity in 
skew-symmetric variables fo r  M i ( K ,  *) i f  and only if  it has the form

f  =  a(u(gi)(a:, yu y2) +  v(g2)(x, y2, yi))

+  ßv(g-i)(x, yi,  2/2) +  yv(g4)(x,  y2, yi)

where

1- 9 i =  54,o I W a A  +  h t 2 +  ctt3), g2 =  g i f i U t i - C t h  ~  h t 2 ~  afi3) and 
t\ +  f3 is not a factor o f  the polynomials g\ and <72

2. The polynomial (t\ +  *3)04,0 divides <73 and <74

3. The identity v(gi)(x,  2/1,2/2)+ (̂<72) (a:, 2/2,2/i) =  0 follows from the identity

fo(x,  2/1,2/2) =  E tJe,s'2 v (gi,o)(x, 2/tj(i)> 2/o-(2)) =  0.

We are able to formulate and prove a result for M2n(K ,  *) generalizing “only if” 
part of Proposition 5 for n  =  2.
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Theorem 1 ([8, Theorem 3]). For n =  2,3 (mod 4) every Bergman type polyno­
mial o f degree k o f  the form

f  =  a Y l  V(9i)(X, Vh , • • • , Vin) +  ß Y h  V(9j ) ( X> %! , • • • ,  Vjn)
i  3

is a ^--identity in skew-symmetric variables fo r  M2n(K ,  *)> where 

1 „  — „  T-rfe—n2— 2n+l (0 .4- 9 i y2n,01 T=l 2-^m=lai1mtm

n __ _ T - r f e — n2— 2n+l/_ \^n (0 + \
i/j+aL — i/2n,0 lT = l V zLm=l ai,n + l-m L™)

i =  1 , y  and t\ +  tn+\ is not a factor o f  these polynomials

2. The polynomial (t\ +  tn+i)ö2n,o divides Qj

3. The identity J2  v(pf)(x, Uin) =  0 follows from the identity

fe, ( ö 2 n , o )  ( 2 , 5 1 / ^ 2  5 • • • 5 Vin )  3 ”  v(g2n,o) ( 2 , Vin , y in—i  , • • • 5 )

f o r  ( f l ,  i 2, . . . ,  in )  e  -S n-

3. Lie Algebras
Starting with the free Lie algebra L (X ) we can define the notion of a polynomial 
identity for a Lie algebra G . We give some examples:

Example 6. Let G  be the two-dimensional Lie algebra with basis {a, 6} as a vector 
space and multiplication [a, b] =  a. G  satisfies the polynomial identity (namely the 
metabelian identity)

[[x1 , x 2], [2:3,24]] =  0.

Example 1 . I f  G  is a finite dimensional Lie algebra and dim G  < n, then G  satis­
fies the Lie standard identity o f  degree n +  1 (but in n skew-symmetric variables)

x 0sn (a d 2 1 , . . . ,  a d 2 n) =  (sign cr)[20, x ^ 1}, . . .  , x a(n)\ =  0.

Example 8. The Lie algebra (Un( K ) ) ( G  o f  all upper triangular n  x n matrices 
satisfies the identity

[[21,22], . . • , [22n - l ,2 2n]] =  0.

Example 9. Let Wn be the set o f  all derivations o f the polynomial algebra in n 
variables. (The linear operator 5 o f  the vector space JT [21 , . . . ,  x n] is a derivation 
i f  S(uv) =  S(u)v +  uS(v) where u, v G JT [21 , . . . ,  x n].) Wn is a Lie algebra with 
respect to the operation [5i, #2].

1. The algebra W\ satisfies the standard Lie identity

2o«4(ad2i, ad 22, ad 23, ad 24) =  0.
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2. The algebra Wn satisfies some standard Lie identity.

As in the case of associative algebras, some classical properties and results for 
Lie algebras can be stated in the language of polynomial identities. A  Lie algebra 
G  is abelian if it satisfies the identity [xi,X2] =  0 meaning that G  has a trivial
multiplication. The algebra G  is nilpotent of class < n  if it satisfies |.r (........x n} =
0. The algebra G  is solvable of class < n  if  it satisfies the identity f n =  0, where 
fn  =  fn ( x i ,  • • •, X2«), is defined inductively by

f i ( x 1 , x 2) =  [x1, x 2]

f n  =  [ f n - l i x - i ,  . . . , X 2n - l ) ,  f n - l ( x 2n - l  +  1 , . . . , X 2n ) } ,  Tl >  1 .

The solvable Lie algebras of class two are called metabelian. Any solvable finite 
dimensional Lie algebra satisfies the identity

{[x1,X 2], [x2n - l , X 2n]} =  0
for some positive n.

4. Bergman Polynomials in Lie Algebras
It is a natural question to consider Bergman polynomials in Lie algebras as well. 
Working in the Lie algebra so (4, K ,  *) of the skew-symmetric with respect to the 
symplectic involution * variables of the matrix algebra of fourth order M f i K ,  *) 
we are interested in finding the minimal degree of these polynomials. In [7] us­
ing the Hall basis of the free algebra L ( X )  for X  =  {x,  2/1,2/2} we have con­
sidered the following elements of a given degree k  +  2: [2/^,2:,... , x , y i2] and

k
[[yij , x , . . . , x ] ,  [yi2 , x , . . .  ,x}}, where (ii, Î2) is any permutation of {1,2} and i =  

1 k—l

The left normed commutators are written as elements of the free associative algebra 
K  (X)  and thus the commutative polynomials are uniquely defined.

For example for

/  =  [yi, x,  2/2] =  y ix y 2 -  22/12/2 -  2/22/12: +  2/22:2/1 

=  v{gi){x,  2/1,2/2) +  v(g2)(x,  2/2,2/1)

we have </i =  *2 — and <72 =  —(*3 — *2)-
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For

/  =  [[yi,x], [y2 ,x,x]} =  y1xy 2x 2 -  2 yt x 2y2x  +  y1x i y2
— x y i y 2x 2 +  2xy±xy2x  — x y \x 2y2 — y2x 2y\x +  y2x zyi 

+  2xy 2xy\x -  2x y 2x 2y1 -  x 2y2y ix  +  x 2y2xy i

=  v{gi)(x,  2/1,2/2) +  v(g2)(x,  y2, yf)
one gets g1 =  (t2 -  t i) (t3 -  t2f  and g2 =  ~ ( t 2 -  t i ) 2(t3 -  t2).

We denote the Lie algebra of the skew-symmetric due to the simplectic involution 
variables of M 2n(K ,  *) as so(2n, K ,  *).
Applying Proposition 3 and some technical manipulations we get the following 
result:

Proposition 6 ([7, Theorem 1]). No Bergman polynomials are Lie identities fo r  
the Lie algebra so(4, K ,  *).

There was a comment made during the Conference on the possibility of getting the 
above result from more general considerations connected with the Lie structure of 
the algebra. But the pattern of proof of Proposition 6 introduced in [7] gives the 
possibility for an analogous result concerning so(6, K ,  *) as well.

Investigating the identities of minimal degree for the Lie algebras so(4), so (3 ,1), 
so(2,2) and sp(4, R ) considered in [3] is a natural step in research. For the phys­
ical reason of considering the above algebras we will mention that the Lie algebra 
so(3 ,1) is the algebra of the Lorentz group SO(3,1). The motion of a charged par­
ticle in a constant electromagnetic field can be described by a system of four linear 
differential equations, the so called Lorentz equations [2], The time independent 
electromagnetic field is represented by a second order tensor

where E±, E 2, E z  and B \, B 2, B z  are the components of the electric respectively 
magnetic fields (A  is an arbitrary element of the Lie algebra so (3, 1)).

Theorem 2. For the Lie algebras so(4), so(3, 1) and so(2, 2) there exists a Berg­
man polynomial o f  type (1 ) o f  minimal degree five, which is a Lie identity. A ll 
Bergman type Lie identities in these algebras are consequences o f  the minimal 
identity.

Proof: Elements of all considered algebras are matrices of the type

/ 0 B z —B 2 E i \
—B z  0 B \ E 2

B 2 —B \  0 E z
\ E i  E 2 E z 0 /
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where A  and B  are some matrices of second order. Thus, we could apply the 
well known result that an identity for the considered subalgebras of M 4(K )  is an 
ordinary identity for M 2 ( K ).  Thus due to the Amitsur-Levitski theorem the degree 
of the polynomial /  has to be at least four.

We use the Hall basis of the free Lie algebra L ( X )  on the set X  =  {x,  y2, 2/1}, 
namely the elements of type [yn yn ] and [[y21 , x , . . . , x ] ,  [yn , x , . . . ,  a:]].

Thus, the polynomial /  =  /4 of degree four has the form

f i  =  a[[y4 ,x}, [V2,x\] +  ß[y1, x , x , y 2] + 'y[y2 , x , x , y 1\.

Writing f 4 =  v(g4)(x,  y4, y 2) +  v(g2)(x,  y2, y4) we get

9 i  =  a ( t 2 -  f i )(f3 -  t2) +  ß ( t 2 -  f i )2 -  7(t3 -  t 2)2.

Applying Proposition 1 we get g i (t 4 =  t2) =  0  and therefore 7  =  0. As gi(t2 =  
t3) =  0 we have also ß  =  0. And gi(t\  =  f3) =  0 implies a  =  0.

It means that there is no Bergman type polynomial of degree four, which is a Lie 
identity.

Considering degree five, we get

f  =  f 5 =  a[[yi,x], [y2 ,x,x]}  +  b[[y2 ,x\, [y^x^x])

+  c [yiix i x ,  x ,  m ]  +  d[y2, X, X, X,  2/ 1 ]

=  v(gi)(x,  2/1, y2) +  v(g2)(x,  y2, 2/1).

Thus g4 =  c(t2 -  t i) 3 -  d(f3 -  f2)3 +  a(t2 -  f i )(f3 - 12)2 -  b(t2 -  t i) 2(t3 -  t2). 
As /s is an identity for M 2( K )  we apply Proposition 1 again and get

öi(*i =  *2) =  0 =>• d =  0 

5i (*2 =  *3) =  0 => c =  0
g i ( h  =  tß) =  0 from which we get (t2 — t i f ( a  +  b) =  0, hence a +  b =  0.

Considering the linearization of /s, we could evaluate it only for the basic elements 
of the three considered algebras.
For the algebra so (4) these are the elements

a 1 =  e2i  — e i 2, a4 =  e32 — e23
a 2 =  e 33 — e3 i ,  a 3 =  C42 — e24

=  e 4 i  — ei4, a g  =  e 4s  — e34.

For the algebra so(3, 1) they are

b 1 =  e2i — e i2, 64 =  e32 — e23

b2 =  e i3 — e3i, 65 =  C42 +  e24

63 =  641 +  r 1 .  bß =  C43 +  e34.
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For the algebra s o (2 , 2) the basis are the elements

Cl =  C12 —  C21, C4 =  C;32 +  623

C2 =  Ci3 +  C;3i, C5 =  C42 +  C24
63 =  641 +  614, C% =  634 — 643.

We consider all the possibilities for the arguments of /s and make the correspond­
ing evaluations. This procedure is done by M a t h e m a t i c a  and it gives either 
trivial results or a +  b =  0.

Thus /s is the minimal Bergman polynomial of degree five being a Lie identity for 
these algebras.

It is easy to be realized that the consequences of /s for higher degrees are 

h  =  a f 5(x, [yi,x\,y2) +  ßfc (x,  yi, [V2,x]) 

and

h  =  a f 5(x, [yi,x], [y2 ,x]) +  ß f 6(x, [yi ,x] ,y2) + ' y f 6 ( x , y 1 , [y2 ,x]).

They have only factors related to /s commutative polynomials g\ and g2.

Thus all Bergman type Lie identities for the algebras so(4), so(3 ,1) and so(2,2) 
are consequences of the identity /s =  0 and this finishes the proof of the theorem.

Remark 1. For the Lie algebra sp(4, R ) does not exist a Bergman polynomial o f  
type (1), which is a Lie identity.

We point that the algebra sp(4, R ) is the algebra so(4, R , *) and for it Proposition 6 
is valid.
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